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Abstract. Federated knowledge discovery and data mining are chal-
lenged to assess the trustworthiness of data originating from autonomous
sources while protecting confidentiality and privacy. Truth-finding algo-
rithms help corroborate data from disagreeing sources. For each query it
receives, a truth-finding algorithm predicts a truth value of the answer,
possibly updating the trustworthiness factor of each source. Few works,
however, address the issues of confidentiality and privacy. We devise and
present a secure secret-sharing-based multi-party computation protocol
for pseudo-equality tests that are used in truth-finding algorithms to
compute additions depending on a condition. The protocol guarantees
confidentiality of the data and privacy of the sources. We also present
variants of truth-finding algorithms that would make the computation
faster when executed using secure multi-party computation. We empiri-
cally evaluate the performance of the proposed protocol on two state-of-
the-art truth-finding algorithms, Cosine, and 3-Estimates, and compare
them with that of the baseline plain algorithms. The results confirm that
the secret-sharing-based secure multi-party algorithms are as accurate as
the corresponding baselines but for proposed numerical approximations
that significantly reduce the efficiency loss incurred.

Keywords: truth finding · secure multi-party computation · secret-
sharing · uncertain data · privacy.

1 Introduction

Federated knowledge discovery and data mining [15,28] are challenged to assess
the trustworthiness of data originating from autonomous sources while protect-
ing confidentiality. Truth-finding algorithms [16] help corroborate data from dis-
agreeing sources. For each query it receives, a truth-finding algorithm predicts a
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truth value of the answer, possibly updating the trustworthiness factor of each
source. Few works, however, address the issues of confidentiality and privacy. We
consider the design and implementation of truth-finding algorithms that protect
the confidentiality of sources’ data.

For example, a creditor may wish to determine whether loan applicants are
creditworthy. The creditor would want to base her decision on the different, pos-
sibly disagreeing, evaluations of the applicants by several financial institutions.
However, financial institutions only agree to contribute their respective evalua-
tions to the decision provided it is neither revealed to the creditor, to the other
financial institutions, nor to third parties. For such a purpose, we turn to secret-
sharing-based secure multi-party computation [6], or simply secure multi-party
computation (MPC).

We devise and present a secure multi-party pseudo-equality protocol that se-
curely computes additions depending on a condition – we call them conditioned
additions – for truth-finding algorithms. In particular, we present a secure equal-
ity test alternative that uses a polynomial evaluation to reduce the number of
communication; this is used for conditioned additions, an operation that is an es-
sential building block of many truth-finding algorithms. The protocol guarantees
the confidentiality of the data.

We also devise several variants of privacy-preserving truth-finding algorithms;
ones that implement the truth-finding algorithms without changes, and others
with modifications that aim to make the computation more efficient.

The secure multi-party protocols are then implemented with two servers. In
the running example, the two servers can be operated by two non-colluding enti-
ties such as independent third parties, the creditor, or the financial institutions.
We empirically evaluate the performance of the proposed protocol on two state-
of-the-art truth-finding algorithms, Cosine [9, Algorithm 1] and 3-Estimates [9,
Algorithm 4] (see also [4, 14] for further experiments on these algorithms), and
compare them with that of the non-secure baseline algorithms. The results con-
firm that the secure multi-party algorithms are as accurate as the corresponding
baselines except for proposed modifications to reduce the efficiency loss incurred.

Set n ∈ N∗, and let V be a set of n sources. The client would like to label k
queries (or facts) {f1, ..., fk}. A truth-finding algorithm outputs a truth value for
a query when different data sources (or sources) provide disagreeing information
on it. Concretely, the truth-finding algorithm takes v1, ..., vn as input with vi ∈
{−1, 0, 1}k, and outputs estimated truth values in [−1, 1]k ⊂ Rk or [0, 1]k ⊂ Rk

depending on the truth-finding algorithm.

Truth-finding (or truth discovery) algorithms [16] are usually run by the
client in order to know the truth value of a given query when the sources give
disagreeing answers. That is, for each of the client’s queries, each source in V
delivers an answer vi such that an output of 1 corresponds to a positive answer,
−1 to a negative one, and 0 if the source does not wish to classify the data
point. Cosine and 3-Estimates [9] are two truth-finding algorithms that given a
number of queries k, output a truth value in the range [−1, 1]k ⊂ R and a trust
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coefficient in each of the sources, or sources. In addition, 3-Estimates computes
an estimate of the difficulty of each query.

The goal of this work is to execute truth-finding algorithms that protect
sources’ data using secure multi-party computation (MPC) [3,6]. More generally,
given a function F and a set of private inputs x1, ..., xm respectively owned by
P1, ..., Pm, MPC is a cryptographic approach that makes it possible to compute
the output of the function F (x1, .., xm) without resorting to a third party that
would compute the function F and would send the result back. MPC will be
used to implement the Cosine and 3-Estimates algorithms without having any
source disclose their answer.

2 Background

Truth finding. Truth finding [4, 9, 14, 27] is an effective tool used to handle
uncertain data. More specifically, when a dataset is missing some information
and the dataset owner does not have access to this information, they can ask
sources questions (or queries) in order to complete the dataset. Yet again, the
sources may not be completely sure of the answer they are delivering. Truth-
finding algorithms rely on the correlation between the answers of all sources.
Furthermore, the client does not have any information about how the sources
get their information, i.e., how they construct their model, and how they take
their decisions. In other words, in real applications, the process is completely
unsupervised and this is why truth-finding algorithms are used.

Consider a set of facts {f1, ..., fk} and a set of n sources. Each source can
map the fact f i to {−1, 0, 1}, and the image of the facts computed by a source
represents the source’s view of the facts. A negative value represents a false fact, a
positive value represents a true fact, and a null value is an undetermined fact. We
set v1, ..., vn to be the sources’ views of the facts, more precisely, vi ∈ {−1, 0, 1}k
is the ith source’s view of the facts {f1, ..., fk}.

In this paper, we consider two existing truth-finding algorithms for which we
apply MPC, though we stress that our overall approach only marginally depends
on the specific algorithm used.

The idea of Cosine, based on cosine similarity in information retrieval meth-
ods [18] and precisely described in [9, Algorithm 1], is to iteratively compute
a truth value for each fact given the views of all the sources. With each itera-
tion, the algorithm also updates a trustworthiness factor for each source. In the
end, the algorithm returns one truth value for each fact and one trust factor for
each source. The truth value and trust factor are initialized and then updated
at each iteration as follows: the truth value is computed as the sum of answers
compounded with the trust factor of each source, and then the trust factor is
computed by normalizing the number of answers that each source got right.

On the other hand, 3-Estimates [9, Algorithm 4] takes a third factor into
consideration: the difficulty of the query. The algorithm outputs a truth value
and trust factor like Cosine, but also outputs a difficulty factor for each fact
(or query). More formally, for a query f j if we set δj to be the probability of
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the query f j being difficult and θi the probability of the ith source (that didn’t
answer 0) being not trustworthy, then the algorithm estimates the truth value
as: {

Pr(source i is wrong on fact j) := δjθi

Pr(source i is right on fact j) := 1− δjθi

If λj is the number of sources responding to query f j , and vij the answer of
the ith source to f j , then the probability of f j to be true is given by:

λj Pr(f j is true) =
∑

i,vij=1 Pr(i is right on j) +
∑

i,vij=−1 Pr(i is wrong on j)

=
∑

i,vij=1 1− δjθi +
∑

i,vij=−1 δ
jθi

A similar equation is used to update the difficulty of each query and the trust
in each source on each iteration.

Secure multi-party computation. Secure multi-party computation (MPC) [3, 6]
allows a set of m players to compute a function on their private inputs without
revealing them to a third party. The solution proposed by this paper only uses
two parties, though this number could be increased at the cost of lower efficiency.
To this end, we present background on MPC in the specific case where m = 2.
Increasing the number of servers to some arbitrarym would toleratem−1 players
colluding with each other in the passive security model. However, in a real-world
application, the two servers could be chosen in a way that they have no interest
in colluding, for example, one server could be the client, and the second server
could be a representative of the sources. Therefore, it is sufficient to consider
only two servers and limit the number of communication to a minimum.

Let Z2q := Z/2qZ. Suppose each of P1 and P2 has a secret x1 and x2 both
in Z2q . Their goal is to compute y = F (x1, x2) where F is a public function
without revealing their respective inputs. The first step is having each player Pi

mask their secret xi with a random ring element xi
j , send the mask xi

j to the

other player (Pj) and keep the masked value xi
i = xi−xi

j . Of course xi = xi
i+xi

j

in the ring; this is called the additive secret-sharing scheme [12]. The elements
with subscripts correspond to ring elements that seem random but whose sum
is equal to the secret; they are called additive shares.

The players then evaluate the arithmetic circuit of F such that on each addi-
tion node a protocol Πadd is used and on each multiplication node the protocol
Πmul [2] is used. After evaluating all the nodes, each player Pi ends up with
a value yi such that y = y1 + y2, so the players reveal their final values and
add them together. If P1 holds a1, b1 and P2 holds a2, b2 such that a = a1 + a2
and b = b1 + b2 then for i ∈ {1, 2} Πadd(ai, bi) allows Pi to hold ci such that
a + b = c1 + c2 without learning a or b. In addition, for i ∈ {1, 2} Πmul(ai, bi)
allows Pi to hold ci such that a · b = c1 + c2 without learning a or b. This is
why by evaluating the arithmetic circuit with MPC protocols node by node the
players would obtain y1 and y2. The goal is to find the arithmetic circuit that
computes F or best approximates F .
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The secret sharing scheme, addition, and multiplication protocols can be
chosen as a way to satisfy the needed security level; in our work we implement
the minimal security measure which is passive security. In simple words, the
players should not deviate from the protocol and should not learn information
about each other’s input unless it can be deduced from the output. The protocols
we consider do not resist an active adversary, i.e., an adversary that corrupts a
player and deviates from the protocol. For more information about the adversary
types and formal security definitions of MPC, see [10].

Furthermore, we use additive secret-sharing-based MPC, and the protocols
are computed in a finite ring. But the inputs and the operations in truth-finding
algorithms are in R. We therefore map the real data inputs to the finite ring using
fixed-point precision [21] – which is classically done in MPC. For simplicity, we
refer with the same notation to the real inputs and their ring mapping. Real
addition and multiplication operations are approximated by other operations,
but for simplicity, we also refer to them with the same notation.

3 Related Work

Early works in truth-finding algorithms [9, 27] show that majority voting is not
the best solution to corroborate data when different sources provide conflicting
information on it. Interestingly, further studies [4,14] show that no single truth-
finding algorithm performs well in all scenarios and benchmarks, we just choose
Cosine and 3-Estimates as representative examples of such algorithms.

Since their introduction, cryptographic privacy-preserving tools like MPC
and homomorphic encryption [1] have been used for federated tasks. Current
state-of-the-art multi-party computation protocols allow players to compute
functions securely, robustly, and efficiently. Many secure multi-party frameworks
have been developed such as [20] and some of them are specific for machine learn-
ing tasks [13,32]. Alternatively, homomorphic encryption – also used for machine
learning tasks [29] – can be used for scenarios where no communications take
place during the computations; only one party needs to be doing them.

Concerning applications similar to truth finding, cryptography has been used
for e-voting: for example, MPC in [22] and homomorphic encryption in [5]. Both
tools have even been combined [11] in order to achieve a privacy-preserving
aggregation without secure communication channels. These results are for simple
majority voting and do not consider other truth-finding algorithms. Privacy-
preserving truth-finding algorithms were not common until 2015 with [19] and
afterward with [30,31] and other similar works; all these works consider the same
specific problem of mobile crowd-sensing systems, and they all use homomorphic
encryption and one specific truth-finding algorithm: CRH [17]. The aim of this
paper is more general, it proposes MPC protocols and implementation techniques
that can be applied to various truth-finding algorithms. To our knowledge, MPC
has not been used to securely evaluate truth-finding algorithms.
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4 Proposed Approach

The first task we wish to achieve is private voting, i.e., the client sends queries
to each source, and the source classifies the query. In the case where the query
is a vector of features and the models are logistic regressions, existing MPC
works [20] can keep the query private. We suppose that the answers are already
computed and secret-shared on two servers P1 and P2 using a two-party additive
secret sharing. In other words, P1 holds vij1 and P2 holds vij2 such that vij =

vij1 + vij2 is the ith source’s answer for the query f j and is equal to −1, 0, or 1.
The second step which is the aggregation of the data (the answers) is com-

puted on the two servers P1 and P2. The problem is now constructing a secure
two-party computation algorithm with additively shared data that implements
the truth-finding algorithms using their arithmetic circuits. Once the circuits
are evaluated, the two servers (P1 and P2) send their share of the output to the
client who reconstructs it by adding the received shares together.

4.1 MPC Protocols for Truth Finding

Other than additions and multiplications, the truth-finding algorithms we im-
plement – Cosine and 3-Estimates – use existing real-number operations like
division, and square root. We also propose a way to compute conditioned sums
by replacing equality tests with degree-two polynomial evaluations. We now
explain how these three operations can be approximated using arithmetic cir-
cuits consisting of additions and multiplications. Furthermore, multiplications
are communication-costly in MPC, so the aim is to use a low number of multi-
plications – or communications in general.

Division and square root. The approximations given below are based on numer-
ical methods. These approximations are widely used in MPC frameworks for
machine learning, like in [13,32], where the real inverse and the square root are
computed iteratively using the Newton–Raphson method. Suppose P1 holds a1
and P2 holds a2 such that a = a1 + a2. Then we denote by Πinv(a1, a2) the
protocol that allows each player to hold b1 and b2 respectively without learning
information about a1 and a2, and where b1 + b2 =

√
a. Similarly, we denote by

Πinv(a1, a2) the protocol that allows each player to hold c1 and c2 respectively
without learning information about a1 and a2, and where c1 + c2 = 1

a . These
protocols Πsqrt, Πinv are both defined as a succession of additions and multiplica-
tions. They can be modeled into an arithmetic circuit which could be evaluated
using existing MPC protocols for additions and multiplications like Πadd and
Πmul. Finally, note that division is multiplication by an inverse. Consequently,
the evaluation of the arithmetic circuit satisfies the same level of security as
these two protocols.

Conditioned additions. We propose an alternative for the equality test, which is a
degree-two polynomial evaluation. The truth-finding algorithms we use require
conditioned additions. Given two vectors of same size t = (t1, ..., tk) ∈ Rk,
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z = (z1, ..., zk) ∈ {−1, 0, 1}k, and an element κ ∈ {−1, 0, 1}, we define the
following operation: S :=

∑
i:zi=κ t

i. In other words, the ith element of t, ti, is
added to the sum only if the ith element of z, zi, is equal to κ. The difficulty is
that even though κ is public, zi is private. To achieve this in MPC we start by
defining the following function, for i ∈ {1, ..., r}:

E(zi, κ) =

{
1 if zi = κ

0 if not.

A naive way to compute the sum S is as follows: S =
∑

i E(zi, κ) · ti. This way
to compute S requires an equality test which is costly in MPC. To this end, we
propose an alternative that makes good use of the fact that zi, κ ∈ {−1, 0, 1}.
The goal is to express the function E as a polynomial so that it can be computed
using the smallest number of additions and multiplications possible. We define
and use the following expressions of E(zi, κ).

If κ = −1, we compute S as follows: S =
∑

i
1
2 ((z

i)2 − zi) · ti. We have:

1

2
((zi)2 − zi) =

1 if zi = −1
0 if zi = 0
0 if zi = 1

Hence by multiplying 1
2 ((z

i)2−zi) by ti, the only elements considered in the sum
are the ones such that zi = −1. The function 1

2 ((z
i)2 − zi) is equal to E(zi,−1).

If κ = 0 we similarly compute S as: S =
∑

i(1−(zi)2)·ti. It is also straightforward
that the function 1− (zi)2 is equal to E(zi, 0) because it outputs 1 if zi = 0 and
0 elsewise. If z = 1, in the same way, S is computed as: S =

∑
i
1
2 ((z

i)2+ zi) · ti.

Lemma 1 (Conditioned additions). Denote by ΠE the MPC protocol imple-
menting the function E using the three previously defined degree-2 polynomials.
ΠE does not reveal information about the other’s player’s share.

Proof. The three conditioned sums defined in this section do not need compar-
isons and they are expressed using only additions and multiplications, so their
security level is the same as Πadd and Πmul. ⊓⊔

3-Estimates with MPC. Our MPC implementation of 3-Estimates is given in
Alg. 1. The protocols presented in the previous section allow us to implement
the truth-finding algorithms with MPC.

Theorem 1. Alg. 1 ensures that the client learns the truth value and the diffi-
culty of each query as well as the trust factor with passive security.

Proof (sketch). The answers are additively secret-shared on the servers at the
beginning, giving the servers no information about the sources’ answers at this
point. Then the entire computation takes place in a secret-shared manner by
evaluating an arithmetic circuit with secure addition and multiplication proto-
cols, making the rest of the computation secure in the sense that the servers
learn no information about the secrets.



8 Angelo Saadeh, Pierre Senellart, and Stéphane Bressan

Alg. 1 3-Estimates algorithm with secure multi-party computation

Require: The answers (vij)j=1..k
i=1..n are secret shared on two servers

Ensure: The client receives y, θ, δ
for i = 1..n do ▷ Initialization of the untrustworthiness of each source

θi ← 0.4
for j = 1..k do ▷ Initialization of the difficulty of each query

δj ← 0.1
for j = 1..k, i = 1..n do ▷ Compute equality tests for the conditioned sums

σij ← ΠE(v
ij , 1)

τ ij ← ΠE(v
ij ,−1)

repeat
for j = 1..k do ▷ Update the truth value of each query

posViews ←
∑i=n

i=1 σij · (1− θiδj)

negViews ←
∑i=n

i=1 τ ij · (θiδj)
nbViews ←

∑i=n
i=1 σij + τ ij

yj ← (posViews + negViews) ·Πinv(nbViews)
Normalize y
for j = 1..k do ▷ Update the difficulty score of each query

posViews ←
∑i=n

i=1 σij · (1− yj) ·Πinv(θ
i)

negViews ←
∑i=n

i=1 τ ij · yj ·Πinv(θ
i)

nbViews ←
∑i=n

i=1 σij + τ ij

δj ← (posViews + negViews) ·Πinv(nbViews)
Normalize δ
for i = 1..n do ▷ Update the untrustworthiness of each source

posFacts ←
∑k

j=1 σ
ij · (1− yj) ·Πinv(δ

j)

negFacts ←
∑k

j=1 τ
ij · yj ·Πinv(δ

j)

nbFacts ←
∑k

j=1 σ
ij + τ ij

θi ← (posFacts + negFacts) ·Πinv(nbFacts)
Normalize θ

until convergence
Servers send the shares of y, θ, δ to Client.
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The detailed MPC Cosine algorithm is analogous to Alg. 1; proof of security
is achieved in the same way.

4.2 MPC-friendly alternative implementations

In this section, we propose changes to Cosine and 3-Estimates to reduce com-
munication costs, at the cost of a possibly higher number of errors. We also
illustrate in this section the MPC version of 3-Estimates, along with a sketch of
a security proof.

Normalization in 3-Estimates. In the 3-Estimates algorithm, the truth value,
trust factor, and difficulty score need to be normalized at each step. This could
be done using a secure comparison protocol to securely compute the minimum
and the maximum of each value, and then normalize them as it is done in [9].
Secure comparisons however are very costly in MPC. To reduce the amount of
communication we replace the normalization based on finding the maximum and
minimum by a pre-computed linear transformation which forces the values to
stay between 0 and 1. Concretely we apply the function h(x) = 0.5x + 0.25
to all the values after each update. We evaluate the impact of this change in
the experiments. The chosen function, h, is not perfect. Indeed, if we have
information about the distribution of the parameters, we can pre-compute a
linear normalization for every iteration. Using any public pre-computed or pre-
defined normalizing function improves the efficiency of the algorithm because it
would translate to using multiplication and addition by public constants, which
is communication-free.

Efficient alternatives for Cosine. In Cosine, the truth value and trust factor can
be negative, and protocol Πinv can only be applied to positive numbers. Conse-
quently, every time there is a division by an element x, the inverse protocol is
applied to |x| and then the result is multiplied by the sign of x [13]. Computing
the sign of x requires computing a secure comparison, which is communication-
costly. With the aim to reduce the number of communications, we propose in-
verting x2 and multiplying by x. This technique should give the same result with
fewer communications. However, in the Cosine algorithm, the denominators are
a linear combination of (θi)3 – trust factors of sources to the cube – and since the
trust factor is between −1 and 1, (θi)3 could be very small, and squaring it for
the sake of a faster inverse makes it even smaller. To avoid any precision issues,
we implement a version of the algorithm where we replace (θi)3 by θi which
will have an impact on the truth value. This impact, however, does not affect
the sign of the truth value, it only affects its amplitude, leaving the rounding
(i.e., the final label) unchanged. We evaluate the impact of this change in the
experiments. Additionally, replacing (θi)3 by θi saves multiplications.

5 Experimental Results

We evaluate our protocols on two computing servers. We suppose that the sources
have already answered and secret-shared their answers. We use the ring Z260 with
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20 bits of fixed precision. The two servers communicate via a local socket net-
work implemented in Python on an Intel Core i5-9400H CPU (2.50GHz×8) and
a RAM of 15.4GiB. For the sake of the experiment, these communications are
not encrypted or authenticated. Note that we do not compare our approach with
the approaches cited in the related works, as they are based on homomorphic
encryption and it is not comparable with secret-sharing-based multi-party com-
putation which is done in a different setting, i.e. the players have to be online
during the computation.

3-Estimates on Hubdub Dataset. We implement our solution using the dataset
Hubdub from [9].8 This dataset is constructed from 457 questions from a Web
site where users had to bet on future events. As the questions had multiple
answers, they have been increased to 830 questions to obtain binary questions
with answers −1, 0 or 1. The client sends the 830 queries to be classified by each
source, and after the classification, the sources secret-share them on two servers
to evaluate using MPC the 3-Estimates truth-finding algorithm. At the end of
the evaluation, the results are reconstructed by the client. The results include
the truth value for each query (the label), a difficulty score for each query,
and a trustworthiness factor for each of the 471 sources. In Fig. 1 we show the
difference between the predictions from the base model and the predictions from
the MPC evaluation. The base model corresponds to the 3-Estimates algorithm
implemented without MPC on the plain data. The MPC evaluation contains
errors compared to the base model, and these errors are mostly below 10−4. To
evaluate the impact of the errors induced by MPC, we look at label prediction.
The MPC method labels all the questions exactly the same way as the baseline
method, so both methods made the same number of errors, i.e., 269 (as shown
in [9], this is less than majority voting and some other methods). On average,
the execution of each iteration took 52.85s wall-clock time, or 39.58s CPU time.
The MPC model is 2 000 times slower than the base model, this is due to the
high number of comparisons that should be made to normalize the three factors.

If we use the pre-computed linear function h presented in Sec. 4.2 the outputs
will be very different of course because of the aforementioned reasons, but wall-
clock time of each iteration is reduced to 0.58s and the CPU time to 0.48s
making it almost 100 times faster. This normalization alternative increases the
number of queries labeled differently by the MPC to 5, however, it yields 266
errors in total. For this specific dataset, the pre-computed normalization used
happens to gives better results than the original baseline.

Cosine on MNIST. We also implement our solution using the MNIST dataset [7]
(an image classification dataset where the task is to recognize digits between
0 and 9 in the image), this time with the Cosine algorithm. We consider 15
sources, each training a logistic regression model for MNIST on a subset of the
considered dataset. The client chooses 120 binary queries to be answered by each

8 All datasets used, as well as the source code of our implementation, are available
at https://github.com/angelos25/tf-mpc/.

https://github.com/angelos25/tf-mpc/
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Fig. 1. Prediction errors between secure multi-party computation and the base model
results with 3-Estimates on Hubdub dataset.
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source. To apply the MPC solution, the sources secret-share the answers on two
servers and evaluate using MPC the Cosine truth-finding algorithm. At the end
of the evaluation, the results are reconstructed by the client. The results include
the truth value for each query (the binary label) and a trustworthiness factor
for each of the 15 sources. To evaluate MPC’s impact, we compare the results
obtained to a base model. The base model corresponds to the Cosine algorithm
implemented without MPC on the same answers. Fig. 2 shows the difference
between predictions from the base model and from the MPC evaluation.

The MPC evaluation contains errors compared to the base model, mostly
below 10−3. To evaluate the impact of the errors induced by MPC, we look at
label prediction. The MPC method labels all the questions exactly the same way
as the baseline method, so both methods made the same number of errors which
is 12. On average, the execution of each iteration took 0.47 s wall-clock time,
or 0.36 s CPU time. The MPC model can be up to 4 000 times slower than the
base model.

If we apply the modifications for Cosine presented in Sec. 4.2 the outputs will
be very different of course because of the aforementioned reasons. The wall-clock
time of each iteration is barely reduced to 0.44 s and the CPU time to 0.33 s. If
there were more sources, the time difference would have been more significant.
This alternative increases the number of queries labeled differently by the MPC
to 2, however, the number of errors is the same: 12.

6 Further Discussion and Conclusion

In this paper, we devised, presented, and evaluated the performance of MPC
protocols for truth-finding algorithms corroborating information from disagree-
ing views while preserving the confidentiality of the data in the sources. This
solution is very helpful to complete missing, uncertain, or rare data that is con-
fidential or sensitive, such as financial and medical data (or scientific data in
general). The MPC protocols we have proposed are very versatile and can be
used to implement other algorithms securely, in particular our secure equality
test alternative based on a simple polynomial evaluation.

The solution proposed can be further improved by using MPC to protect the
client’s data and by using differential privacy techniques [8] to protect sources’
privacy. Several works have demonstrated the possibility to combine MPC and
differential privacy [24, 25]. Indeed this would help further protect the models
from inversion attacks. Another application of the model we propose would be
combing MPC with regular voting and distributed noise generation techniques
[26] to build a version of PATE (private aggregation of teacher ensembles) [23]
that keeps the teacher’s data private. In addition, using a truth-finding algorithm
like 3-Estimates instead of regular voting for PATE might yield better labeling of
incomplete data. A research direction would be evaluating the privacy, security,
efficiency, and accuracy of different combinations of tools like MPC, differential
privacy, and truth-finding algorithms.



Title Suppressed Due to Excessive Length 13

0 20 40 60 80 100 120
Query ID

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

Tr
u

th
 p

re
d

ic
ti

o
n

 e
rr

o
r

Predict ion error of the t ruth value for each query

Mean predict ion error

Median predict ion error

0 2 4 6 8 10 12 14
Voter ID

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

T
ru

s
t 

p
re

d
ic

ti
o

n
e

rr
o

r

Predict ion error of the t rust  value for each voter

Mean predict ion error

Median predict ion error

Fig. 2. Prediction errors between secure multi-party computation and the base model
results with Cosine on MNIST dataset.
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