
Efficient Provenance-Aware Querying of Graph Databases
with Datalog

GRADES-NDA, June 2022

Yann Ramusat Silviu Maniu Pierre Senellart

BDA, October 26th 2022

1/28



Provenance Annotations

Provenance annotations provide additional information within a database to gain more
information about query results.

These annotations are propagated to query results and can be used for example to:
� determine how the result has been computed;
� understand how it would reacts to slight changes in the initial database;
� perform computations alongside query evaluation.

2/28



Semiring-Based Provenance

A strong mathematical foundation is to choose provenance annotations to be elements
of a semiring (Green et al., 2007).

Semirings are a well-suited model for operations (e.g., choices and sequences) carried
along in computations.
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Working Example (Tropical Semiring)

u

s t

v

2; road

1; highway

1; road

10; road

3; road

These integers represent time to move between two vertices.

What is the minimum travel time between s and t?
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Working Example (Tropical Semiring)
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1; road
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3; road

These integers represent time to move between two vertices.

What is the minimum travel time between s and t?

And now, if we only consider paths avoiding highways?
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Working Example (Counting Semiring)

u

s t

v

2; road

1; highway

1; road

10; road

3; road

These integers represent number of paths between two vertices.

What is the total number of paths between s and t?
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Working Example (Counting Semiring)
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These integers represent number of paths between two vertices.
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And now, if we only consider paths avoiding highways?
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Working Example (Top-2 Semiring)

u

s t

v

2; road

1; highway

1; road

10; road

3; road

These integers represent time to move between two vertices.

What are the best two travel times between s and t?
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Working Example (Top-2 Semiring)

u

s t

v

2; road

1; highway

1; road

10; road

3; road

These integers represent time to move between two vertices.

What are the best two travel times between s and t?

And now, if we only consider paths avoiding highways?
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Working Example (k-feature Semiring)

u

s t

v

h 6 4

h 6 2:10

h 6 2:10, charging station

There exists a path from s to t going through a charging station.

There exists another one allowing 3m high vehicles to reach t.
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Working Example (k-feature Semiring)

u

s t

v

h 6 4

h 6 2:10

h 6 2:10, charging station

There exists a path from s to t going through a charging station.

There does not exist one permitting 3m high vehicles to reach t.
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Algebraic Foundations – Operators � and 


vu w x
s1 s2 s3


-associativity: s1 
 s2 
 s3 := (s1 
 s2)
 s3 = s1 
 (s2 
 s3)

vu

s1

s2

s3

�-commutativity: s1 � s2 = s2 � s1
�-associativity: s1 � s2 � s3 := (s1 � s2)� s3 = s1 � (s2 � s3)

vu v

neutral � element: �; := 0̄ neutral 
 element: 
; := 1̄
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Algebraic Foundations – Mixing both Operators

vu

w

x

s1

s2

s3


 distributivity over �: s1 
 (s2 � s3) = (s1 
 s2)� (s1 
 s3)

vu w
s1

0̄ annihilates 
: 0̄
 s1 = 0̄
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Algebraic Foundations – Mixing both Operators

v u

w

x

s1

s2

s3


 distributivity over �: (s2 � s3)
 s1 = (s2 
 s1)� (s3 
 s1)

vu w
s1

0̄ annihilates 
: s1 
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Semirings – Basic Properties

Some semirings may satisfy additional properties:
� commutativity: for all a; b 2 S, a 
 b = b 
 a;
� 0-closed, bounded: for all a 2 S, 1� a = 1;
� pre-order: a vS b := 9h 2 S, a � h = b:

� smallest element: for all a 2 S, 0̄ vS a;
� monotonicity: a vS b =) a � c vS b � c ^ a 
 c vS b 
 c.

� when vS is a partial order it is called the natural order 6S :
� 0-closed implies 6S is a partial order;
� a semiring need not be 0-closed to be naturally ordered.
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Semirings – Examples

� Tropical semiring (min;+):
! 0-closed, commutative, 6S= rev(6N) is total.

� Counting semiring (+;�):
! commutative, 6S=6N is total.

� Top-k (distinct) semiring (mink
;+k):

! k-closed, (idempotent), commutative, 6S is partial.
� k-feature semiring (mink

;maxk):
! 0-closed, commutative, 6S is a lattice order.
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Definition of the Model

Definition (Graph database)
A graph database G over Σ is a pair (V ;E ). V finite set of node ids.
An edge in G is a triple (v ; a; v 0) 2 V � Σ� V , whose interpretation is an a-labeled
edge from v to v 0 in G .

Definition (Graph database with provenance indication)
A graph database with provenance indication (V ;E ;w) over S is a graph database
(V ;E ) together with a weight function, w : E ! S for (S;�;
; 0̄; 1̄) a semiring.
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Weighted Sets of Paths

� Extend the weight function w to paths: w [�] :=
kN

i=1
w [ei ]:

� And further to any finite set of paths:

w [
n[

i=1
�i ] :=

nM

i=1
w [�i ]:

� Denote by �(e) the label of an edge e 2 E .
� Extend labels to paths, �(�) 2 Σ�:

�(�) = �(e1)�(e2) � � � �(ek�1)�(ek):
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Dijkstra for Provenance (Ramusat et al., 2021)

� When the semiring is 0-closed and the natural order is total, possible to compute
the provenance using Dijkstra algorithm: maintain a priority queue of nodes
encountered but not yet processed, ordered according to the natural order of the
provenance expression computed so far for that node.

� When the semiring is 0-closed and the order is not necessarily total but a lattice
order of finite dimension, possible to apply Dijkstra on each dimension of the
lattice.
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Motivations

We leverage these three facts:
� Datalog is a very expressive framework for expressing queries;
� very rich literature around Datalog and Datalog provenance;
� some practical systems are built on top of Datalog;

! to obtain new (and better!) effective solutions to practical scenarios (i.e., real
transportation networks over large areas);

! to process queries that go beyond the simple class of RPQs.
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Best-First Method

We adapt the generalization of Dijkstra’s algorithm to the grammar problem due
to Knuth (1977).

This permits to compute Datalog provenance over 0-closed semirings having a total
natural order.

Dijkstra is a subcase, corresponding to right (or left) linear Datalog programs.
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Extending the Semi-Naïve Evaluation Strategy

But... how do we get an efficient implementation?
� consider each instantiation of a rule only once, when all the premises are

provenance annotated:
! update the tentative provenance for the head, in the priority queue,
! if the head was already in the IDB, it had a better annotation!

� only consider mutually recursive predicates to mitigate the load of the priority
queue.

We basically apply the semi-naïve evaluation strategy, with a small twist!
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Overview of Soufflé (Scholz et al., 2016)

Soufflé is a logic programming language based on Datalog.

Designed to perform efficient synthesis of static program analysis specifications,
employing Datalog as a domain specific language.

Soufflé’s relevant features for us:
� competes with hand-written specifications for static program analysis;
� does not restrict to a specific target application;
� comes along with its own optimized data structures;
� possesses an (informational) provenance evaluation strategy for debugging (Zhao

et al., 2020).
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Introducing Soufflé-Prov

We implement the best-first method, adapting Soufflé’s semi-naïve evaluation
strategy powered by its efficient data structures, and set of optimizations.

! Soufflé-Prov is to Soufflé what ProvSQL (Senellart et al., 2018) is to
PostgreSQL.

Key points:
� We do not break any of Soufflé’s optimizations!
� The lattice-theoretic approach is still applicable in this context.
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Datalog Program for Transitive Closure

Algorithm 1 Transitive Closure (Soufflé syntax)

1: .decl edge(s:number, t:number[, @prov:semiring value])
2: .decl path(s:number, t:number[, @prov:semiring value])
3: .input edge
4: .output path
5: path(x, y) :- edge(x, y).
6: path(x, y) :- path(x, z), edge(z, y).
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Corresponding Soufflé RAM Program

Algorithm 2 RAM Program for Transitive Closure

1: if :(edge = ;) then
2: for t0 in edge: add (t0.0, t0.1) in path
3: for t0 in path: add (t0.0, t0.1) in �path
4: loop
5: if :(�path = ;) ^ :(edge = ;) then
6: for t0 in �path do
7: for t1 in edge on index t1.0 = t0.1 do
8: if :(t0.0, t0.1) 2 path then
9: add (t0.0, t0.1) in path’

10: if path’ = ; then exit
11: for t0 in path’: add (t0.0, t0.1) in path
12: swap �path with path’
13: clear path
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Corresponding Soufflé-Prov RAM Program

Algorithm 3 RAM Program for Provenance-Aware Transitive Closure
1: if :(edge = ;) then
2: for t0 in edge: update* (t0.0, t0.1, t0.prov) in path
3: for t0 in path: add (t0.0, t0.1, t0.prov) in �path
4: loop
5: if :(�path = ;) ^ :(edge = ;) then
6: for t0 in �path do
7: for t1 in edge on index t1.0 = t0.1 do
8: if :(t0.0, t1.1, ?) 2 path then
9: update (t0.0, t0.1, t0.prov 
 t1.prov) in pq

10: clear �path
11: If pq is empty then exit
12: add pq.top() in pq.top().relation and in pq.top().�relation

pq may contain tuples from every mutually recursive predicate!
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Computing All-Pairs Shortest Distances

Comparison between algorithms for all-pairs shortest distances:
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Efficiency for a Selection of Graph Patterns

Patterns:
� r(x ; y) :- path(x ; z)
� p1(x ; y ; z) :- edgea(x ; y); pathb(y ; z); edgea(z ; x)
� p2(w ; x ; y ; z) :- patha(w ; x); pathb(x ; y); patha(y ; z)
� p3(w ; x ; y ; z) :- patha(w ; x); edgeb(x ; y); patha(y ; z)

For relevant output DB sizes (containing from 0:5M to 20M tuples):
� Soufflé-Prov is 2:8 to 3:6 times slower than Soufflé,
� up-to 1M output tuples processed by seconds.
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In brief

� Efficient computation of provenance of graph databases is possible, for a rich class
of queries (Datalog), and with a reasonable overhead

. . . as long as the provenance semiring is 0-closed, and either totally ordered or a
lattice order with low dimension

� Perspectives:
� Further optimizations: getting as close as possible to the performance of standard

Datalog Evaluation.
� Beyond 0-closed semirings: k-closed semirings, locally closed semirings, etc.

Thank you!
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