

ProFoUnd: Program-analysis-based Form Understanding

(joint work with M. Benedikt, T. Furche, A. Savvides)

Ben Gurion University of the Negev, 28 February 2012

Definition (Deep Web, Hidden Web, Invisible Web)

All the content on the Web that is not directly accessible through hyperlinks. In particular: HTML forms, Web services.

Size estimate: 500 times more content than on the surface Web! [BrightPlanet, 2001]. Hundreds of thousands of deep Web databases [Chang et al., 2004]

Example

- Yellow Pages and other directories;
- Library catalogs;
- Weather services;
- US Census Bureau data;
- etc.

Discovering Knowledge from the Deep Web [Varde et al., 2009]

- Content of the deep Web hidden to classical Web search engines (they just follow links)
- But very valuable and high quality!
- Even services allowing access through the surface Web (e.g., e-commerce) have more semantics when accessed from the deep Web
- How to benefit from this information?

Focus here: Automatic, unsupervised, methods

Extensional Approach

Notes on the Extensional Approach

Main issues:

- Discovering services
- Choosing appropriate data to submit forms
- Use of data found in result pages to bootstrap the siphoning process
- Ensure good coverage of the database
- Approach favored by Google, used in production [Madhavan et al., 2006]
- Not always feasible (huge load on Web servers)

Intensional Approach

Notes on the Intensional Approach

- More ambitious [Chang et al., 2005, Senellart et al., 2008]Main issues:
 - Discovering services
 - Understanding the structure and semantics of a form
 - Understanding the structure and semantics of result pages
 - Semantic analysis of the service as a whole
- No significant load imposed on Web servers

Introduction

Wrapping Web Forms

Form Analysis Information Extraction from Deep Web Pages

ProFoUnd

Conclusions

Introduction

Wrapping Web Forms Form Analysis

Information Extraction from Deep Web Pag

ProFoUnd

Conclusions

Analyzing the structure of HTML forms.

Goal

Associating to each form field the appropriate domain concept.

「多い」1st Step: Structural Analysis

- 1. Build a context for each field:
 - label tag;
 - id and name attributes;
 - text immediately before the field.
- 2. Remove stop words, stem.
- 3. Match this context with the concept names, extended with WordNet.
- 4. Obtain in this way candidate annotations.

副光師1st Step: Structural Analysis

- 1. Build a context for each field:
 - label tag;
 - id and name attributes;
 - text immediately before the field.
- 2. Remove stop words, stem.
- 3. Match this context with the concept names, extended with WordNet.
- 4. Obtain in this way candidate annotations.

「多い」1st Step: Structural Analysis

- 1. Build a context for each field:
 - label tag;
 - id and name attributes;
 - text immediately before the field.
- 2. Remove stop words, stem.
- 3. Match this context with the concept names, extended with WordNet.
- 4. Obtain in this way candidate annotations.

「多い」1st Step: Structural Analysis

- 1. Build a context for each field:
 - label tag;
 - id and name attributes;
 - text immediately before the field.
- 2. Remove stop words, stem.
- 3. Match this context with the concept names, extended with WordNet.
- 4. Obtain in this way candidate annotations.

- 1. Probe the field with nonsense word to get an error page.
- 2. Probe the field with instances of c (chosen representatively of the frequency distribution of c).
- 3. Compare pages obtained by probing with the error page (by clustering along the DOM tree structure of the pages), to distinguish error pages and result pages.
- 4. Confirm the annotation if enough result pages are obtained.

- 1. Probe the field with nonsense word to get an error page.
- 2. Probe the field with instances of c (chosen representatively of the frequency distribution of c).
- 3. Compare pages obtained by probing with the error page (by clustering along the DOM tree structure of the pages), to distinguish error pages and result pages.
- 4. Confirm the annotation if enough result pages are obtained.

- 1. Probe the field with nonsense word to get an error page.
- 2. Probe the field with instances of c (chosen representatively of the frequency distribution of c).
- 3. Compare pages obtained by probing with the error page (by clustering along the DOM tree structure of the pages), to distinguish error pages and result pages.
- 4. Confirm the annotation if enough result pages are obtained.

- 1. Probe the field with nonsense word to get an error page.
- 2. Probe the field with instances of c (chosen representatively of the frequency distribution of c).
- 3. Compare pages obtained by probing with the error page (by clustering along the DOM tree structure of the pages), to distinguish error pages and result pages.
- 4. Confirm the annotation if enough result pages are obtained.

How well does this work?

Good results in practice [Senellart et al., 2008]

	Initial annot.		Confirmed annot.		
	p(%)	r(%)	p(%)	r(%)	
Average	49	73	82	73	

- Probing raises precision without hurting recall
- Clustering according to DOM paths: much better than previous approaches
- But some critical assumptions:
 - It is possible to query a field with a subword
 - All form fields are independent
 - No field is required

How well does this work?

Good results in practice [Senellart et al., 2008]

	Initial annot.		Confirmed annot.		
	p(%)	r(%)	p(%)	r(%)	
Average	49	73	82	73	

- Probing raises precision without hurting recall
- Clustering according to DOM paths: much better than previous approaches
- But some critical assumptions:
 - It is possible to query a field with a subword
 - All form fields are independent
 - No field is required

Introduction

Wrapping Web Forms

Form Analysis

Information Extraction from Deep Web Pages

ProFoUnd

Conclusions

Pages resulting from a given form submission:

- share the same structure;
- set of records with fields;
- unknown presentation!

Goal

Building wrappers for a given kind of result pages, in a fully automatic, unsupervised, way. Simplification: restriction to a domain of interest, with some domain knowledge.

Pierre Senellart

Showing results 1 through 25 (of 94 total) for all:xml

1. cs.LO/0601085 [abs, ps, pdf, other] :

The: A Formal Foundation for ODBL Authors: Riccardo Pucella, Vicky Weissman Comments: 30 pps, preliminary version presented at WITS-04 (Workshop on issues in the Theory of Security), 2004 Subj-bass: Logic In Computer Science: Cryptography and Security AGM-bass: Log: X.K.4.4

2. astro-ph/0512493 [abs, pdf] :

Title: VOFilter, Bridging Virtual Observatory and Industrial Office Applications Authors: Chen-zhou Cui (1), Markus Dolensky (2), Peter Quinn (2), Yong-heng Zhao (1), Francoise Genova (3) ((1)NAO China, (2) ESO, (3) CDS) Comments: Accelerated for publication in ChiA (3) pages 2, floures, 185(R)

3. cs.DS/0512061 [abs, ps, pdf, other] :

Title: Matching Subsequences in Trees Authors: Philip Bille, Inge Li Goertz Subj-class: Data Structures and Algorithms

4. cs.IR/0510025 [abs, ps, pdf, other] :

Title: Practical Semantic Analysis of Web Sites and Documents Authors: Thierry Despeyroux (INRIA Rocquencourt / INRIA Sophia Antipolis) Subj-class: Information Retrieval

5. cs.CR/0510013 [abs, pdf] :

Title: Safe Data Sharing aird Data Dissemination on Smart Devices Autors: Luce Bougnaim MINRA Rocquencoutt, Cosmin Cermarenco (NINRA Rocquencourt), François Dang Ngoc (NIRIA Rocquencourt, PRISM - UVSQ), Nicolas Dieu (MINR Rocquencourt), Philippe Pucheral (NIRIA Rocquencourt, PRISM - UVSQ) Sub-Jassis: Cryptorphy and Security: Databases

Automatic pre-annotation with domain knowledge (gazetteer):

- Entity recognizers for dates, person names, etc.
- Titles of articles, conference names, etc.: those that are in the knowledge base.

Showing results 1 through 25 (of 94 total) for all:xml

1. cs.LO/0601085 [abs, ps, pdf, other] : Title: A Formal Foundation for ODBL Authors: Riccardo Pucella, Vicky Weissman Comments: 30 pgs, preliminary version presented at WITS-04 (Workshop on Issues in the Theory of Security), 2004 Subi-class: Logic in Computer Science: Cryptography and Security ACM-class: H 2 7: K 4 4 2. astro-ph/0512493 [abs, pdf] : Title: VOFilter, Bridging Virtual Observatory and Industrial Office Applications Authors: Chen-zhou Cui (1), Markus Dolensky (2), Peter Quinn (2), Yong-heng Zhao (1), Francoise Genova (3) ((1)NAO China, (2) ESO, (3) CDS) Comments: Accepted for publication in ChIAA (9 pages, 2 figures, 185KB) 3. cs.DS/0512061 [abs ps pdf other] : Title: Matching Subsequences in Trees Authors: Philip Bille, Inge Li Goertz Subi-class: Data Structures and Algorithms 4. cs.IR/0510025 [abs, ps, pdf, other] : Title: Practical Semantic Analysis of Web Sites and Documents Authors: Thierry Despeyroux (INRIA Rocquencourt / INRIA Sophia Antipolis) Subi-class: Information Retrieval 5. cs.CR/0510013 [abs. pdf] : Title: Safe Data Sharing and Data Dissemination on Smart Devices Authors: Luc Bouganim (INRIA Rocquencourt), Cosmin Cremarenco (INRIA Rocquencourt), Francois Dang Ngoc (INRIA Rocquencourt, PRISM - UVSO), Nicolas Dieu (INRIA Rocquencourt), Philippe Pucheral (INRIA Rocquencourt, PRISM - UVSQ) Subi-class: Cryptography and Security: Databases

Automatic pre-annotation with domain knowledge (gazetteer):

- Entity recognizers for dates, person names, etc.
- Titles of articles, conference names, etc.: those that are in the knowledge base.


```
1. cs.LO/0601085 [abs. ps. pdf. other] :
     The: A Formal Foundation for ODRL
     Authors: Riccardo Pucella, Vicky Weissman
     Comments: 30 pgs, preliminary version presented at WITS-04 (Workshop on Issues in the Theory of Security).
     Subj-class: Logic in Computer Science: Cryptography and Security
     ACM-class: H.2.7: K.4.4
2. astro-ph/0512493 [abs, pdf] :
     Title: VOFilter, Bridging Virtual Observatory and Industrial Office Applications
     Authors: Chen-zhoù Cui (1), Markus Dolensky (2), Peter Quinn (2), Yong-heng Zhao (1), Francoise Genova (3) ((1)NAO China, (2) ESO, (3) CDS)
     Comments: Accepted for publication in ChIAA (9 pages, 2 figures, 185KB)
3. cs.DS/0512061 [abs. ps. pdf. other] :
     Title: Matching Subsequences in Trees
     Authors: Philip Bille, Inge Li Goertz
     Subj-class: Data Structures and Algorithms
4. cs.IR/0510025 [abs, ps, pdf, other] ;
     Title: Practical Semantic Analysis of Web Sites and Documents
     Authors: Thierry Despeyroux (
     Subj-class: Information Retrie
5. cs.CR/0510013 [abs, pdf] :
     Title: Safe Data Sharing and Data Dissemination on Smart Devices
     Authors: Luc Bouganim (INRIA Bocquencourt), C
Nicolas Dieu (INRIA Bocquencourt), Philippe Pu
                                                                                                                                            PRISM - UVSOL
                                                                              ourt, PRISM - UVSO)
     Subi-class: Cryptography and Security: Databases
```

Automatic pre-annotation with domain knowledge (gazetteer):

- Entity recognizers for dates, person names, etc.
- Titles of articles, conference names, etc.: those that are in the knowledge base.


```
1. cs.LO/0601085 [abs. ps. pdf. other] :
    The: A Formal Foundation for ODRL
    Authors: Riccardo Pucella, Vicky Weissman
    Comments: 30 pgs, preliminary version presented at WITS-04 (Workshop on Issues in the Theory of Security).
    Subj-class: Logic in Computer Science: Cryptography and Security
    ACM-class: H.2.7: K.4.4
2. astro-ph/0512493 [abs, pdf] :
    Title: VOFilter, Bridging Virtual Observatory and Industrial Office Applications
    Authors: Chen-zhoù Cui (1), Markus Dolensky (2), Peter Quinn (2), Yong-heng Zhao (1), Francoise Genova (3) ((1)NAO China, (2) ESO, (3) CDS)
    Comments: Accepted for publication in ChIAA (9 pages, 2 figures, 185KB)
3. cs.DS/0512061 [abs. ps. pdf. other] :
    Title: Matching Subsequences in Trees
    Authors: Philip Bille, Inge Li Goertz
    Subj-class: Data Structures and Algorithms
4. cs.IR/0510025 [abs, ps, pdf, other] ;
    Title: Practical Semantic Analysis of Web Sites and Documents
    Atthors: Thierpy Despeyroux
    Subj-class: Information Retrie
5. cs.CR/0510013 [abs, pdf] :
    Title: Safe Data Sharing and Data Dissemination on Smart Devices
    Authors: Luc Bouganim (INRIA Roc
                                                                                                                                       PRISM - UVSOL
    Nicolas Dieu (NRC
                                                                           urt, PRISM - UVSO)
    Subi-class: Cryptography and Security: Databases
```

Automatic pre-annotation with domain knowledge (gazetteer):

- Entity recognizers for dates, person names, etc.
- Titles of articles, conference names, etc.: those that are in the knowledge base.

Both incomplete and imprecise!

Pierre Senellart

- Use the pre-annotation as the input of a structural supervised machine learning process.
- Purpose: remove outliers, generalize incomplete annotations.

18/33

How well does this work?

Good, but not great, results [Senellart et al., 2008]

	Ti	Title		Author		Date	
	F_{g}	F_x	F_{g}	F_x	F_{g}	F_x	
Average	44	63	64	70	85	76	

- F_g : F-measure (%) of the annotation by the gazetteer.
- F_x : F-measure (%) of the annotation by the induced wrapper.
- Main issue: the machine learning assumes that the initial annotation is really the reference one

Introduction

Wrapping Web Forms

ProFoUnd

JavaScript and the Deep Web Form Understanding through JavaScript Analysis

Conclusions

Introduction

Wrapping Web Forms

ProFoUnd JavaScript and the Deep Web

Form Understanding through JavaScript Analysis

Conclusions

Better Form Analysis

INFRES

Pierre Senellart

Better Form Analysis

Better Form Analysis

What	Help us help you We need more information to complete your search.	Find
eg. Restaurants Hairdressers Telstra Apple Stores	- Please enter a Search Term	
Apple Stores		

```
// Do not submit unless form is valid
$j("#searchForm").submit(function(event) {
    $j("#searchFormLocationClue").val($j("#searchFormLocationClue").val().trim());
    if ($j("#searchFormBusinessClue").val().isEmpty()) {
        alert('Help us help you\nWe need more information to
            complete your search.\n\n- Please enter a Search Term');
        return false;
    } else {
        return true;
    }
});
```


JavaScript: the Data Language of the Web

- Lots of JavaScript code on the Web (source is always available!)
- Lots of information can be gained by static analysis of this code:
 - Required fields
 - Dependencies between fields (if x is filled in, so should be y; the value of x should be less than that of y; etc.)
 - Datatype of each fields (regular expressions, numeric types, dates, etc.)
- Is this feasible in practice?

Introduction

Wrapping Web Forms

ProFoUnd JavaScript and the Deep Web Form Understanding through JavaScript Analysis

Conclusions

ProFoUnd architecture

- Entry points are HTML event attributes, setting of event handlers in code, etc. (event: *click* on a submit button, *submit* on a form)
- Conditions are (in)equality tests on form field values (possibly aliased)
- Interceptions are interruptions of the form submission process (error messages, simple return false; in event handler, etc.)

Abstracting the code

- Rice's theorem: no hope in a sound and complete constraint finder
- But that's ok! Anything that we can learn is more than what we have at the moment.
- Coarse abstraction of the JS code:
 - Only conditions on the code flow from entry points to interceptions are considered.
 - We consider only a simple subset of the JS language; anything beyond that is ignored.
 - Side-effects are mostly ignored
- As a consequence: no guarantee of either soundness or completeness ⇒ only experimental guarantees

Engineering issues to deal with

- Extracting a Web form model: DIADEM's tools http://www.diadem-project.info/
- Parsing JavaScript: Mozilla Rhino (but see later)
- JavaScript frameworks: ad-hoc support for most popular ones (jQuery, Prototype, ASP.NET generated code, YUI, Dojo, MooTools)
- Evaluating JavaScript code (e.g., to determine what a jQuery selector (\$.("form#lookup .product")) returns): Mozilla JS engine
- Abstraction, alias references, etc.: ProFoUnd core, developed from scratch

ProFoUnd interface [Benedikt et al., 2012]

- 1. Web page view, with fields highlighted
- 2. Constraints found: $min < max, max \neq 0,$ $product \neq "$
- 3. JS fragment for the highlighted constraint

Freliminary evaluation

- 70 real-estate websites containing search forms
- 30 out of 70 use client-side validation, with a total of 35 constraints
- **100%** precision: all identified constraints are correct
- **63%** recall: 22 out of 35 JS-enforced constraints were found
- Why did we miss some?
 - Use of complex JavaScript features, such as eval
 - Code obfuscation by introducing extra layers of computation
 - Limitations of the abstracter work in progress!

Introduction

Wrapping Web Forms

ProFoUnd

Conclusions

- Exploiting data from the deep Web in an automatic manner: non-trivial, largely open problem
- Classical techniques exploit both domain knowledge and the structure of forms and result pages
- Possible to get very precise information about the behavior of Web forms by static analysis of client-side code

Born Perspectives

- Use a real JS parser (Rhino has lots of limitations); trying with SpiderMonkey, Mozilla's JS engine
- Large-scale evaluation, application to deep Web crawling
- Type inference for form fields: regular expressions, simple datatypes
- Combining with dynamic analysis
- Type inference for AJAX applications: static analysis of AJAX calls to determine input and output types (possibly JSON or XML types)

PhD Opportunity

PhD scholarship on this topic at U. Oxford, looking for excellent candidates!

Born Perspectives

- Use a real JS parser (Rhino has lots of limitations); trying with SpiderMonkey, Mozilla's JS engine
- Large-scale evaluation, application to deep Web crawling
- Type inference for form fields: regular expressions, simple datatypes
- Combining with dynamic analysis
- Type inference for AJAX applications: static analysis of AJAX calls to determine input and output types (possibly JSON or XML types)

PhD Opportunity

PhD scholarship on this topic at U. Oxford, looking for excellent candidates!

32 / 33

Merci.

33 / 33

INFRES

Pierre Senellart

- Michael Benedikt, Tim Furche, Andreas Savvides, and Pierre Senellart. ProFoUnd: Program-analysis-based form understanding. In *Proc. WWW*, Lyon, France, April 2012. Demonstration.
- BrightPlanet. The deep Web: Surfacing hidden value. White Paper, July 2001.
- Kevin Chen-Chuan Chang, Bin He, Chengkai Li, Mitesh Patel, and Zhen Zhang. Structured databases on the Web: Observations and implications. *SIGMOD Record*, 33(3):61-70, September 2004.
- Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang. Toward large scale integration: Building a metaquerier over databases on the Web. In *Proc. CIDR*, Asilomar, USA, January 2005.

- Jayant Madhavan, Alon Y. Halevy, Shirley Cohen, Xin Dong, Shawn R. Jeffery, David Ko, and Cong Yu. Structured data meets the Web: A few observations. *IEEE Data Engineering Bulletin*, 29 (4):19-26, December 2006.
- Pierre Senellart, Avin Mittal, Daniel Muschick, Rémi Gilleron, and Marc Tommasi. Automatic wrapper induction from hidden-Web sources with domain knowledge. In *Proc. WIDM*, pages 9–16, Napa, USA, October 2008.
- Aparna Varde, Fabian M. Suchanek, Richi Nayak, and Pierre Senellart.Knowledge discovery over the deep Web, semantic Web and XML.In *Proc. DASFAA*, pages 784–788, Brisbane, Australia, April 2009.Tutorial.