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Volume of mathematical papers

Number of Arxlv papers per month since 1991
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Figure 3.1: Total number of papers published on
arXiv until 2019 [Del20]

Proportion of selected papers per month
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Figure 3.2: Papers with mathematical

information such as Theorem, a Lemma or a
Proposition [Del20]



Discovering existing |

Hernich et al. 2012

Michaeél

(likes to read mathematical papers)



Correcting puplicised errors

Proof v2: Dichotomy for
evaluating conjunctive
qgueries

Proof: Dichotomy for
evaluating conjunctive
queries

Nilesh et al. 2006 Nilesh et al. 2012



Managing Complex Dependencies
Proposition 8.3

Senellart et al. Theory of oGS
Computing systems, 2019
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I'he Lagrangian remainder of Taylor's series, distinguishes

O(f(x)) time complexities to polynomials or not

Nikolnos P. Bakas!  Flias Kosmatopoulos! Mihalis Nicolaon Saveas A Chatzichristofis

Abstract
The purpose of this letter s ¢ stigate the time complexity consequences of the trun Tayhor
series, known s Taylor Paly N In particular, it s demonstratod that the ecaminatios
of the P = NP equality, is associated with the determination « her the w™ derivative
particular solution is bounded or not. Acoordingly, in some cmses, this s ot true, amd beomce
general
1 Univariate complexity
Definition 1. Lot the ghven problem bs o known snalytie function [ of ooe vardalde € 27 )
the authors comsider one-dimensional 7, and later they genernlize the results, Respoctively, the
complexdy of the given problem, according to the literature may be written in the generic form
of
Oifix))

The execation time bs usuall Jenlated | lementary algelirnic operations of integens or

1 o be adequate and valid.  According
Taylor series

[z f*(20)
Jla m
with infinite terms, that
flry=Tulx) + Ryl
() Is the Taylor polynomial of crder n, and R, (x) the remainder of the degree T
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| overview o1

Extracted results

‘neorem

Definition 1. Let the given problem is a known analytic function f of one variable x € Z*. Initially,
the authors consider one-dimensional r, and later they generalize the results, Respectively, the time
complexity of the given problem, according to the literature [ 1], may be written in the generic form
of

O(f(x))

I Theorem 1. If| f"*V (x) |< M, the algorithm with O(f(x)) complexity, runs in polynomial time.

I Lemma 1. If | f""*Y (x) |> M, f cannot be expressed as polynomials.

(

1.1.2 PRINCIPLE OF ANALYTIC CONTINUATION. If f is holomorphic
(real analytic) in a connected open set U()in C* (R*) and D*f(a) = 0
forall « = («,, ..., %) and some ae U(Q), then f = 0. In particular,
if f vanishes on a non-empty open subset of U(Q), then f = 0.

1.1.3 WEIERSTRASS’ THEOREM. If {/,} is a sequence of holomorphic
functions, converging uniformly on compact subsets of U to a func-
tion /; then f is holomorphic in U. Moreover, for any «, {D*f,} con-
verges to D*f, uniformly on compact sets.

1.2.6 CoROLLARY. Let Q be open in R*, X a closed subset of @ and U
an open subset of 2 containing X. Then, there exists a C® function
Y on Q such that y(x) =1 if xe X, Y(x) =0 if xeQ-U and
0 3 ¥ S | everywhere.

1.5.2 LemMA. Let fe C*(R") be m-flat at 0. Then, given & > 0, there
exists g € C*(R") which vanishes in a neighbourhood of 0 and such
that

llg=flls < e.

1.54 THEOREM OF BOREL. Given, for each n-tuple « = (a,,...,a,)
of non-negative integers, a real constant ¢,, there exists an fe C*(R")
such that

-l-D‘f(O) = (,.
a!

In other words, the mapping from C®(R") to the ring of formal power-
series in n-variables given by f+» T(f) is surjective.

Result graph

1.2.6 CoROLLARY. Let 2 be open in R”, X a closed subset of @ and U

an open subset of 2 containing X. Then, there exists a C* function
¥ on Q such that y(x) =1 if xe X, Yy(x) =0 if xeQ-U and
0 S ¥ £ | everywhere.

that

1.5.2 LemMA. Let fe C*(R") be m-flat at 0. Then, given & > 0, there
exists g € C*(R") which vanishes in a neighbourhood of 0 and such

llg=/lln < e

1.54 THEOREM OF BOREL. Given, for each n-tuple a = (x,,...,4,)
of non-negative integers, a real constant c,, there exists an fe C*(R")
such that

lD‘j'(O) = (.
a!

In other words, the mapping from C®(R") to the ring of formal power-
series in n-variables given by f+» T(f) is surjective.

+_|

Lemma 1. If | f"*V (2) |> M, f cannot be expressed as polynomials

Proof. By utilizing Borel's theorem [5], stating that any formal series 3~

0@n (x —x9)" is the !

Taylor series of a C™-smooth function defined in an open neighborhood of xg, it is derived that if !

g J'") is not bounded, f cannot be written as a power series, and hence as a polynomial, thus the
pproblem is not in P. In other words, if the problem was in P, it could be written as a polynomial,

1and this would be the Taylor series, which is absurd as no n exist such that the f'"
(Y]

I Theorem 1. If | fi"*V (x) |«

M, the algorithm with O(f(x)) complexity, runs in polynomial time I

is limited by a




What is Extraction?

Theorem 1.8 ([HRVWO09]). Let f : {0,1}" — {0,1}" be a one-way function, let X be
UnA ly distributed in {0,1}", and let (Y1,...,Y.;n) be a partition of Y = f(X) into
blogs of length O(logn). Then (Yi,...,Ym,X) has next-block accessible entropy at most
n — w( ).

Proof. ce f is (t,e)-one-way, the distributional search problem (IIf  J(X )) where I1/ =
{(f(z),z) : = € {0,1}"} is (t,€)-hard. Clearly, (f(X),X) is supported on II/, so by
applying Theorem 3.8 , we have that (I1/, f(X), X) has witness hardness (£2(t),log(1/z))
in relative entropy and (£2(%),log(1/s) — log(2/4)) in 4/2-min relative entropy. Thus, by
Theorem 4.7 we have that (Y3,...,Y, s, X) has next-block inaccessible relative entropy
Q(t-A-02/(n?. 2’)) ,log(1/¢) — A) and next-block inaccessible §-min relative entropy
gﬂ ét -6-A-£2/(n?-2%),log(1/e) — log(2/8) — A), and we conclude by Theorem 4.9 .

4
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Unimodal backbones
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Theorem 1.8 ([HRVWO09)]). Let f : {0,1}" — {0,1}" be a one-way function, let X be
unA ly distributed in {0,1}", and let (Y1,...,Yn) be a partition of Y = f(X) into
blogs of length O(logn). Then (Yi,...,Ym,X) has next-block accessible entropy at most
n-—w ).

Proof. Stace f is (t,£)-one-way, the distributional search problem (17, f(X)) where I1/ =
{(f(z),z) : z € {0,1}"} is (t,e)-hard. Clearly, (f(X),X) is supported on I/, so by
applying Theorem 3.8 , we have that (II/, f(X), X) has witness hardness (£2(t),log(1/¢))
in relative entropy and (€2(¢),log(1/¢) — log(2/4)) in §/2-min relative entropy. Thus, by
Theorem 4.7 we have that (Yi,...,Y},/;, X) has next-block inaccessible relative entropy
Q(t-A-£2/(n?-2%),log(1/e) — A) and next-block inaccessible §-min relative entropy
éQ Et 6-A-£/(n?-2%),log(1/€) — log(2/d) — A), and we conclude by Theorem 4.9 .

A
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Embeddings of LSTM layers

/ L 4

LSTM LSTM LSTM LSTM LSTM LSTM
Cell 1 Cell 2 Cell 3 Cell 126 Cell 127 Cell 128
[ 32-dimensional embedding layer ]

4 1000-dimensional font sequence A
[ PAD ] [ PAD ] { PAD J - [ cmrl0 J [ cmesclO ] [ cmsyl0 J
\_ Paddin: tokens Font:kens -/
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Vision Based

3 '——,‘
i g, !

pf. By lheorem 3 , relative to a suitable oracle Ap (in tact, a ra racle suffices), there

8XISts a signature scheme D, such that any quantum chosen-message attaek against 2 must make

jsuperpolynomially many queries to Ap. The oracle As will simply be a concatenation of Aag
with Ap. Relative to Ag, we claim that the mini-scheme M and signature scheme D are both
secure—and therefore, by Theorem 16 , we can construct a secure public-key quantum money
qscheme S.

4

4. Suppose the olds with constant c. 1hen for every o, €
ore exists a v = O(a + 3) such that
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Mu.

timodal model (raw features

Image of the paragraph
Size: 400x1400x3 pixels

Text tokens (IDs) Attention mask
Size: 512 tokens (max. length) Size: 512 tokens (max. length)

Dimension: 1280

Dimension: 1280

Sequence of fonts
Size: 1000 tokens (max. length)

Dimension: 768

Dimension: 1280

Dimension: 128

Dimension: 1280

Cross-modal embedding
Dimension: 1280
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Approach
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Layer norm

(20 heads)
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Sliding-Window Transformer
Processes windows of 16 paragraphs at a time
Feed forward network (1.5x hidden dim.)
Multi-Head Attention mechanism
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Performance of Sequence mode.

Modality Model chosen Seq. approach #Batches #Params (M) Accuracy (%) Mean F; (%)
Dummy always predicts basic — — — 59.41 24.85
Top-k first word use only first word — — — 52.84 44.20
Line-based [MPS21| Bert (fine-tuned) — — 110 57.31 55.71
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Closing remarks

- Our multimodal approach can be adapted to long documents
« Can make inference on entire pdf in a single forward pass
- Comparable, consistent and computationally efficient

- Unlike many other approaches that rely on an OCR preprocessing to be useful (LayoutLM) ours
rely on Grobid which is many times faster

- Our approach is Fast (encoder only) and Scalable and applicable in real world (~200k pdfs
tested)

- Qur approach captures cross modality without adding special losses
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