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Abstract
We address the extraction of mathematical statements and their
proofs from scholarly PDF articles as a multimodal classification
problem, utilizing text, font features, and bitmap image renderings
of PDFs as distinct modalities. We propose a modular sequential
multimodal machine learning approach specifically designed for
extracting theorem-like environments and proofs. This is based on
a cross-modal attention mechanism to generate multimodal para-
graph embeddings, which are then fed into our novel multimodal
sliding window transformer architecture to capture sequential in-
formation across paragraphs. Our approach demonstrates perfor-
mance improvements obtained by transitioning from unimodality
to multimodality, and finally by incorporating sequential modeling
over paragraphs.

CCS Concepts
• Information systems→ Information extraction.
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1 Introduction
Scholarly articles in mathematical fields typically include theorems
(and other theorem-like environments) along with their proofs.
This paper builds upon our previous work [11], which aimed to
transform scientific literature from a collection of PDF articles into
an open knowledge base (KB) centered around theorems. In this
paper, we concentrate primarily on the extraction aspect of the
pipeline introduced in [11]. We conduct an in-depth exploration of
diverse multimodal methodologies and assess the impact of model-
ing long-term paragraph sequences.
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To clarify, in the whole of this paper we use theorem in the same
sense as it is used in LATEX (say, by the \newtheorem command):
a theorem-like environment is a structured statement, possibly
numbered, formatted in a specific way and used to represent a
formal (usually mathematical) statement: it can be a theorem, a
lemma, a proposition, etc., but also a definition, a formal remark
or an example. By theorem we mean any statement of this kind.
By proof we mean what would typically be rendered in LATEX in a
proof environment: a proof or proof sketch of a result.

We approach the theorem–proof identification problem by de-
signing an approach based on multimodal machine learning that
classifies each paragraph of an article into basic, theorem, and proof
labels, based on the scientific language, on typographical infor-
mation, and on visual rendering of PDF documents. Additionally,
we take into account information about the sequence of paragraph
blocks, normalised spatial coordinates and page numbers along
with page breaks, to exploit the fact that the label of a paragraph
heavily relies on that of the preceding (or following) ones.

We provide the following contributions in this paper, summa-
rized in Figure 1: (i) Three unimodal (vision, text, font information)
models for the theorem–proof identification problem relying on
modern machine learning techniques (CNNs, transformers, LSTMs)
with a focus on reasonably efficient models as opposed to very large
ones; note that the text modality approach relies on pretraining a
language model specific to our corpus, which may have applications
beyond our task. (ii) A multimodal late fusion model that combines
the features of all three modalities. (iii) A block sequential approach,
based on a transformer model, that can be used to improve the per-
formance of any unimodal and multimodal model by capturing
dependencies between blocks. (iv) An experimental evaluation on a
dataset of roughly 200k English-language papers from arXiv, with
a separate validation dataset of 3.5k papers (amounting to 529k
paragraph blocks).

We present in Section 2 the three unimodal models. We then
discuss in Section 3 how to combine them into a multimodal model,
and how to add support for information about block sequences. We
further provide a description of our dataset in Section 4. Experimen-
tal results on all unimodal and multimodal models are presented in
Section 5.

An extended version of this work is available [12] with discussion
of the related work, details on different models, and experiments.
We also refer to the PhD thesis of the first author [10] for additional
details on our methodology and results. The code, data, and models
supporting this paper are accessible at https://github.com/mv96/
mm_extraction.
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Figure 1: Overall model Inference pipeline

2 Unimodal Models
We now present the methodology of our three unimodal models: a
pretrained transformer (RoBERTa-based) language model for text
extracted for each paragraph of the PDF; an EfficientNetv2M [14]
CNN for vision on the bitmap rendering of each PDF paragraph;
and an LSTM model trained on font information sequences within
each paragraph. For a technical reason explained in Section 4, the
problem is formulated as a four-class classification: in addition to
the three target basic text, theorem, proof, we employ a reject overlap
class.

Text Modality. We pretrain a language model from scratch on
a 50k vocabulary size (with byte-pair encoding), similar to the
configuration of RoBERTa base (124M) [7]. While masking 15%
of tokens we kept the configuration similar to original RoBERTa
(𝐿 = 12, 𝐻 = 768, 𝐴 = 12), but on a different vocabulary. The
model used dynamic masking and was trained on masked language
modeling loss. After pretraining, the model is fine-tuned for our
classification task.

Vision Modality. CNNs, pivotal in image classification and as
backbones in visual-language tasks, typically benchmark on Ima-
geNet and CIFAR for top-1% accuracy. Our project, targeting the
identification of mathematical symbols and the layout of paragraph
blocks to discern proofs and theorems, necessitates model training
from scratch. Distinct markers like the term “Proof” in unique fonts
and the QED symbol, crucial yet overlooked by text modalities,
guide our focus.

One specificity of vision approach for classification block is that
images come in widely different aspect ratios. Traditional inter-
polation methods, though prevalent for adjusting natural images
to a uniform resolution, unsuitably modify the geometry of text,
symbols, and fonts in our context. Based on corpus analysis, we
establish a fixed resolution of (400×1400) pixels. This size accom-
modates over 80% of our paragraphs, with larger images being
cropped and smaller ones padded to maintain this standard with-
out altering their intrinsic visual properties. This approach aligns
with recommendations against scale variance [15] and parallels
the preprocessing strategy used in the Nougat paper [1], which
also maintains a constant aspect ratio to suit specific model inputs.
Our method ensures the preservation of textual image integrity

by avoiding the pitfalls of resizing, opting instead for cropping or
padding to fit our predetermined resolution criteria.

To counteract the issue of white backgrounds in scientific texts,
which can hinder CNN performance as noted by studies [5], we
invert image colors to mimic the MNIST dataset’s white-on-black
text presentation. This approach prevents max-pooling operations
in CNNs from mistakenly prioritizing the background, thereby
maintaining focus on the textual content.

EfficientNet comes with several variants (B0–B7) where B7 has
the largest receptive field due to compound scaling. We select in our
experiments a base network (B0), a medium-sized network (B4) and
the largest network (B7). EfficientNetV2 also comes with different
sizes. We focused on the small (EfficientNetV2s) and medium-sized
(EfficientNetV2m) models.

Font Modality. The last modality we consider is styling infor-
mation present in the PDF in terms of the sequence of fonts (font
family and font size) used in a specific paragraph. This information
can be obtained using the pdfalto tool1, which produces a list of
fonts used in a given document, and associates each text token to
a particular font. Fonts are usually standard LATEX fonts, such as
cmr10 for Computer Modern Roman in 10 point.

From the training data, we build a font vocabulary of 4 031 unique
fonts including their sizes, and represent every paragraph block as
a sequence of font identifiers. To match input dimensions among
training samples, we apply left padding with a maximum length
of 1 000. We then feed the entire sequence to a simple 128-cell
LSTM [4] network to monitor the loss. The choice of the model is
purely to capture sequential information within fonts that can be
used to identify the label of the paragraphs.

3 Multimodal and Sequential Models
We now go beyond unimodal models by showing how all three
modalities can be combined into a single late-fusion multimodal
model, and how block sequence information can be captured.

The main multimodal model we use is a cross-modal attention
model, inspired by ViLBERT’s attention mechanism [9]. We show
its full architecture in Figure 2.

1https://github.com/kermitt2/pdfalto

https://github.com/kermitt2/pdfalto
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Figure 2: Cross-modal attention architecture

In addition to modalities, considering the sequencing of the
blocks, i.e., the order in which they appear in the document, allows
us to determine with greater confidence the class of each block.

We propose two approaches to do this: First, using a simple
linear-chain order-one Conditional Random Fields model (CRFs) [6].
Second, we introduce a novel transformer-based BERT-like encoder
architecture (also more efficient for our task) to process multimodal
features, using a sliding window (SW) of size 𝑘 = 16. We also in-
vestigate the impact of long sequential relationships by employing
interleaving architecture found in Hierarchical Attention Trans-
formers (HATs) [2]. The architecture is modified to be adapted in a
multimodal setting such as ours.

The CRF and SW models use the following features, on top of
frozen unimodal or multimodal model: unimodal text, vision, and
font models respectively bring 768, 1280, and 128 features; the
multimodal approach includes 1280 joint features; we incorporate
four additional geometrical features to describe block positions:
normalized page number, indicating a block’s page relative to the
total pages; normalized horizontal and vertical distances from the
block’s bounding box corners; and a binary feature indicating if a
block and its predecessor are on the same page.

In order to determine whether long-distance dependencies are
also useful to capture for our task, we also implement HATs, relying
on the same Sliding Window transformer encoder architecture
used as as a segment-wise encoder. We then expanded it to learn
about connections between different context windows (using cross
segment encoder) taking only the Multimodal [CLS] token of every
segment. Out of the versions proposed in the original HAT paper
[2], we tested the best-performing one, i.e., with interleaving layers.

4 Dataset and Setup
We use Grobid2 [8], which is the state of the art for information
extraction from scholarly documents to parse a PDF document and
interpret it into a succession of paragraph blocks.

2https://github.com/kermitt2/grobid

Labeling script

Annotates the proofs and 
theorems in LaTeX source file 

Compilation

PDFAlto

Extracting font information 
across lines 

Grobid
Extracting text and layout 
information per paragraph, 

through coordinates

Merging script
Merging information about layout, font, and text per paragraph

Only for training labels (not at inference time)

Image generation script
Generates images of the paragraphs, using layout information

…

Multimodal dataset 
Text, font sequence and image for each paragraph

Figure 3: Dataset preparation pipeline

Our dataset, encompassing all arXiv papers (around 1.7 million
papers) up toMay 2020, was acquired via arXiv’s bulk data access on
Amazon S3.We developed an annotation script to pinpoint theorem-
like environments and proofs within these documents, leveraging
LATEX sources. This involved crafting a LATEX package to instrument
commands such as \newtheorem for precise identification in the
compiled PDFs (≈ 460k papers). See Figure 3. We filtered articles
from the dataset to only keep those in English, for which LATEX
source is available (according to arXiv’s policy, all those that have
been produced using LATEX), that were compilable on a modern
LATEX distribution, that contained at least a theorem or a proof
environment, and for which none of the tools (our ground-truth
annotation package, Grobid for extraction of blocks, pdfalto for
line-by-line font sequences, bitmap image rendering for CNN’s)
failed to produce a valid output. This resulted in a final dataset of
≈ 197k papers. We stress that LATEX sources are only used to produce
ground-truth annotations, they are not required at inference time.
Grobid sometimes fails to extract correct paragraphs, i.e., some
of the paragraphs identified by Grobid overlap blocks of different
category (say, basic and theorem). We label such paragraphs as
overlap, exclusively used for such outliers.

Our validation set comprises approximately 500 000 paragraph
blocks from 3 682 randomly selected PDF articles. The remaining
articles formed the training dataset, used entirely for pretraining
our language model after filtering potential personal information
such as author names and institutions from Grobid extractions to
minimize privacy concerns. Training involved dividing the dataset
into batches of 1 000 PDF articles, incrementally fitting classifiers
on these batches until convergence, without exceeding a few dozen
batches. Post-training, classifiers’ weights were frozen for inte-
gration into the multimodal classifier, subsequently employed as
feature extractors for the sequential approaches. The dataset is heav-
ily imbalanced, with the number of paragraphs labeled as basic:
314 501, proof : 125 524, theorem: 85 801, and overlap: 3 470.

All experiments were run on a supercomputer with access at
any point to 4 NVIDIA (V100 or A100) GPUs. We estimate to 8 000
GPU hours the computational cost of the entire prototyping, hy-
perparameter tuning, training, validation, and evaluation pipeline.

https://github.com/kermitt2/grobid
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Table 1: Overall performance comparison (accuracy and mean F1 over the three classes basic, theorem, and proof ) of individual
modality models and multimodal model, with and without the sequential approach; for each model, the number of batches
(1 000 PDF documents, roughly 200k samples) it was trained on is indicated (here + indicates additional batches on which
further training of sequential paragraph model)

Modality Model chosen Seq. approach #Batches #Params (M) Accuracy (%) Mean F1 (%)

Dummy always predicts basic — — — 59.41 24.85
Top-𝑘 first word use only first word — — — 52.84 44.20
Line-based [13] Bert (fine-tuned) — — 110 57.31 55.71

Font LSTM 128 cells
- 11 2 64.93 45.48

CRF 11+8 2 71.50 64.51
SW Transformer 11+8 2 76.22 71.77

Vision EfficientNetV2m_avg
- 9 53 69.44 60.33

CRF 9+8 53 74.63 70.82
SW Transformer 9+8 65 79.59 77.66

Text Pretrained RoBERTa-like
- 20 124 76.45 72.33

CRF 20+8 124 83.10 80.99
SW Transformer 20+8 129 87.50 86.67

Multimodal Cross-modal attention
- 2 185 78.50 75.37

CRF 2+8 185 84.39 82.91
SW Transformer 2+8 198 87.81 87.18

HAT 2+8 232 87.52 86.58

5 Experimental Results
We now report experimental results on the basic–theorem–proof
classification problem, first comparing representative unimodal
classifiers, with and without the article paragraphs fed to the se-
quential approach, followed by the multimodal classifier. We then
delve into more specific details of every unimodal classifier.

We are interested in two main performance metrics: accuracy
measures the raw accuracy of the classifier on the validation dataset
(disjoint with the training dataset); and (unweighted arithmetic)
mean F1-measure of the basic, theorem, and proof classes, which
summarizes the precision and recall over each class assigning the
same weight to every class. As basic is the most common class in
the dataset, a dummy classifier that would always predict the basic
class would have an accuracy of 59.41%; but its recall would be 100%
on basic and 0% on the other classes, while its precision would be
59.41% on basic and 0% on the other classes, resulting in amean F1 of
1
3×

2×59.41%
59.41%+100% ≈ 24.85%. This gives an important comparison point

for all other methods; accuracy measures how well the classifier
works on the actual unbalanced data, while mean F1 favors methods
performing well to identify all three classes.

Drawing inspiration from two related works, albeit applied in
slightly different settings, we evaluate two straightforward base-
lines: (1) Top-𝑘 first words: This method, which echoes the approach
used in [3] focusing on the first paragraph of marked environments,
constructs a vocabulary of the top-𝑘 unique words for each class.
Labels are assigned based on the first word of a text and whether it
matches anyword within the class-specific vocabulary. For instance,
if the first word is within {theorem, lemma, proposition, definition},
the text is labeled as a theorem. (2) Text classifier from [13]: We

reuse the text classifier that was fine-tuned in [13], which pro-
cesses text lines (not paragraphs) extracted from pdfalto. Note this
classifier does not identify the overlap class.

The results we obtain for the different modalities, with and with-
out the use of either CRF or sliding-window block sequence model,
are shown in Table 1. The following lessons can be drawn:

(1) This is a hard task, as the best performance reached is 88%
for accuracy and 87% for mean F1. Indeed, it can be hard even to a
human to determine whether a block is part of a proof or theorem
environment, especially in the middle of it, so it is unsurprising
that we cannot reach near-perfect results.

(2) Looking at unimodal models: the font-based model performs
rather poorly, though still beating (at least in terms of mean F1) the
three baselines; the text-based model is the best performing one,
suggesting textual clues impact more than visual ones for this task.

(3) The multimodal model outperforms every unimodal model,
though the margin with the text model is somewhat low.

(4) Including the Sequential model (both CRF, SW transformer,
or HAT) greatly increases the performance of every unimodal or
multimodal model, by 5 to 10 points of accuracy or mean F1. The
importance of the use of an approach modeling block sequences is
thus clear. Long-distance dependencies captured by HATs do not
seem to matter.
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