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In this talk

� What is a provenance-aware DBMS?
� What is a probabilistic DBMS?
� Is it possible to build such a DBMS, with:

� Support for various forms of provenance
� Support for a large, and practically useful, query language
� Efficient computation of provenance and probabilities

� What to compare it with?
� Benchmarks
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Provenance in Databases

� A way to keep track of annotations through data processing tasks, that
provide extra information about the results of these tasks

� Provenance framework:
� A base data model (e.g., the relational model)
� A query language (e.g., the positive relational algebra)
� A data model for annotations (e.g., K-annotated relations)
� A semantics for queries over the annotation data model
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Example provenance frameworks on relations

Provenance type Query language Annotations

Workflow [Davidson et al., 2007] Opaque operations Operation metadata on DAG nodes
Boolean [Imieliński and Lipski, 1984] Arbitrary Boolean function on tuples
Semiring [Green et al., 2007] Datalog Semiring element on tuples
M-Semiring [Geerts and Poggi, 2010] Relational algebra M-Semiring element on tuples
Where [Buneman et al., 2001] Select, project, join, union Bipartite graph on values
Semimodule [Amsterdamer et al., 2011] Extended relational algebra Semimodule annotation on values
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Some important results

� Many application semirings, most of which can be extended into m-semirings,
capturing useful meta-information: shortest path lengths, top-k shortest path
lengths and top-k shortest paths, why-provenance, Trio’s lineage, temporal
intervals, counting. . .

� For the relational algebra, Boolean provenance semantics coincides with
m-semiring semantics

� (M-)Semiring provenance semantics commutes with (m-)semiring
homomorphism

� Universal semiring (N[X]) and m-semiring (free m-semiring)
� Provenance tracking is generally PTIME
� Provenance circuits are generally more compact than provenance formulas



6/17

Probabilistic database

� Compact representation of a probability distribution over possible databases
� Distributions can be finite, continuous [Abiteboul et al., 2011], discrete but

infinite [Benedikt et al., 2010, Grohe and Lindner, 2020]

� Correlations across data items may be disallowed (TID) [Dalvi and Suciu, 2004],
limited (BID) [Dalvi and Suciu, 2013], arbitrary (pc-tables) [Green and Tannen, 2006]

� Main problem: probabilistic query evaluation, i.e., computing the (marginal)
probability of a data item in the output of a query; or sometimes computing
the distribution of data values in the output of a query
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Main results

� Probabilistic query evaluation is #P-hard
� In the relational setting, becomes tractable when:

� the Boolean provenance has some tractable representation (read-once, d-D
circuit. . . )

� the query is a safe UCQ [Dalvi and Suciu, 2013] over TIDs
� the query is a safe CQ without self-joins [Dalvi et al., 2011] over BIDs
� the data has bounded treewidth over BIDs [Amarilli et al., 2015], for any MSO

query
� the data and correlations have joint bounded treewidth [Amarilli, 2016], for any

MSO query

� TIDs or BIDs are not a strong representation system for the relational
algebra; pc-tables are
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ProvSQL: Provenance within PostgreSQL
[Senellart et al., 2018]

� Provenance annotations stored as Universally Unique Identifiers (UUIDs), in
an extra attribute of each provenance-aware relation

� UUIDs of base tuples randomly generated; UUIDs of query results generated
in a deterministic manner

� A provenance circuit relating UUIDs of elementary provenance annotations
and arithmetic gates persistently stored on disk in memory-mapped files

� Query rewriting (after parsing, before planning) to automatically compute
output provenance attributes in terms of the query and input provenance
attributes
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Other databases with provenance/probability support

� Older probabilistic database systems can compute some forms of provenance
(especially, Boolean provenance); but tied to specific version of PostgreSQL (8.3),
hard to deploy

Trio: http://infolab.stanford.edu/trio/ [Benjelloun et al., 2006]
MayBMS: http://maybms.sourceforge.net/ [Huang et al., 2009]

� Perm https://github.com/IITDBGroup/perm [Glavic and Alonso, 2009] now obsolete
system for provenance management; also tied to PostgreSQL 8.3

� ORCHESTRA https://www.cis.upenn.edu/~zives/orchestra/ [Green et al., 2010] Java
front end to DBMS with provenance support; not maintained

� GProM http://www.cs.iit.edu/~dbgroup/projects/gprom.html [Arab et al., 2018]
similar to ProvSQL (though no probabilistic database capabilities), overlap of
features; middleware

� ProbLog https://dtai.cs.kuleuven.be/problog/ [Kimmig et al., 2011] probabilistic
logic reasoning system in Python; has a (SQLite) DB backend

http://infolab.stanford.edu/trio/
http://maybms.sourceforge.net/
https://github.com/IITDBGroup/perm
https://www.cis.upenn.edu/~zives/orchestra/
http://www.cs.iit.edu/~dbgroup/projects/gprom.html
https://dtai.cs.kuleuven.be/problog/
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ProvSQL features as of 2025
� PostgreSQL extension, works for all versions of PostgreSQL > 10, tested on

Linux, Mac OS (x86/ARM), WSL

� Support of a large subset of SQL: multiset relational algebra + duplicate
elimination + terminal aggregates (+ partial support for updates)

� Provenance computation in arbitrary semirings (through the universal
semiring), in arbitrary m-semirings (through the free m-semiring), in arbitrary
semimodules for aggregate provenance, where-provenance

� Specialization to various (m-)semirings: Boolean, counting, why-provenance,
formulas, temporal intervals. . .

� Arbitrary probabilistic correlations representable
� Probabilistic query evaluation through Boolean provenance:

� linear-time processing of read-once Boolean circuits
� compilation to d-DNNFs for low-treewidth circuits
� use of external knowledge compilers (d4, c2d, dsharp. . . )
� Monte-Carlo sampling

� Shapley value and expected Shapley value computation
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Benchmarking ProvSQL

� We want to know:
� What is the overhead of provenance computation?
� Does it scale to large databases?
� Is probabilistic query evaluation feasible in practice despite #P-hardness?

� Competitors:
� GProM for why-provenance computation
� MayBMS for probabilsitic query evaluation
� ProbLog for probabilistic query evaluation

� Database: TPC-H, from 1 GB to 10 GB
� Queries: (some) TPC-H queries + ad-hoc queries on the same schema
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The case of ProbLog

Unfortunately does not scale at all, all data is brought into RAM even if using the
DB backend. Simplest query of our benchmark:

:- use_module(library(db)).
:- sqlite_load(’TPC-H.db’).

1 :: result(O,P,S,LN,LS) :- lineitem(O,P,S,LN,Q,_,_,_,_,LS,_,_,_,_,SM,_), SM=’AIR’, Q>10 .
1 :: result(O,P,S,LN,LS) :- lineitem(O,P,S,LN,_,_,D,_,_,LS,_,_,_,_,_,_), D > .05 .

query(result(_,_,_,_,_)) .

� For TPC-H 100 MB, 5 GB of RAM used, timeout after 5 hours
� For TPC-H 1 GB, out-of-memory
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Query support

TPC-H TPC-H�

Query 1 6 7 9 12 19 1 3 4 12 15

ProvSQL (prov.) Y Y Y Y Y Y Y Y Y Y Y
ProvSQL (prob.) O Y O Y Y Y Y Y Y Y Y

GProM N N N N N N Y Y O Y Y
MayBMS N N N N N N Y Y Y Y Y

Custom

Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ProvSQL (prov.) Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
ProvSQL (prob.) Y Y Y Y Y Y Y Y O Y Y Y Y Y Y Y Y Y

GProM O Y Y Y O O Y O T Y Y O Y Y Y N Y N
MayBMS Y Y Y T O Y Y Y O Y Y Y Y Y Y N Y N

Not supported; Timeout after 3 000 s; Out-of-Memory Error
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Scalability of Provenance Computation in ProvSQL
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Provenance Computation: ProvSQL vs GProM
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Probability Computation: ProvSQL vs MayBMS
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Missing and on-going features in ProvSQL

� Recursive query support: impossible because WITH RECURSIVE queries are
very restricted in SQL (but see [Ramusat et al., 2021, Zhao et al., 2024] for how to
implement provenance for Datalog within a Datalog evaluator)

� Updates: simple updates, following [Bourhis et al., 2020], in the process of being
integrated; updates depending on multiple tables require more work

� Continuous distributions: prototype implementation available, in the spirit of
[Abiteboul et al., 2011], hopefully can be integrated soon

� Extensional probabilistic query evaluation for safe queries: [Dalvi and Suciu,

2013] being considered, but requires architecture changes; ideally would be
possible through compilation to a d-D circuit, but only known for particular
cases [Monet, 2020]

� Plenty of optimizations still possible! (e.g., compiling isomorphic circuits only
once for probabilistic query evaluation)
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