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Abstract
We report on the impact that the theory of provenance semirings, developed by Val Tannen and his
collaborators, has had on the design on a practical system for maintaining the provenance of query
results over a relational database, namely ProvSQL.
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1 Introduction

The important issue of keeping track of data throughout a complex process gave rise to the
study of the provenance [4] of data, also sometimes called lineage [5]: extra information
attached to query results which relates them to input data items. In a seminal work in
2007 [9], Todd J. Green, Grigoris Karvounarakis, and Val Tannen put forward provenance
semirings as an algebraic framework to express a range of different forms of provenance
over relational database systems, including the data lineage from [5], the why-provenance
from [4], the Boolean provenance implicit in the early model of incomplete information of
c-tables [12] (and made explicit in [10]), and many more. This work has had a considerable
impact on the understanding of what data provenance is and how it can be computed, and
was largely celebrated by the research community [11]. Val Tannen, in collaboration with a
number of his colleagues, then further developed the theory of provenance semirings in other
works, covering topics such as compact representation of provenance for recursive queries [7],
provenance of non-monotone queries [2, 6], provenance of aggregate queries [3]. This line
of work was also extended to other settings than the relational one and resulted in many
different applications [18].

In 2016, inspired by this beautiful theoretical framework, motivated by applications of
provenance to probabilistic databases [21, 10], and frustrated by the lack of maintained
software that would implement provenance semirings, we embarked on the development of
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ProvSQL [19], a PostgreSQL extension that supports computation of semiring provenance
and their extensions for SQL queries over relational databases. ProvSQL has first been
demonstrated in 2018 [20] and has been updated and improved ever since.

In this paper, in honor of Val Tannen and the groundbreaking theory of provenance
semirings, we want to reflect on the impact that theoretical research on provenance semirings
has had on the design of ProvSQL: where ProvSQL directly implements the theory, where
practical concerns require deviating from it, and when development is still lagging behind
the theoretical framework.

We introduce semiring provenance and the way it is implemented in ProvSQL in Section 2,
while in in Section 3 we discuss extensions that go beyond semiring provenance.

2 Semiring Provenance for Positive Relational Algebra Queries

We now discuss the semiring provenance framework from [9] for the positive relational algebra
and how it is implemented in ProvSQL, in terms of data model, query evaluation, as well
as representations of provenance expressions. We assume basic knowledge of the relational
model and the relational algebra, see [1] for a primer.

2.1 Data Model
Theory

A semiring is an algebraic structure (K, ⊕, ⊗, 0, 1) where (K, ⊕, 0) and (K, ⊗, 1) are monoids
(a set equipped with an associative binary operation and a neutral element), ⊕ is commutative,
⊗ distributes over ⊕, and 0 is an absorbing element for ⊗ (i.e., ∀a ∈ K, a ⊗ 0 = 0 ⊗ a = 0).
The semiring is commutative if ⊗ is commutative. The semiring is often referred to by K

when the binary operations and neutral elements are clear. Given two semirings K and K′, a
semiring homomorphism from K to K′ is a function from K to K′ that maps neutral elements
of K to the corresponding neutral elements of K′ and that preserves the binary operations of
the semirings.

▶ Example 1. The following are classical examples of semirings, with applications to
provenance:

(B = {⊥, ⊤}, ∨, ∧, ⊥, ⊤) is the semiring of Booleans;
(N, +, ×, 0, 1) is the counting semiring;
(S = {unclassified < restricted < confidential < secret < top_secret < unavailable}, min,

max, unavailable, unclassified} is the security semiring of security clearance levels;
For any finite set X of variables, (N[X], +, ×, 0, 1) is the integer polynomial semiring that
is sometimes also called how-semiring.

See [17] for many more examples and their application to provenance.

Given a commutative semiring (K, ⊕, ⊗, 0, 1), [9] introduces a K-relation (or relation
annotated by K) over a finite set of attributes A as a function R that maps tuples over A

to an element of K such that {t | R(t) ̸= 0} is finite. Homomorphisms are extended to K-
relations: for a homomorphism h : K → K′ and a K-relation R, h ◦ R is a K′-relation. Finally,
K-databases are databases formed of (labeled) K-relations, and semiring homomorphisms
extend to K-databases in the natural way.

▶ Example 2. B-relations over a set of attributes A are simply relations in the usual sense:
finite set of tuples over A.
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Table 1 Relation personnel for the personnel of an intelligence agency, used as a running example,
from [17]

id name position city classification

1 John Director New York unclassified t1

2 Paul Janitor New York restricted t2

3 Dave Analyst Paris confidential t3

4 Ellen Field agent Berlin secret t4

5 Magdalen Double agent Paris top_secret t5

6 Nancy HR Paris restricted t6

7 Susan Analyst Berlin secret t7

Consider the example personnel relation in Table 1. If t1, . . . , t7 are elements of a semiring
K distinct from 0, then this depicts a K-relation where every tuple of the relation is associated
with a non-0 element of K. For example, assume that for every 1 ≤ i ≤ 7, ti is set to the
value of the classification attribute of the corresponding tuple; then this is a S-relation.

The integer polynomial semiring plays an important role in the theory of provenance
semirings as it is universal in the following sense [9, Proposition 4.2]: for any commutative
semiring K, any set X of variables, and any valuation v : X → K of these variables to
element of K, there exists a unique homomorphism of semirings h from N[X] to K such that
h(x) = v(x).

▶ Example 3. For example, take X = {t1, t2, t3, t4, t5, t6, t7} and the valuation v that maps
each of these tuple ids to the corresponding security level from the classification attribute in
Table 1. Then the unique homomorphism h : N[X] → S preserving this valuation is the one
that maps t1t2 + t2

4t5 to

min(max(v(t1), v(t2)), max(v(t4), v(t4), v(t5))) = min(max(v(t1), v(t2)), max(v(t4), v(t5)))
= min(restricted, top_secret)
= restricted.

Implementation in ProvSQL

ProvSQL relies on the universality of the integer polynomial semiring by representing every
relation as an N[U ]-relation where U is a set of unique identifiers of base tuples. One major
difference with the theoretical framework is that relations in SQL are not sets of tuples
but multisets: the definition of a K-relation thus needs to be modified to allow multiple
annotations for the same tuple, resulting in multiple occurrences of this tuple.

To create an N[U ]-relation, ProvSQL provides an add_provenance function, that takes as
input a regular PostgreSQL relation and modifies it to add to this relation an additional
provsql attribute initialized with universally unique identifiers (UUIDs), generated at random.

When one wants to interpret such an annotated relation as a K-relation for a semiring K,
it suffices to provide the valuation v : U → K (called in ProvSQL a provenance mapping) as
a PostgreSQL relation, as well as a description of the homomorphism from N[U ] to K, which
amounts to explaining how to interpret in the semiring K the 0, 1 elements of N[U ], as well
as the binary operations + and × of N[U ]. ProvSQL provides a provenance_evaluate function
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for this purpose; operations of the semirings are typically coded as PL/pgSQL functions,
PostgreSQL’s user-defined function language.

2.2 Positive Relational Algebra Query Evaluation
Theory

The same paper [9] shows how the different operators of the positive relational algebra
(selection, projection, union, projection, cross product or join, and renaming) can be defined
on K-relations: selection and renaming have no effect on the annotations; tuples merged
as a result of a projection or a union are combined with the ⊕ operation of the semiring;
tuples jointly participating in producing a new tuple in a product or join are combined with
the ⊗ operation of the semiring. Given a query q of the positive relational algebra and a
K-relation R, q(R) is the K-relation obtained by inductively applying these operations.

▶ Example 4. Consider the Boolean query

Π∅(σid<id2(personnel ▷◁city Πid2,city(ρid→id2(personnel))))

over the running example schema which returns whether there exists a city with two distinct
individuals. The result of evaluating this query over the N[X]-relation from Table 1 is the
annotated relation with a single nullary tuple annotated with the polynomial t1t2+t3t5+t3t6+
t3t6 + t4t7. If instead this is a S-relation with the annotation from the classification attribute,
the resulting annotation is min(restricted, secret, top_secret, top_secret, secret) = restricted.

The reason why this is the right definition is given by two results from [9]. First, some
standard identities of the relational algebra are preserved [9, Proposition 3.4]. Second,
query evaluation commutes with semiring homomorphism [9, Proposition 3.5]: if h is a
homomorphism from K to K′, q a positive relational algebra query and R a K-relation, then
h ◦ q = q ◦ h.

Implementation in ProvSQL

Again, the theory needs to be adapted to reflect the fact that SQL uses a multiset semantics
and not a set semantics. This has an impact for projections (which does not imply duplicate
eliminations in SQL) and for UNION ALL unions: they do not change the provenance anno-
tations. On the other hand, DISTINCT and GROUP BY operators in SQL result in duplicate
elimination and thus in the application of the ⊕ operator of the semiring.

All operations are done in the N[U ] semiring. Because of the commutativity of semiring
homomorphisms and query evaluation, it is possible to evaluate the result of a query in a
different semiring by first evaluating it in the N[U ] semiring and then apply the semiring
homomorphism.

In ProvSQL, the ⊕ and ⊗ operations of the semiring are respectively implemented by a
provenance_plus and provenance_times user-defined function. At planning time, the query
sent to PostgreSQL is rewritten so that the resulting relation includes a provsql column
whose content is computed using these two functions, following the operations specified in
the query.

▶ Example 5. Consider the following SQL query, which uses the usual SELECT DISTINCT 1
trick to mimic the behavior of the Boolean query from Example 4:
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SELECT DISTINCT 1 FROM (
SELECT p1.city
FROM personnel p1
JOIN personnel p2 ON p1.city=p2.city
WHERE p1.id<p2.id
GROUP BY p1.city

) inner_query;

In ProvSQL, this query gets rewritten to the following one so as to produce in a new provsql
attribute the correct provenance annotation: provenance_times gets called to reflect the join,
while provenance_plus gets called to reflect both the GROUP BY and DISTINCT operators (the
latter being converted to a GROUP BY).

SELECT 1, provenance_plus(ARRAY_AGG(provsql)) AS provsql FROM (
SELECT p1.city, provenance_plus(

ARRAY_AGG(provenance_times(p1.provsql,p2.provsql))) AS provsql
FROM personnel p1 JOIN personnel p2 ON p1.city=p2.city
WHERE p1.id<p2.id
GROUP BY p1.city

) inner_query
GROUP BY 1;

Another challenge of the practical implementation is that PostgreSQL’s internal data
structures do not fully match the abstract view of the relational algebra; instead, every
operator that exists in the SQL language gets reflected in a special way, which requires
handling many subcases (and which means SQL support in ProvSQL is still not complete to
this date).

2.3 Provenance Representations
Theory

Though [9] does not explictly give complexity results, it is clear that provenance tracking
can be done in polynomial-time. The exact complexity, however, depends on how costly the
⊕ and ⊗ operations of the semiring are. If they can be reasonably counted to be in O(1)
for certain application semirings (e.g., the security semiring or even the counting semiring
if integers involved are bounded), one needs to be more careful about the complexity of
operations in more complex semirings such as the integer polynomial semiring. Indeed, if one
were to require expanding every polynomial to a sum of monomial, it is easy to construct
examples where this results in exponentially-sized expressions.

The question of compact representation of provenance led Daniel Deutch, Tova Milo,
Sudeepa Roy, and Val Tannen to propose in [7] arithmetic circuits to represent provenance
annotations in a way that allows sharing and does not require copying entire subexpressions
or expanding them. This was done in the context of recursive queries (see 3.1) but is also
useful for non-recursive ones.

Implementation in ProvSQL

Since all provenance in ProvSQL is N[U ] provenance, compact representation is paramount
for efficiency of query evaluation as well as reduced use of storage. ProvSQL thus stores
provenance as an arithmetic circuit, whose internal gates are the semiring operators and
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leaves are base UUIDs. This way, the provsql column of provenance-aware relations can
simply be pointers to the corresponding gates in the circuit (in practice, we also use UUIDs
as identifiers of internal gates, and these UUIDs are stored in the provsql columns). The
provenance_plus and provenance_times functions add new gates to the circuit. This raises
the question of where to store the circuit. We have successively experimented with three
different storage mechanisms:
1. Initially, the provenance circuit was stored as a table within the same database, managed

by the database engine. Unfortunately, this is extremely inefficient, as this means that
every query results in many different updates (each time a gate is created in the circuit)
on the provenance circuit table; this was also a nightmare in terms of concurrency control
as every query turned into a batch of updates.

2. We then moved to storing the circuit in main memory, using the shared memory buffers
of PostgreSQL. This was much more efficient and made it easier to address concurrency
issues, but this was not a viable solution either, as the amount of shared memory buffers
is limited, and this solution does not provide any way to ensure persistence of storage of
the circuit.

3. In our latest implementation, the circuit is stored on disk, in memory-mapped files that
are accessed through a single process. This solution resolves the issues of persistence
and concurrency control, while memory mapping helps with keeping access to the circuit
efficient in practice.

3 Beyond Positive Relational Algebra Queries and Semirings

We now briefly discuss theoretical ways that have been proposed to go beyond the positive
relational algebra and the semiring frameworks, and their influence in the design of ProvSQL.

3.1 Recursive Queries
Theory

The original paper on the semiring framework [9] also dealt with recursive queries in the form
of Datalog programs. Green, Karvounarakis, and Tannen showed that their provenance could
be captured by semirings, as long as those satisfied some technical conditions (in particular,
being ω-continuous). In this setting, most of the results for the positive relational algebra
can be recovered: commutativity of Datalog queries and semiring homomorphisms, as well as
the existence of a universal semiring, i.e., the semiring of formal power series. Algorithms for
computing the provenance of recursive queries were then refined in [7] with the introduction
of provenance circuits. Recent work by other authors [14] study in more detail conditions for
convergence of Datalog queries involving provenance.

Implementation in ProvSQL

Unfortunately, support for recursive queries cannot be added to ProvSQL in a straightforward
way. This is due to the fact that the computation of the provenance annotation in the special
provsql columns requires aggregation to combine annotations of different tuples, and that
SQL forbids aggregation within WITH RECURSIVE recursive queries. There does not seem to
be any easy way around this without reimplementing a query evaluation engine, which is out
of the scope of the ProvSQL project. Note, however, that together with Yann Ramusat and
Silviu Maniu, we have proposed and experimented various algorithms for evaluation of the
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provenance of recursive queries [15, 16], inspired by [9, 7], but in a simpler setting outside of
a database engine.

3.2 Non-Monotone Queries

Theory

A natural direction beyond the positive relational algebra is to add negation, by adding the
difference operator of the full relational algebra. One way to add them to the framework of
provenance semirings is to extend semirings with a monus ⊖ operator (which results in what
is called m-semirings), as proposed by Floris Geerts and Antonella Poggi [8]; for example,
in the Boolean semiring it is as expected defined as a ⊖ b = a ∧ ¬b and in the counting
semiring as a ⊖ b = max(0, a − b). However, Yael Amsterdamer, Daniel Deutch, Tova Milo,
and Val Tannen have showed in [2] that this definition results in some counter-intuitive
results (some common axioms, such as distributivity over ⊗ over ⊖, fail); in addition, N[X]
is not a universal semiring with monus [8].

As an alternative to semirings with monus, Katrin M. Dannert, Erich Grädel, Matthias
Naaf, and Val Tannen have proposed [6] a very general logical framework for computing the
provenance of recursive queries (in the form of fixpoint logics) with negation. This is based
on a trick of associating with every positive provenance token a corresponding negative one
and considering the semiring of integer polynomials (or formal series in the recursive case)
with variables both positive and negative tokens.

A final alternative for provenance with difference is given by the work on provenance
aggregate [3] that we discuss in the next section.

Implementation in ProvSQL

ProvSQL follows the m-semiring approach, despite its limitations identified in [2]. Since N[U ]
is not universal any longer, we need to work with the actual universal m-semiring, which is
simply the free m-semiring [8], i.e., the m-semiring of free terms constructed using ⊕, ⊗, ⊖,
quotiented by the equivalence relations imposed by the m-semiring structure. In practice,
this means adding a provenance_monus function, used when the EXCEPT SQL keyword is
used, that adds a ⊖ gate in the provenance circuit.

3.3 Aggregate Queries

Theory

Another very commonly used query feature that goes beyond the relational algebra is
aggregates. Yael Amsterdamer, Daniel Deutch, and Val Tannen have proposed a solution [3]
in the form of provenance semimodules for the case of aggregate functions that are associative
and commutative, such as min, max, sum, or count. The scalar aggregate values form a
monoid, which is combined with the provenance semiring to form a semimodule. Note that
the resulting semimodule values are now annotating attribute values instead of annotating
tuples. In addition to these semimodule attribute values, [3] introduces an additional δ

operator to the provenance semiring that is used to determine the tuple annotation of tuples
that include an aggregate computation (see [3]). Finally, when selection can be done on the
result on an aggregation, additional comparison operators are introduced to build provenance
annotations (these operators can then be used to define a semantics for difference).

Tannen’s Festschrift
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▶ Example 6. Consider the query that counts the number of distinct cities in the running
example schema. When evaluating this query over the N[X]-relation from Table 1 we obtain
a unary tuple with semimodule value

(t1 ⊕ t2) ⋆ 1 + (t3 ⊕ t5 ⊕ t6) ⋆ 1 + (t4 ⊕ t7) ⋆ 1

where ⋆ is a tensor product allowing combining elements of the aggregation monoid with
elements of the provenance semiring and + is the aggregation monoid operation (here,
addition). The provenance annotation of this tuple is 1 (the 1-element of the semiring) as it
is always present. In the security semiring, this is:

unclassified ⋆ 1 + confidential ⋆ 1 + secret ⋆ 1

with provenance annotation “unclassified”.

Implementation in ProvSQL

ProvSQL carefully follows the theoretical framework of [3] to support provenance computation
of aggregate queries. At the moment, aggregates are only supported when they are the final
operation performed, though we have plans of adding support of nested aggregates in the
future. In order to keep a compact representation of the aggregate values, these are also
added to the provenance circuit, using extra gate types for the tensor product and monoid
aggregate operators.

4 Conclusion

In this paper, we have presented the tremendous impact that the work of Val Tannen and
his collaborators on provenance semirings has had on the design of a practical system for
computing the provenance of query results. It is remarkable that so many of these theoretical
works lead themselves to practical implementations that can be made efficient.

Though ProvSQL is already usable as is (and, in addition to provenance, provides features
for computations of probabilities [17] and Shapley(-like) values [13]), there remains a number
of features to implement and optimizations to perform. The most direct given the previous
discussion is the support for nested aggregates; recursive queries are unfortunately unlikely to
be supported in a near future. Performing all computations in the universal semiring (or the
universal m-semiring) has the advantage of being a generic approach, but means that many
optimizations that are possible in a given semiring cannot be applied – some engineering is
required to allow a user to request ProvSQL to capture only specific forms of provenance
and ensure all possible optimizations for this particular algebraic structure are performed.
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