Semantic Web Technologies

Pierre Senellart

23 September 2013, Università degli Studi Roma Tre
Outline

Introduction

The Semantic Web
Ontologies and Reasoning
Components of an Ontology

3. Ontology Languages for the Web
RDF
RDFS
OWL

Querying Data through Ontologies

Reference Material
Outline

Introduction

The Semantic Web
Ontologies and Reasoning
Components of an Ontology

3 Ontology Languages for the Web

Querying Data through Ontologies

Reference Material
Outline

Introduction

The Semantic Web
Ontologies and Reasoning
Components of an Ontology

3 Ontology Languages for the Web

Querying Data through Ontologies

Reference Material
The Semantic Web

- A Web in which the resources are *semantically* described
 - annotations give information about a page, explain an expression in a page, etc.

- More precisely, a resource is anything that can be referred to by a URI
 - a web page, identified by a URL
 - a fragment of an XML document, identified by an element node of the document,
 - a web service,
 - a thing, an object, a concept, a property, etc.

- Semantic annotations: logical assertions that relate resources to some terms in associated *ontologies*
Outline

Introduction
- The Semantic Web
- Ontologies and Reasoning
- Components of an Ontology

3 Ontology Languages for the Web

Querying Data through Ontologies

Reference Material
Ontologies

- Formal descriptions providing human users a shared understanding of a given domain
 - A controlled vocabulary
- Formally defined so that it can also be processed by machines
- Logical semantics that enables reasoning
- Reasoning is the key for different important tasks of Web data management, in particular:
 - to answer queries (over possibly distributed data)
 - to relate objects in different data sources enabling their integration
 - to detect inconsistencies or redundancies
 - to refine queries with too many answers, or to relax queries with no answer
Where Do Ontologies Come From?

- Manually crafted to represent the knowledge of a specific domain (e.g., life sciences)
- Exported from classical Web databases
- Through information extraction from the Web, Wikipedia, etc. (e.g., DBpedia, YAGO)
- Private to a company or public
- Some ontologies focus on instances, others on a schema (see further)
- Value of the Semantic Web: bits of ontologies can be re-used in another, and ontologies can be mapped through an owl:sameAs link
Introduction
 The Semantic Web
 Ontologies and Reasoning
 Components of an Ontology

3 Ontology Languages for the Web

Querying Data through Ontologies

Reference Material
- Backbone of the ontology

- **AcademicStaff** is a **Class** (A class will be interpreted as a set of objects)

- **AcademicStaff isa Staff** (isa is interpreted as set inclusion)

Diagram:

```
FacultyComponent

- Staff
  - AdministrativeStaff
  - AcademicStaff
    - Professor
    - Researcher
    - Lecturer
  - Department
    - CSDept
    - MathsDept
    - PhysicsDept
  - Student
    - PhDStudent
    - MasterStudent
    - UndergraduateStudent
  - Course
    - CSCourse
    - Logic
    - MathCourse
      - Java
      - AI
      - DB
      - Algebra
      - Probabilities
```
- Declaration of relations with their signature
- (Relations will be interpreted as binary relations between objects)
- TeachesIn(AcademicStaff, Course)
 - if one states that “X TeachesIn Y”, then X belongs to AcademicStaff and Y to Course
- TeachesTo(AcademicStaff, Student)
- Leads(Staff, Department)
Instances

- Classes have instances
- Dupond is an instance of the class Professor
- corresponds to the fact: Professor(Dupond)

- Relations also have instances
- (Dupond, CS101) is an instance of the relation TeachesIn
- corresponds to the fact: TeachesIn(Dupond, CS101)

- The instance statements can be seen as (and stored in) a database
Ontology = schema + instance

- **Schema** (TBox)
 - The set of class and relation names
 - The *signatures* of relations and also *constraints*
 - The constraints are used for two purposes
 - checking data consistency (like dependencies in databases)
 - inferring new facts

- **Instance** (ABox)
 - The set of facts
 - The set of base facts together with the inferred facts should satisfy the constraints

- **Ontology** (i.e., Knowledge Base) = Schema + Instance
Outline

Introduction

3 Ontology Languages for the Web
 RDF
 RDFS
 OWL

Querying Data through Ontologies

Reference Material
3 ontology languages for the Web

- RDF: a very simple ontology language
- RDFS: Schema for RDF
 - Can be used to define richer ontologies
- OWL: a much richer ontology language

We next present them rapidly
Outline

Introduction

3 Ontology Languages for the Web
 RDF
 RDFS
 OWL

Querying Data through Ontologies

Reference Material
Namespaces

- A **URI** most often takes the form of a URL:
 - http://live.dbpedia.org/page/%C3%89lectricit%C3%A9_de_France
 - http://sw.opencyc.org/2012/05/10/concept/en/GameOfChance
 - http://www.w3.org/People/Berners-Lee/card#i

- Some of these URIs may be **actual URLs** (point to a browsable resource), some may just be abstract.

- For simplicity, possibility of defining **namespace prefixes**, e.g., `dbpedia = http://live.dbpedia.org/page/` along with a **default prefix** (e.g., mapped to `http://sw.opencyc.org/2012/05/10/concept/en/`):
 - `dbpedia:%C3%89lectricit%C3%A9_de_France`
 - `:GameOfChance`
RDF facts are triplets

Each triplet is of the form: \(\langle \text{Subject Predicate Object} \rangle \)

The subject is a URI, referencing an entity

The predicate is a URI, referencing a relation

The object is either a URI, referencing an entity, or a literal

\[
\langle \text{:Dupond :Leads :CSDept} \rangle \\
\langle \text{:Dupond :HasName "Paul Dupond"} \rangle \\
\langle \text{:Dupond :TeachesIn :UE111} \rangle \\
\langle \text{:Dupond :TeachesTo :Pierre} \rangle \\
\langle \text{:Pierre :EnrolledIn :CSDept} \rangle \\
\langle \text{:Pierre :RegisteredTo :UE111} \rangle \\
\langle \text{:UE111 :OfferedBy :CSDept} \rangle
\]

The linked data cloud contains dozens of billions of RDF triples
A set of RDF facts defines
- a set of relations between objects
- an RDF graph where the nodes are objects:
A triplet \(\langle s \ P \ o \rangle \) is interpreted in first-order logic (FOL) as a fact \(P(s, o) \)

Example:
- Leads(Dupond, CSDept)
- TeachesIn(Dupond, UE111)
- TeachesTo(Dupond, Pierre)
- EnrolledIn(Pierre, CSDept)
- RegisteredTo(Pierre, UE111)
- OfferedBy(UE111, CSDept)
Several serialization formats for RDF data, see alternate formats of http://live.dbpedia.org/page/%C3%89lectricit%C3%A9_de_France:

- **RDF/XML**, structured XML representation, allowing for nesting
- **N3** or **Turtle**, more compact, readable syntax, with some syntaxic sugar (Turtle is a subset of N3)
- **N-Triples**, a simple text-based format
- **RDFa** to integrate RDF annotations into HTML
Outline

Introduction

3 Ontology Languages for the Web
 RDF
 RDFS
 OWL

Querying Data through Ontologies

Reference Material
Not detailed here: the schema in RDF is super simplistic

An **RDF Schema** defines the schema of a richer ontology
Do not get confused: RDFS can use RDF as syntax, i.e., RDFS statements can be themselves expressed as RDF triplets using some specific properties and objects used as RDFS keywords with a particular meaning.

- Declaration of classes and subclass relationships
 - \(\langle \text{Staff rdf:type rdfs:Class} \rangle \)
 - \(\langle \text{Java rdfs:subClassOf CSCourse} \rangle \)

- Declaration of instances (beyond the pure schema)
 - \(\langle \text{Dupond rdf:type AcademicStaff} \rangle \)
- Declaration of relations (properties in RDFS terminology)
 - ⟨ RegisteredTo rdf:type rdfs:Property ⟩

- Declaration of subproperty relationships
 - ⟨ LateRegisteredTo rdfs:subPropertyOf RegisteredTo ⟩

- Declaration of domain and range restrictions for predicates
 - ⟨ TeachesIn rdfs:domain AcademicStaff ⟩
 - ⟨ TeachesIn rdfs:range Course ⟩
 - TeachesIn(AcademicStaff, Course)
RDFS logical semantics

<table>
<thead>
<tr>
<th>RDF and RDFS statements</th>
<th>FOL translation</th>
<th>DL notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨i rdf:type C⟩</td>
<td>C(i)</td>
<td>i : C or C(i)</td>
</tr>
<tr>
<td>⟨i P j⟩</td>
<td>P(i, j)</td>
<td>i P j or P(i, j)</td>
</tr>
<tr>
<td>⟨C rdfs:subClassOf D⟩</td>
<td>∀X (C(X) ⇒ D(X))</td>
<td>C ⊑ D</td>
</tr>
<tr>
<td>⟨P rdfs:subPropertyOf R⟩</td>
<td>∀X ∀Y (P(X, Y) ⇒ R(X, Y))</td>
<td>P ⊑ R</td>
</tr>
<tr>
<td>⟨P rdfs:domain C⟩</td>
<td>∀X ∀Y (P(X, Y) ⇒ C(X))</td>
<td>∃P ⊑ C</td>
</tr>
<tr>
<td>⟨P rdfs:range D⟩</td>
<td>∀X ∀Y (P(X, Y) ⇒ D(Y))</td>
<td>∃P⁻ ⊑ D</td>
</tr>
</tbody>
</table>

DL: Description logics, a specialized logical formalism
Outline

Introduction

3 Ontology Languages for the Web

RDF
RDFS
OWL

Querying Data through Ontologies

Reference Material
OWL: Web Ontology Language

- OWL extends RDFS with the possibility to express additional constraints

- Main OWL constructs
 - Disjointness between classes
 - Constraints of functionality and symmetry on predicates
 - Intentional class definitions
 - Class union and intersection

- Inspired by description logics

- Several profiles: OWL Full, OWL DL, OWL Lite, OWL 2 EL, OWL 2 QL, OWL 2 RL. Different profiles include different features, and have different tractability
OWL constructs

Disjointness between classes:

<table>
<thead>
<tr>
<th>OWL notation</th>
<th>FOL translation</th>
<th>DL notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle C \text{ owl:disjointWith } D \rangle)</td>
<td>(\forall X \ (C(X) \Rightarrow \neg D(X)))</td>
<td>(C \sqsubseteq \neg D)</td>
</tr>
</tbody>
</table>

Constraints of functionality and symmetry on predicates:

<table>
<thead>
<tr>
<th>OWL notation</th>
<th>FOL translation</th>
<th>DL notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle P \text{ rdf:type } \text{owl:FunctionalProperty} \rangle)</td>
<td>(\forall X \forall Y \forall Z \ (P(X, Y) \land P(X, Z) \Rightarrow Y = Z))</td>
<td>((\text{funct } P)) or (\exists P \sqsubseteq (\leq 1 P))</td>
</tr>
<tr>
<td>(\langle P \text{ rdf:type } \text{owl:InverseFunctionalProperty} \rangle)</td>
<td>(\forall X \forall Y \forall Z \ (P(X, Y) \land P(Z, Y) \Rightarrow X = Z))</td>
<td>((\text{funct } P^-)) or (\exists P^- \sqsubseteq (\leq 1 P^-))</td>
</tr>
<tr>
<td>(\langle P \text{ owl:inverseOf } Q \rangle)</td>
<td>(\forall X \forall Y \ (P(X, Y) \iff Q(Y, X)))</td>
<td>(P \sqsubseteq Q^-)</td>
</tr>
<tr>
<td>(\langle P \text{ rdf:type } \text{owl:SymmetricProperty} \rangle)</td>
<td>(\forall X \forall Y \ (P(X, Y) \Rightarrow P(Y, X)))</td>
<td>(P \sqsubseteq P^-)</td>
</tr>
</tbody>
</table>
Definition of intentional classes in OWL

- **Goal:** allow expressing complex constraints such as:
 - departments can be lead only by professors
 - only professors or lecturers may teach to undergraduate students.

- The keyword `owl:Restriction` is used in association with a blank node class, and some specific restriction properties:
 - `owl:someValuesFrom`
 - `owl:allValuesFrom`
 - `owl:minCardinality`
 - `owl:maxCardinality`
OWL Semantics

<table>
<thead>
<tr>
<th>OWL notation</th>
<th>FOL translation</th>
<th>DL notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>_a owl:onProperty P</td>
<td>(\forall Y \ (P(X, Y) \Rightarrow C(Y)))</td>
<td>(\forall P.C)</td>
</tr>
<tr>
<td>_a owl:allValuesFrom C</td>
<td>(\forall Y \ (P(X, Y) \Rightarrow C(Y)))</td>
<td>(\forall P.C)</td>
</tr>
<tr>
<td>_a owl:onProperty P</td>
<td>(\exists Y \ (P(X, Y) \land C(Y)))</td>
<td>(\exists P.C)</td>
</tr>
<tr>
<td>_a owl:someValuesFrom C</td>
<td>(\exists Y_1 \ldots \exists Y_n (P(X, Y_1) \land \ldots \land P(X, Y_n) \land \bigwedge_{i,j \in [1..n], i \neq j}(Y_i \neq Y_j)))</td>
<td>((\geq n \ P))</td>
</tr>
<tr>
<td>_a owl:minCardinality n</td>
<td>(\forall Y_1 \ldots \forall Y_n \forall Y_{n+1}) ((P(X, Y_1) \land \ldots \land P(X, Y_n) \land P(X, Y_{n+1}) \land \bigvee_{i,j \in [1..n+1], i \neq j}(Y_i = Y_j)))</td>
<td>((\leq n \ P))</td>
</tr>
</tbody>
</table>
- Departments can be lead only by professors

- Define the set of objects that are lead by professors

 _a rdfs:subClassOf owl:Restriction
 _a owl:onProperty Leads
 _a owl:allValuesFrom Professor

- Now specify that all departments are lead by professors

 Department rdfs:subClassOf _a
Union and Intersection of Classes by example

- Only professors or lecturers may teach to undergraduate students

\[_a \text{ rdfs:subClassOf} \text{ owl:Restriction} \]
\[_a \text{ owl:onProperty} \text{ TeachesTo} \]
\[_a \text{ owl:someValuesFrom} \text{ Undergrad} \]
\[_b \text{ owl:unionOf} \text{ (Professor, Lecturer)} \]
\[_a \text{ rdfs:subClassOf} _b \]

- This corresponds to an inclusion axiom in Description Logic:

\[\exists \text{ TeachesTo. UndergraduateStudent} \sqsubseteq \text{ Professor} \sqcap \text{ Lecturer} \]

- owl:equivalentClass corresponds to double inclusion:

\[\text{MathStudent} \equiv \text{ Student} \sqcap \exists \text{ RegisteredTo. MathCourse} \]
Outline

Introduction

3 Ontology Languages for the Web

Querying Data through Ontologies

Reference Material
Querying using RDFS

- RDFS statements can be used to infer new triples

- Example
 - Base fact `ResponsibleOf(durand, ue111)`
 - Use the statement `<ResponsibleOf rdfs:domain Professor>`
 i.e., the logical rule: `ResponsibleOf(X, Y) ⇒ Professor(X)`
 - With substitution `{X/durand, Y/ue111}`
 - Infer fact `Professor(durand)`
 - Use the statement `<Professor rdfs:subClassOf AcademicStaff>`
 i.e., the rule `Professor(X) ⇒ AcademicStaff(X)`
 - With substitution `{X/durand}`
 - Infer fact `AcademicStaff(durand)`
 - etc.
The saturation algorithm

- Keep infering new facts until a fixpoint is reached
- Note: Only polynomially many facts can be added
- PTIME
Querying using DL

- RDFS simpler and very used but limited
- Query answering is unfeasible for all of OWL (even OWL-DL)…
 but restrictions exist that have more reasonable complexity (OWL-Lite, OWL 2 QL, OWL 2 EL). OWL-Full is even undecidable!
Graph pattern language

Get all URIs, name, emails of persons with all three pieces of information from a FOAF dataset:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT *
WHERE {
 ?person foaf:name ?name .
}

The SPARQL processor may or may not use reasoning w.r.t. the schema
Outline

Introduction

3 Ontology Languages for the Web

Querying Data through Ontologies

Reference Material
Where can Semantic Content be Found?

- In the **linked data**, through Web-available RDF data:
 - **dumps** of an entire ontology, in one of the RDF serialization formats (RDF/XML, Turtle, N-Triples)
 - **crawlable** RDF content, with small fragments pointing to other fragments
 - a **SPARQL endpoint**
 - HTML annotated with **RDFa**, cf. http://www.w3.org/TR/rdfa-syntax/

- Other popular semantic content embedded in Web pages: **microformats** (hCard, vCard, etc.), **microdata** (cf. http://schema.org/). Not directly the spirit of the Semantic Web, but heavily used.

- RDF content used internally in a company
RDF stores (triplestores) with relational or native backend, open-source or commercial, see http://en.wikipedia.org/wiki/Triplestore. Apache Jena is a popular open-source Java store.

Semantic browsers, to navigate RDF content, http://en.wikipedia.org/wiki/Linked_data#Browsers

Tool to view semantic data in Web pages: http://www.google.com/webmasters/tools/richsnippets
To go further...

- The specifications on http://www.w3.org/
- A gentle introduction to the Semantic Web:
- A practical approach:
- Contents of this lecture from:
 Also available at http://webdam.inria.fr/Jorge/