
Efficient Provenance-Aware Querying of Graph Databases
with Datalog

GRADES-NDA, June 2022

Yann Ramusat Silviu Maniu Pierre Senellart

BDA, October 26th 2022

1/28



Provenance Annotations

Provenance annotations provide additional information within a database to gain more
information about query results.

These annotations are propagated to query results and can be used for example to:
� determine how the result has been computed;
� understand how it would reacts to slight changes in the initial database;
� perform computations alongside query evaluation.

2/28



Semiring-Based Provenance

A strong mathematical foundation is to choose provenance annotations to be elements
of a semiring (Green et al., 2007).

Semirings are a well-suited model for operations (e.g., choices and sequences) carried
along in computations.

3/28



Working Example (Tropical Semiring)

u

s t

v

2; road

1; highway

1; road

10; road

3; road

These integers represent time to move between two vertices.

What is the minimum travel time between s and t?

4/28



Working Example (Tropical Semiring)

u

s t

v

2; road

1; highway

1; road

10; road

3; road

These integers represent time to move between two vertices.

What is the minimum travel time between s and t?

And now, if we only consider paths avoiding highways?

4/28



Working Example (Counting Semiring)

u

s t

v

2; road

1; highway

1; road

10; road

3; road

These integers represent number of paths between two vertices.

What is the total number of paths between s and t?

5/28



Working Example (Counting Semiring)

u

s t

v

2; road

1; highway

1; road

10; road

3; road

These integers represent number of paths between two vertices.

What is the total number of paths between s and t?

And now, if we only consider paths avoiding highways?

5/28



Working Example (Top-2 Semiring)

u

s t

v

2; road

1; highway

1; road

10; road

3; road

These integers represent time to move between two vertices.

What are the best two travel times between s and t?

6/28



Working Example (Top-2 Semiring)

u

s t

v

2; road

1; highway

1; road

10; road

3; road

These integers represent time to move between two vertices.

What are the best two travel times between s and t?

And now, if we only consider paths avoiding highways?

6/28



Working Example (k-feature Semiring)

u

s t

v

h 6 4

h 6 2:10

h 6 2:10, charging station

There exists a path from s to t going through a charging station.

There exists another one allowing 3m high vehicles to reach t.

7/28



Working Example (k-feature Semiring)

u

s t

v

h 6 4

h 6 2:10

h 6 2:10, charging station

There exists a path from s to t going through a charging station.

There does not exist one permitting 3m high vehicles to reach t.

7/28



Algebraic Foundations – Operators � and 


vu w x
s1 s2 s3


-associativity: s1 
 s2 
 s3 := (s1 
 s2)
 s3 = s1 
 (s2 
 s3)

vu

s1

s2

s3

�-commutativity: s1 � s2 = s2 � s1
�-associativity: s1 � s2 � s3 := (s1 � s2)� s3 = s1 � (s2 � s3)

vu v

neutral � element: �; := 0̄ neutral 
 element: 
; := 1̄
8/28



Algebraic Foundations – Mixing both Operators

vu

w

x

s1

s2

s3


 distributivity over �: s1 
 (s2 � s3) = (s1 
 s2)� (s1 
 s3)

vu w
s1

0̄ annihilates 
: 0̄
 s1 = 0̄

9/28



Algebraic Foundations – Mixing both Operators

v u

w

x

s1

s2

s3


 distributivity over �: (s2 � s3)
 s1 = (s2 
 s1)� (s3 
 s1)

vu w
s1

0̄ annihilates 
: s1 
 0̄ = 0̄

9/28



Semirings – Basic Properties

Some semirings may satisfy additional properties:
� commutativity: for all a; b 2 S, a 
 b = b 
 a;
� 0-closed, bounded: for all a 2 S, 1� a = 1;
� pre-order: a vS b := 9h 2 S, a � h = b:

� smallest element: for all a 2 S, 0̄ vS a;
� monotonicity: a vS b =) a � c vS b � c ^ a 
 c vS b 
 c.

� when vS is a partial order it is called the natural order 6S :
� 0-closed implies 6S is a partial order;
� a semiring need not be 0-closed to be naturally ordered.

10/28



Semirings – Examples

� Tropical semiring (min;+):
! 0-closed, commutative, 6S= rev(6N) is total.

� Counting semiring (+;�):
! commutative, 6S=6N is total.

� Top-k (distinct) semiring (mink
;+k):

! k-closed, (idempotent), commutative, 6S is partial.
� k-feature semiring (mink

;maxk):
! 0-closed, commutative, 6S is a lattice order.

11/28



Semirings – Examples

� Tropical semiring (min;+):
! 0-closed, commutative, 6S= rev(6N) is total.

� Counting semiring (+;�):
! commutative, 6S=6N is total.

� Top-k (distinct) semiring (mink
;+k):

! k-closed, (idempotent), commutative, 6S is partial.
� k-feature semiring (mink

;maxk):
! 0-closed, commutative, 6S is a lattice order.

11/28



Contents

General Introduction

Provenance Model for Graph Databases

Datalog Provenance for Graph Queries

Conclusion

12/28



Definition of the Model

Definition (Graph database)
A graph database G over Σ is a pair (V ;E ). V finite set of node ids.
An edge in G is a triple (v ; a; v 0) 2 V � Σ� V , whose interpretation is an a-labeled
edge from v to v 0 in G .

Definition (Graph database with provenance indication)
A graph database with provenance indication (V ;E ;w) over S is a graph database
(V ;E ) together with a weight function, w : E ! S for (S;�;
; 0̄; 1̄) a semiring.

13/28



Weighted Sets of Paths

� Extend the weight function w to paths: w [�] :=
kN

i=1
w [ei ]:

� And further to any finite set of paths:

w [
n[

i=1
�i ] :=

nM

i=1
w [�i ]:

� Denote by �(e) the label of an edge e 2 E .
� Extend labels to paths, �(�) 2 Σ�:

�(�) = �(e1)�(e2) � � � �(ek�1)�(ek):

14/28



Dijkstra for Provenance (Ramusat et al., 2021)

� When the semiring is 0-closed and the natural order is total, possible to compute
the provenance using Dijkstra algorithm: maintain a priority queue of nodes
encountered but not yet processed, ordered according to the natural order of the
provenance expression computed so far for that node.

� When the semiring is 0-closed and the order is not necessarily total but a lattice
order of finite dimension, possible to apply Dijkstra on each dimension of the
lattice.

15/28



Contents

General Introduction

Provenance Model for Graph Databases

Datalog Provenance for Graph Queries

Conclusion

16/28



Motivations

We leverage these three facts:
� Datalog is a very expressive framework for expressing queries;
� very rich literature around Datalog and Datalog provenance;
� some practical systems are built on top of Datalog;

! to obtain new (and better!) effective solutions to practical scenarios (i.e., real
transportation networks over large areas);

! to process queries that go beyond the simple class of RPQs.

17/28



Best-First Method

We adapt the generalization of Dijkstra’s algorithm to the grammar problem due
to Knuth (1977).

This permits to compute Datalog provenance over 0-closed semirings having a total
natural order.

Dijkstra is a subcase, corresponding to right (or left) linear Datalog programs.

18/28



Extending the Semi-Naïve Evaluation Strategy

But... how do we get an efficient implementation?
� consider each instantiation of a rule only once, when all the premises are

provenance annotated:
! update the tentative provenance for the head, in the priority queue,
! if the head was already in the IDB, it had a better annotation!

� only consider mutually recursive predicates to mitigate the load of the priority
queue.

We basically apply the semi-naïve evaluation strategy, with a small twist!

19/28



Overview of Soufflé (Scholz et al., 2016)

Soufflé is a logic programming language based on Datalog.

Designed to perform efficient synthesis of static program analysis specifications,
employing Datalog as a domain specific language.

Soufflé’s relevant features for us:
� competes with hand-written specifications for static program analysis;
� does not restrict to a specific target application;
� comes along with its own optimized data structures;
� possesses an (informational) provenance evaluation strategy for debugging (Zhao

et al., 2020).

20/28



Introducing Soufflé-Prov

We implement the best-first method, adapting Soufflé’s semi-naïve evaluation
strategy powered by its efficient data structures, and set of optimizations.

! Soufflé-Prov is to Soufflé what ProvSQL (Senellart et al., 2018) is to
PostgreSQL.

Key points:
� We do not break any of Soufflé’s optimizations!
� The lattice-theoretic approach is still applicable in this context.

21/28



Datalog Program for Transitive Closure

Algorithm 1 Transitive Closure (Soufflé syntax)

1: .decl edge(s:number, t:number[, @prov:semiring value])
2: .decl path(s:number, t:number[, @prov:semiring value])
3: .input edge
4: .output path
5: path(x, y) :- edge(x, y).
6: path(x, y) :- path(x, z), edge(z, y).

22/28



Corresponding Soufflé RAM Program

Algorithm 2 RAM Program for Transitive Closure

1: if :(edge = ;) then
2: for t0 in edge: add (t0.0, t0.1) in path
3: for t0 in path: add (t0.0, t0.1) in �path
4: loop
5: if :(�path = ;) ^ :(edge = ;) then
6: for t0 in �path do
7: for t1 in edge on index t1.0 = t0.1 do
8: if :(t0.0, t0.1) 2 path then
9: add (t0.0, t0.1) in path’

10: if path’ = ; then exit
11: for t0 in path’: add (t0.0, t0.1) in path
12: swap �path with path’
13: clear path

23/28



Corresponding Soufflé-Prov RAM Program

Algorithm 3 RAM Program for Provenance-Aware Transitive Closure
1: if :(edge = ;) then
2: for t0 in edge: update* (t0.0, t0.1, t0.prov) in path
3: for t0 in path: add (t0.0, t0.1, t0.prov) in �path
4: loop
5: if :(�path = ;) ^ :(edge = ;) then
6: for t0 in �path do
7: for t1 in edge on index t1.0 = t0.1 do
8: if :(t0.0, t1.1, ?) 2 path then
9: update (t0.0, t0.1, t0.prov 
 t1.prov) in pq

10: clear �path
11: If pq is empty then exit
12: add pq.top() in pq.top().relation and in pq.top().�relation

pq may contain tuples from every mutually recursive predicate!

24/28



Computing All-Pairs Shortest Distances

Comparison between algorithms for all-pairs shortest distances:

Rome99 USPowerGrid Yeast Stif

0:1

1

10

100

1;000

10;000

100;000

tim
e

(s
)

Soufflé (Trop.) NodeElim-Id (Trop.) NodeElim-Degree (Trop.) Soufflé-Prov (Trop.)

25/28



Efficiency for a Selection of Graph Patterns

Patterns:
� r(x ; y) :- path(x ; z)
� p1(x ; y ; z) :- edgea(x ; y); pathb(y ; z); edgea(z ; x)
� p2(w ; x ; y ; z) :- patha(w ; x); pathb(x ; y); patha(y ; z)
� p3(w ; x ; y ; z) :- patha(w ; x); edgeb(x ; y); patha(y ; z)

For relevant output DB sizes (containing from 0:5M to 20M tuples):
� Soufflé-Prov is 2:8 to 3:6 times slower than Soufflé,
� up-to 1M output tuples processed by seconds.

26/28



Contents

General Introduction

Provenance Model for Graph Databases

Datalog Provenance for Graph Queries

Conclusion

27/28



In brief

� Efficient computation of provenance of graph databases is possible, for a rich class
of queries (Datalog), and with a reasonable overhead

. . . as long as the provenance semiring is 0-closed, and either totally ordered or a
lattice order with low dimension

� Perspectives:
� Further optimizations: getting as close as possible to the performance of standard

Datalog Evaluation.
� Beyond 0-closed semirings: k-closed semirings, locally closed semirings, etc.

Thank you!

28/28



Bibliography I
Green, T. J., Karvounarakis, G., and Tannen, V. (2007). Provenance semirings. In

PODS, pages 31–40.
Knuth, D. E. (1977). A generalization of Dijkstra’s algorithm. Information Processing

Letters, 6(1).
Ramusat, Y., Maniu, S., and Senellart, P. (2021). Provenance-Based Algorithms for

Rich Queries over Graph Databases. In EDBT.
Scholz, B., Jordan, H., Subotić, P., and Westmann, T. (2016). On fast large-scale

program analysis in datalog. In International Conference on Compiler Construction,
page 196–206.

Senellart, P., Jachiet, L., Maniu, S., and Ramusat, Y. (2018). Provsql: Provenance
and probability management in postgresql. Proc. VLDB Endow., 11(12):2034–2037.

Zhao, D., Subotić, P., and Scholz, B. (2020). Debugging large-scale datalog: A
scalable provenance evaluation strategy. ACM TOPLAS, 42(2).


	General Introduction
	Provenance Model for Graph Databases
	Datalog Provenance for Graph Queries
	Conclusion
	*
	References


