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Abstract
We address the extraction of mathematical statements and their
proofs from scholarly PDF articles as a multimodal classification
problem, utilizing text, font features, and bitmap image renderings
of PDFs as distinct modalities. We propose a modular sequential
multimodal machine learning approach specifically designed for
extracting theorem-like environments and proofs. This is based on
a cross-modal attention mechanism to generate multimodal para-
graph embeddings, which are then fed into our novel multimodal
sliding window transformer architecture to capture sequential infor-
mation across paragraphs. Our document AI methodology stands
out as it eliminates the need for OCR preprocessing, LATEX sources
during inference, or custom pre-training on specialized losses to un-
derstand cross-modality relationships. Unlike many conventional
approaches that operate at a single-page level, ours can be directly
applied to multi-page PDFs and seamlessly handles the page breaks
often found in lengthy scientific mathematical documents. Our
approach demonstrates performance improvements obtained by
transitioning from unimodality to multimodality, and finally by
incorporating sequential modeling over paragraphs.

CCS Concepts
• Information systems→ Information extraction.

1 Introduction
Context. Scholarly articles in mathematical fields typically in-

clude theorems (and other theorem-like environments) along with
their proofs. This paper builds upon our previous work [31], which
aimed to transform scientific literature from a collection of PDF ar-
ticles into an open knowledge base (KB) centered around theorems.

The objective of [31] was to enable new ways of exploring math-
ematical results, such as searching for all theorems that depend on
a specific result or identifying all proofs that include a particular
feature.

For example, such a knowledge base would allow the following:
(1) Navigating through the scientific literature: Currently,

the only way to navigate through the scientific literature is
through search engines such as Google or Google Scholar
that index the full-text of papers, or by navigating through
citation links. These approaches do not allow indexing of
individual mathematical results, which is the main object
of interest of mathematicians and theoretical computer
scientists. With a KB of scientific results, one would be able
to find, e.g., all NP-hardness results involving the vertex

cover problem (and not just all papers that contain both the
terms “NP-hard” and “vertex cover”).

(2) Identifying the impact of errors in theorems: Another
useful application of such a knowledge base is to determine
which theorems are used in the proof of another theorem.
This would be of tremendous use, for instance, to determine
which results become invalidated or need to be revisited
when one of the theorems they depend on is shown to be
false.

In [31], we outlined the comprehensive scope of our project and
presented preliminary evaluations on two fundamental subtasks:
(i) extraction of information pertaining to proofs and theorems;
(ii) linkage of mathematical results across various papers.
In this paper, we concentrate primarily on the extraction aspect
of the pipeline introduced in [31]. We conduct an in-depth explo-
ration of diverse multimodal methodologies and assess the impact
of modeling long-term paragraph sequences. This is particularly
advantageous for the identification of mathematical results, as it
utilizes the contextual information surrounding the paragraphs
covering length proofs.

Problem definition. As a first step towards this ambitious goal of
building a knowledge base of mathematical results, it is necessary to
develop information extraction methods that automatically identify
theorem-like environments and proofs in PDF scientific articles.

A human being would typically be able to perform this task
by relying on the formatting of the text, on specific keywords
identifying the environments, and on other visual clues: including
keywords such as “Theorem” or “Proof” in bold or italics, the fact
that an entire block of text might be in italics, the comparatively
high proportion of mathematical characters, the presence of a QED
symbol at the end of a proof, etc. However, precise formatting
depends on document formats; a classifier that would only use such
kinds of hard-coded rules does not generalize well for arbitrary
formats, or for proofs that span multiple paragraphs.

To clarify, in the whole of this paper we use theorem in the same
sense as it is used in LATEX (say, by the \newtheorem command):
a theorem-like environment is a structured statement, possibly
numbered, formatted in a specific way and used to represent a
formal (usually mathematical) statement: it can be a theorem, a
lemma, a proposition, etc., but also a definition, a formal remark
or an example. By theorem we mean any statement of this kind.
By proof we mean what would typically be rendered in LATEX in a
proof environment: a proof or proof sketch of a result.
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We propose to approach the theorem–proof identification prob-
lem by designing an approach based on multimodal machine learn-
ing that classifies each paragraph of an article into basic, theorem,
and proof labels, based on the scientific language, on typographical
information, and on visual rendering of PDF documents. Addi-
tionally, we take into account information about the sequence of
paragraph blocks, normalised spatial coordinates and page num-
bers along with page breaks, to exploit the fact that the label of
a paragraph heavily relies on that of the preceding (and possibly
following) ones.

Methodology and contributions. To design a multimodal approach
to the theorem–proof identification problem, we take inspiration
from how a human being would solve the task, i.e., with the help
of:

(1) Understanding of the scientific vocabulary and how math-
ematical writing is organized: it might be possible to rec-
ognize a proof or a theorem by the presence of phrases as
“We conclude by” or “Assume . . .Then . . . ”.

(2) Visual features such as symbols and the use of bold or
italic fonts: some document classes, for instance, format the
content of a theorem all in italics and end all proofs with a
QED symbol.

(3) Use of different font types and sizes in order within para-
graphs: starting a paragraph with a word in bold or in
italics.

(4) Sequential organization of blocks within a document: For
example, if we know the label of both previous and next
paragraphs are proof, it is likely that of the current para-
graph is also proof (or possibly a theorem; basic is unlikely);
this is even more relevant, if vertical spacing between these
blocks is small.

This suggests, respectively, the use of a language model to cap-
ture text-level information; the use of a computer-vision approach
to capture visual features; the use of styling information to capture
font-based information; and the use of a sequential model to cap-
ture information from block sequences. In addition, we want to be
able to combine all these features in a unified multimodal approach.

We provide the following contributions in this paper, summa-
rized in Figure 1: (i) Three unimodal (vision, text, font information)
models for the theorem–proof identification problem relying on
modern machine learning techniques (CNNs, transformers, LSTMs)
with a focus on reasonably efficient models as opposed to very large
ones; note that the text modality approach relies on pretraining a
language model specific to our corpus, which may have applications
beyond our task. (ii) A multimodal late fusion model that combines
the features of all three modalities. (iii) A block sequential approach,
based on a transformer model, that can be used to improve the per-
formance of any unimodal and multimodal model by capturing
dependencies between blocks. (iv) An experimental evaluation on a
dataset of roughly 200k English-language papers from arXiv, with
a separate validation dataset of 3.5k papers (amounting to 529k
paragraph blocks).

Outline. After discussing related work in Section 2, we present in
Section 3 the three unimodal models. We then discuss in Section 4
how to combine them into a multimodal model, and how to add

support for information about block sequences. We further provide
a description of our dataset in Section 5. Experimental results on all
unimodal and multimodal models is presented in in Section 6. For
brevity, additional materials are provided as supplementary con-
tent. Detailed information, including design choices, architecture
diagrams, confusion matrices for all classes, data pipeline diagrams,
explainability, large-scale societal impact, and other critical aspects
of the project, are comprehensively discussed in the PhD thesis of
the first author [30]. The code, data, and models supporting this
paper are accessible at https://github.com/mv96/mm_extraction.

2 Related Work
We discuss now related work about extraction of theorems and
proofs from the scientific literature, and more broadly about doc-
ument datasets. We shall discuss further related work relevant to
unimodal or multimodal approaches when discussing individual
models.

Extraction of theorems and proofs. The theorem–proof extraction
problem has received little interest in past research, though we now
discuss two highly relevant works [10, 32].

Ginev andMiller [10] proposed the task of identifying proofs and
theorem-like environments from arXiv1 articles using their HTML
rendering via LATEXML. Their approach involves detecting mathe-
matical statements (along with other regions such as abstract and
acknowledgements), introduced as a 50-class classification problem.
They show that there is some link in the contextual information
among paragraphs, which is then exploited by the textual modality
over a BiLSTM-based encoder/decoder approach. This approach
has two major limitations, which make it unsuitable for our needs:
(i) Their approach does not operate on raw PDFs but on HTML
renderings, which makes it only applicable when LATEX source code
is available.2 (ii) Their approach is only evaluated on the first logi-
cal paragraph within a marked-up environment belonging to the
label set (e.g., only the first paragraph of every proof), which makes
the task much simpler, since the first word is highly indicative of
the label in most cases; in contrast, we aim at differentiating such
environments from regular text, and we aim at classifying all para-
graphs within an environment, not just the first one. In addition,
note that accessing the dataset of [10] requires signing an NDA3

whose terms prevent free use for research.
In our prior work [32], we built a proof of concept system evalu-

ating various unimodal approaches based on different evaluation
metrics using NLP, computer vision, and a mix of heuristics (detec-
tion of specific keywords) and font-based information to identify
mathematical regions of interest. The problem was posed as a 3-
class classification problem operated on text lines extracted from
raw PDFs obtained using pdfalto4. This work had some important
limitations: (i) Text lines do not usually contain entire sentences and
offer little context, which means they are hard to classify. (ii) The
computer vision approach was framed as an object detection chal-
lenge, utilizing an Intersection Over Union (IOU) based metric,

1https://arxiv.org/
2Note that in such settings, extracting theorems and proofs from the source, as we do
in Section 5 to build a labeled dataset, seems a better alternative.
3https://sigmathling.kwarc.info/resources/arxmliv-statements-082018/
4https://github.com/kermitt2/pdfalto

https://github.com/mv96/mm_extraction
https://arxiv.org/
https://sigmathling.kwarc.info/resources/arxmliv-statements-082018/
https://github.com/kermitt2/pdfalto
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Figure 1: Overall model Inference pipeline

poorly suited for identifying text blocks, as alterations in the thresh-
old can affect the detection score. Additionally, this discrepancy
complicates the integration of the computer vision approach with
other modalities that function at the text line level. (iii) The third
modality, focusing on heuristics and font features, primarily utilized
hand-crafted characteristics, including checks for whether the first
word is bold or italic. (iv) Moreover, Mishra et al. [32] do not present
a consistent method for comparing the three modalities, as each
modality relies on a distinct segment of information. In our study,
we strive to establish a standardized approach for evaluating the
performance of various modalities, as well as combining them to-
gether. This study builds upon [32], addressing and overcoming the
four primary limitations identified therein. We introduce a modular,
multimodal framework that facilitates a consistent methodology for
the comparison and integration of the three modalities, eliminating
the necessity for LATEX source files during inference.

Document datasets. In this research, we utilize Grobid [27] to ex-
tract textual content and bounding boxes from paragraph-rendered
bitmap images, a foundational step for training our models. This
work shares similarities with the objectives outlined in the Pub-
laynet study [47], particularly in our focus on identifying “Proofs”
and “Theorems” within scholarly articles. Unlike Publaynet, which
categorizes document sections into Text, Tables, Figures, etc., at the
document level, our study extends to the analysis of academic writ-
ings, leveraging LATEX sources from arXiv submissions for ground
truth generation, in contrast to Publaynet’s use of the National
Library of Medicine (NLM)5 schema for journal articles.

At its core, Grobid covers a broad array of document segments,
including lists, figures, titles, and bibliographic entries, akin to the
scope of Publaynet [47]. It distinguishes itself by semantically pars-
ing texts into sentences and paragraphs and accurately identifying
block coordinates, thus supporting a text-based modality in our
analysis. Notably, Grobid preserves mathematical content within
textual segments, a feature not prioritized by Publaynet, which
omits certain XML tree nodes like tex-math and disp formula (as
stated by the PMCOA XML on Page 2 of [47]). This distinction un-
derscores the relevance of our approach to the specific requirements

5https://dtd.nlm.nih.gov/

of our study and its broader goals. While Publaynet prioritizes vi-
sual classification among diverse labels such as Text, Figures, and
Tables, our analysis, as evidenced in Table 1, highlights the indis-
pensable role of textual modalities in distinguishing proofs across
paragraphs, underscoring the multimodal nature of our challenge
where textual analysis is paramount.

The debut of Docbank [24] marks a notable advancement beyond
Publaynet [47], offering a comprehensive dataset of 500K document
images tailored for training and testing applications. Unlike Pub-
laynet’s emphasis on the medical field, Docbank encompasses a
wider array of academic areas, including Physics, Mathematics, and
Computer Science. This diversity introduces a rich variety of math-
ematical formulas to the dataset. Docbank’s distinctive feature is
its dual-level annotations – both token and segment – rendering it
highly applicable for a broad spectrum of tasks in computer vision
and natural language processing. Despite its potential for aiding
proof identification projects, Docbank’s broad annotation scope,
encompassing author names, abstracts, titles, equations, and para-
graphs, may dilute its applicability for our focused research on iden-
tifying proofs and theorems within texts. A limitation arises from
Docbank’s lack of specific labels for proofs or theorems, complicat-
ing its use for our problem, given our dataset’s focus on documents
that definitively contain proofs and theorems.

A noteworthy feature of Docbank is its sourcing of documents
from arXiv, associating each with an arXiv ID. This linkage permits
access to the LATEX sources of the papers, enabling the application
of our preprocessing script for ground truth annotation (proofs
and theorems) within the Docbank dataset, thereby broadening
its utility. The adoption of the \begin command for annotations
by Docbank’s authors parallels the methodology utilized in our
research for marking structural segments in scientific documents,
illustrating a shared approach in identifying and analyzing docu-
ment components like proofs and theorems.

Doclaynet [36], paralleling the efforts of Docbank [24] and Pub-
laynet [47], targets layout detection in documents with a focused
dataset of 80K instances. This dataset extends beyond scientific
articles to include a broader range of paper layouts, aiming to
achieve the detection precision of models like FASTRCNN [39] and
YOLOv5 [19]. A notable challenge identified in Doclaynet is the
presence of overlapping labels, where blocks share intersecting

https://dtd.nlm.nih.gov/
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labels, a complexity also acknowledged in our research. To mitigate
this, both studies prioritize the analysis of non-overlapping blocks
for evaluation. Interestingly, our validation dataset, encompassing
approximately 80K images, aligns closely in scale with Docbank’s
(around 50K) and exceeds that of Doclaynet (around 6K images),
providing a substantial basis for our task. Our findings further reveal
that a relatively modest collection of a few thousand PDFs suffices
to enhance performance on the validation data, underscoring the
efficiency of our unimodal approaches.

3 Unimodal Models
We now present the methodology of our three unimodal models: a
pretrained transformer (RoBERTa-based) language model for text
extracted for each paragraph of the PDF; an EfficientNetv2M [40]
CNN for vision on the bitmap rendering of each PDF paragraph;
and an LSTM model trained on font information sequences within
each paragraph. For a technical reason explained in Section 5, the
problem is formulated as a four-class classification: in addition to
the three target basic text, theorem, proof, we employ a reject overlap
class.

3.1 Text Modality
Pretraining language models. The intricacy of scientific terminol-

ogy presents challenges for natural language processing models,
necessitating domain-specific pretraining to improve their under-
standing of scientific language. Following insights from [12], which
demonstrated performance gains through additional pretraining
on diverse datasets [3], we adopt a tailored approach. Instead of
extending an existing model like RoBERTa, we pretrain our model
from scratch using a corpus of mathematical articles, aiming for a
direct comparison with models trained on general English. Note
that final performance of the language model at our task is not our
only target: we are also interested in models that, after pretraining,
require fewer samples to fine-tune.

Related work (text modality). Several existing works have built
a domain-specific language model for scientific papers, such as
SciBERT [2], BioBERT [23], and MathBERT [35]. MathBERT is
pretrained on mathematical texts and formulas, showing notable ef-
ficacy in tasks like mathematical information retrieval and formula
classification, albeit necessitating access to LATEX sources, unlike
our PDF-based approach. BioBERT focuses on medical science, di-
verging from our focus, while SciBERT covers a broader spectrum,
including computer science, making it a relevant baseline for our
experiments. This comparison aims to assess the effectiveness of
domain-specific pretraining in enhancing model performance with
potentially less data, setting the stage for future exploration into
more extensive, multi-billion parameter models.

Previous research [29] has also underscored the significance
of pretraining, showing that models trained on just 4 GB of web-
crawled data can outperform those trained on over 130 GB, espe-
cially on domain-specific tasks.

Methodology. We pretrain a language model from scratch on
a 50k vocabulary size (with byte-pair encoding), similar to the
configuration of RoBERTa base (124M) [25]. While masking 15%
of tokens we kept the configuration similar to original RoBERTa

(𝐿 = 12, 𝐻 = 768, 𝐴 = 12), but on a different vocabulary. The
model used dynamic masking and was trained on masked language
modeling loss. After pretraining, the model is fine-tuned for our
classification task.

3.2 Vision Modality
Related work (vision modality). Architecture design significantly

influencesmodel performance, evolving substantially from the early
Lenet-5 [22].

ResNet [14] pioneered the use of skip connections, a concept
expanded upon by DenseNet [17], which connected each layer to
all its predecessors. Following this, NASNet [48] leveraged neural
architecture search (NAS) for optimal architecture selection via
reinforcement learning. Advancements continued with Efficient-
Net [40], which employed NAS to fine-tune hyperparameters and
introduced compound scaling, significantly enhancing efficiency
and performance over predecessors likeNASNet, making it suitable
for multimodal frameworks by minimizing computational demands.
The debut of vision transformers [9] challenged CNNs’ supremacy,
demonstrating superior results with ample data. However, due to
computational constraints, our focus remains on CNNs, particularly
after studies [26, 41, 44] showed recent CNNs, including Efficient-
Netv2 [41], achieving comparable performance to transformers at
a much lesser computational cost.

Indeed, EfficientNetv2 introduces a model family that signifi-
cantly outpaces its predecessor, EfficientNet, in training speed and
parameter efficiency on various datasets. It surpasses the Vision
Transformer (ViT) [9] in performance while maintaining a consid-
erably smaller size. This efficiency makes EfficientNetv2M — our
chosen model — ideal for use as a network backbone. Key to its per-
formance is the adoption of Fused-MBConv in early network stages,
replacing depth-wise convolutions (MBConv) and optimizing for
accuracy, parameter, and training efficiency through training-aware
NAS. This approach, focusing on a 3 × 3 kernel size while adding
depth, ensures EfficientNetv2’s effectiveness even with the smaller
image sizes of the ImageNet dataset, which typically challenges
ViT models in training time and memory usage.

Methodology. CNNs, pivotal in image classification and as back-
bones in visual-language tasks, typically benchmark on ImageNet
and CIFAR for top-1% accuracy. Our project, targeting the identifi-
cation of mathematical symbols and the layout of paragraph blocks
to discern proofs and theorems, necessitates model training from
scratch. Distinct markers like the term “Proof” in unique fonts and
the QED symbol, crucial yet overlooked by text modalities, guide
our focus.

One specificity of vision approach for classification block is that
images come in widely different aspect ratios. Traditional inter-
polation methods, though prevalent for adjusting natural images
to a uniform resolution, unsuitably modify the geometry of text,
symbols, and fonts in our context. Based on corpus analysis, we
establish a fixed resolution of (400×1400) pixels. This size accom-
modates over 80% of our paragraphs, with larger images being
cropped and smaller ones padded to maintain this standard with-
out altering their intrinsic visual properties. This approach aligns
with recommendations against scale variance [43] and parallels
the preprocessing strategy used in the Nougat paper [4], which
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Figure 2: LSTM model for the font modality

also maintains a constant aspect ratio to suit specific model inputs.
Our method ensures the preservation of textual image integrity
by avoiding the pitfalls of resizing, opting instead for cropping or
padding to fit our predetermined resolution criteria.

To counteract the issue of white backgrounds in scientific texts,
which can hinder CNN performance as noted by studies [16], we
invert image colors to mimic the MNIST dataset’s white-on-black
text presentation. This approach prevents max-pooling operations
in CNNs from mistakenly prioritizing the background, thereby
maintaining focus on the textual content.

EfficientNet comes with several variants (B0–B7) where B7 has
the largest receptive field due to compound scaling. We select in our
experiments a base network (B0), a medium-sized network (B4) and
the largest network (B7). EfficientNetV2 also comes with different
sizes. We focused on the small (EfficientNetV2s) and medium-sized
(EfficientNetV2m) models.

3.3 Font Modality
The last modality we consider is styling information present in
the PDF in terms of the sequence of fonts (font family and font
size) used in a specific paragraph. This information can be obtained
using the pdfalto tool4, which produces a list of fonts used in a
given document, and associates each text token to a particular font.
Fonts are usually standard LATEX fonts, such as cmr10 for Computer
Modern Roman in 10 point.

From the training data, we build a font vocabulary of 4 031 unique
fonts including their sizes, and represent every paragraph block as
a sequence of font identifiers. To match input dimensions among
training samples, we apply left padding with a maximum length
of 1 000. We then feed the entire sequence to a simple 128-cell
LSTM [15] network to monitor the loss, represented in Figure 2.
The choice of the model is purely to capture sequential information
within fonts that can be used to identify the label of the paragraphs.

4 Multimodal and Sequential Models
We now go beyond unimodal models by showing how all three
modalities can be combined into a single late-fusion multimodal
model, and how block sequence information can be captured.

Related work (Multimodality). Multimodal machine learning for
document AI has seen a surge in interest. However, existing mod-
els often fall short in addressing the unique aspects of scientific
articles, such as font features, scientific terminology, and the struc-
ture of lengthy documents. Most research focuses on benchmarks
like FUNSD [11], CORD [34], and RVL-CDIP [13], which deal with
simpler document types like invoices and forms assuming depen-
dencies within the same page.

Several architectures have been proposed as multimodal trans-
formers which try to jointly model different modalities in a single
transformer model early on during the input stage and try to cap-
ture modality interactions such as LayoutLM [18, 45, 46], which
takes into account 2D positional embedding via masked visual-
language model loss and multi-label document classification loss.
An alternative approach is late fusion (after feature extraction) such
as CLIP [37]. In CLIP, both text and visual features are projected
to a latent space with identical dimensions and a contrastive loss
is applied to zero shot learning with supervision from language
models. One of the big advantages of CLIP is its ability to upgrade
and replace the backbone on the fly.

We adopt a late fusion based approach (similar to CLIP) instead
of early fusion based approaches such as LayoutLM for the follow-
ing reasons: (i) Modular backbone integration: Our late fusion
approach is driven by the flexibility to integrate various backbones
in a modular way, enhancing performance and scalability without
being constrained by fixed architecture dimensionality. (ii) Reeval-
uating cross-modality capture: the specialized losses for cross-
modal interactions, like those in LayoutLMv2 and LayoutLMv3,
are claimed to enhance cross-modality relationship understanding.
However, this assumption warrants further scrutiny. Specifically,
the specificities of LayoutLM architectures mean that they cannot
be compared to straightforward multimodal fusion strategies em-
ploying identical backbones. Here, we conduct direct comparisons
across multiple fusion methods, focusing on raw features and em-
ploying only cross-entropy classification loss, while maintaining
consistent backbones as in unimodal setups.

Methodology. We compare different modalities for late fusion:
bilinear gated units [20], EmbraceNet [6], gated multimodal units
(GMU) [1], and attention mechanisms such as those of ViLBERT
[28], typically applied to dual modalities but extendable to multiple.
These methods, focusing on feature-level fusion, ensure modularity
and adaptability across architectures.

Our comparison to simple fusionmethods is narrowed to concate-
nation, identified as themost effective among basic fusion strategies,
allowing direct comparison with our unimodal baselines. These
comparisons solely rely on cross-entropy loss for classification
tasks, omitting additional losses like contrastive loss. Importantly,
the feature backbones are frozen during fusion, preventing weight
updates and situating multimodal fusion as an augmentation to our
unimodal framework.
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Self-attention layer

Docker 
layers

Figure 3: Cross-modal attention architecture

Cross-modal attention architecture. The main multimodal model
we use is a cross-modal attention model, inspired by ViLBERT’s
attention mechanism. We show its full architecture in Figure 3.

Sequential approach. In addition to modalities, considering the
sequencing of the blocks, i.e., the order in which they appear in
the document, allows us to determine with greater confidence the
class of each block. For example, if one seeks to predict the class of
a block that is itself framed by two blocks that have been classified
as proof, then there is a good chance that this block is itself a proof.
We consider how to integrate unimodal and multimodal models
into a sequential prediction model.

To classify scientific paragraphs spanning multiple pages, long
document classification methods like Tobert, Bigbird, Longformer,
and Hierarchical Attention Transformer (HAT) are more relevant.
HAT outperforms Bigbird and Longformer (see Table 5 of HAT pa-
per) and efficiently handles long documents, including page breaks.
However, these models lack multimodal capabilities and document-
specific information, such as coordinate data used in LayoutLM
and LILT. Our approach combines the strengths of both classes
while using the same backbones. It is computationally efficient,
relying on the SW mechanism instead of full attention, and saves
nearly half the parameters per encoder by reducing the feedforward
dimension.

We propose two approaches to do this: First, using a simple linear-
chain order-one Conditional Random Fields model (CRFs) [21]. Sec-
ond, we introduce a novel transformer-based BERT-like encoder
architecture (also more efficient for our task) to process multimodal
features, using a sliding window (SW) of size 𝑘 = 16, whose archi-
tecture is presented in Figure 4. We also investigate the impact of
long sequential relationships by employing interleaving architec-
ture found in Hierarchical Attention Transformers (HATs) [5]. The
architecture is modified to be adapted in a multimodal setting such
as ours.

The CRF and SW models use the following features, on top of
frozen unimodal or multimodal model: unimodal text, vision, and
font models respectively bring 768, 1280, and 128 features; the
multimodal approach includes 1280 joint features; we incorporate
four additional geometrical features to describe block positions:

normalized page number, indicating a block’s page relative to the
total pages; normalized horizontal and vertical distances from the
block’s bounding box corners; and a binary feature indicating if a
block and its predecessor are on the same page.

In order to determine whether long-distance dependencies are
also useful to capture for our task, we also implement HATs, relying
on the same Sliding Window transformer encoder architecture
used as as a segment-wise encoder. We then expanded it to learn
about connections between different context windows (using cross
segment encoder) taking only the Multimodal [CLS] token of every
segment. Out of the many versions proposed in the original HAT
paper [5], we tested the best-performing one, i.e., with interleaving
layers. See Figure 5 for the corresponding architecture.

5 Dataset and Setup
We use Grobid6 [27], which is the state of the art for information
extraction from scholarly documents to parse a PDF document and
interpret it into a succession of paragraph blocks.

Our dataset, encompassing all arXiv papers (around 1.7 million
papers) up toMay 2020, was acquired via arXiv’s bulk data access on
Amazon S3.We developed an annotation script to pinpoint theorem-
like environments and proofs within these documents, leveraging
LATEX sources. This involved crafting a LATEX package to instrument
commands such as \newtheorem for precise identification in the
compiled PDFs (≈ 460k papers). See Figure 6. We filtered articles
from the dataset to only keep those in English, for which LATEX
source is available (according to arXiv’s policy, all those that have
been produced using LATEX), that were compilable on a modern
LATEX distribution, that contained at least a theorem or a proof
environment, and for which none of the tools (our ground-truth
annotation package, Grobid for extraction of blocks, pdfalto for
line-by-line font sequences, bitmap image rendering for CNN’s)
failed to produce a valid output. This resulted in a final dataset of
≈ 197k papers. We stress that LATEX sources are only used to produce
ground-truth annotations, they are not required at inference time.
Grobid sometimes fails to extract correct paragraphs, i.e., some
of the paragraphs identified by Grobid overlap blocks of different
category (say, basic and theorem). We label such paragraphs as
overlap, exclusively used for such outliers.

Our validation set comprises approximately 500 000 paragraph
blocks from 3 682 randomly selected PDF articles. The remaining
articles formed the training dataset, used entirely for pretraining
our language model after filtering potential personal information
such as author names and institutions from Grobid extractions to
minimize privacy concerns. Training involved dividing the dataset
into batches of 1 000 PDF articles, incrementally fitting classifiers
on these batches until convergence, without exceeding a few dozen
batches. Post-training, classifiers’ weights were frozen for integra-
tion into the multimodal classifier, subsequently employed as fea-
ture extractors for the sequential approaches detailed in Section 4.
The dataset is heavily imbalanced, with the number of paragraphs
labeled as basic: 314 501, proof : 125 524, theorem: 85 801, and overlap:
3 470.

All experiments were run on a supercomputer with access at
any point to 4 NVIDIA (V100 or A100) GPUs. We estimate to 8 000

6https://github.com/kermitt2/grobid

https://github.com/kermitt2/grobid
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Figure 4: Sequential model based on a sliding-window (SW) transformer architecture

Figure 5: HAT network visualization (with 1 interleaving
layer)

Labeling script

Annotates the proofs and 
theorems in LaTeX source file 

Compilation

PDFAlto

Extracting font information 
across lines 

Grobid
Extracting text and layout 
information per paragraph, 

through coordinates

Merging script
Merging information about layout, font, and text per paragraph

Only for training labels (not at inference time)

Image generation script
Generates images of the paragraphs, using layout information

…

Multimodal dataset 
Text, font sequence and image for each paragraph

Figure 6: Dataset preparation pipeline
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GPU hours the computational cost of the entire prototyping, hy-
perparameter tuning, training, validation, and evaluation pipeline.

6 Experimental Results
We now report experimental results on the basic–theorem–proof
classification problem, first comparing representative unimodal
classifiers, with and without the article paragraphs fed to the se-
quential approach, followed by the multimodal classifier. We then
delve into more specific details of every unimodal classifier.

We are interested in two main performance metrics: accuracy
measures the raw accuracy of the classifier on the validation dataset
(disjoint with the training dataset); and (unweighted arithmetic)
mean F1-measure of the basic, theorem, and proof classes, which
summarizes the precision and recall over each class assigning the
same weight to every class. As basic is the most common class in
the dataset, a dummy classifier that would always predict the basic
class would have an accuracy of 59.41%; but its recall would be 100%
on basic and 0% on the other classes, while its precision would be
59.41% on basic and 0% on the other classes, resulting in a mean F1
of 1

3 × 2×59.41%
59.41%+100% ≈ 24.85%. This gives an important comparison

point for all other methods; accuracy measures how well the clas-
sifier works on the actual unbalanced data, while mean F1 favors
methods performing well to identify all three classes, arguably a
better metric.

Drawing inspiration from two related works, albeit applied in
slightly different settings, we evaluate two straightforward base-
lines: (1) Top-𝑘 first words: This method, which echoes the approach
used in [10] focusing on the first paragraph of marked environ-
ments, constructs a vocabulary of the top-𝑘 unique words for each
class. Labels are assigned based on the first word of a text and
whether it matches any word within the class-specific vocabulary.
For instance, if the first word is within {theorem, lemma, proposi-
tion, definition}, the text is labeled as a theorem. (2) Text classifier
from [32]: We reuse the text classifier that was fine-tuned in [32],
which processes text lines (not paragraphs) extracted from pdfalto.
Note this classifier does not identify the overlap class.

Overall Results. The results we obtain for the different modalities,
with and without the use of either CRF or sliding-window block
sequence model, are shown in Table 1. The following lessons can
be drawn from these results:

(1) This is a hard task, as the best performance reached is 88%
for accuracy and 87% for mean F1. Indeed, it can be hard even to a
human to determine whether a block is part of a proof or theorem
environment, especially in the middle of it, so it is unsurprising
that we cannot reach near-perfect results.

(2) Looking at unimodal models: the font-based model performs
rather poorly, though still beating (at least in terms of mean F1) the
three baselines; the text-based model is the best performing one,
suggesting that textual clues impact more than visual ones for this
task.

(3) The multimodal model outperforms every unimodal model,
though the margin with the text model is somewhat low.

(4) Including the Sequential model (both CRF, SW transformer,
or HAT) greatly increases the performance of every unimodal or
multimodal model, by 5 to 10 points of accuracy or mean F1. The
importance of the use of an approach modeling block sequences is

thus clear. Long-distance dependencies captured by HATs do not
seem to matter.

Multimodal approach. To look more in detail at the impact of the
choice of multimodal fusion strategies, we report the performance
of a variety of them in Table 2 with the cross-modal attention
technique described in Section 4 highlighted in bold. We note that
results of most multimodal approaches are actually quite close to
each other, which hints at the robustness of our observation that
adding a multimodal model on top of our three unimodal models
improves in all cases the performance on our classification task.

Individual modalities. We now discuss the performance of differ-
ent unimodal models.

To measure the performance of various language models (our
language model pretrained on our corpus, RoBERTa, and SciBERT),
we evaluate their accuracy as shown in Table 3 on the validation
dataset. All three have similar numbers of parameters (obviously
the same for our pretrained and the base version of RoBERTa), have
similar inference time, and reach similar levels of accuracy (76.45%
to 76.89%) and mean F1 (71.66% to 73.00%) and converge after train-
ing on 20 batches. SciBert does have slightly higher performance.
Table 3 shows another side of the picture: to reach a target level of
accuracy (say, 65% or 70%), our pretrained model needs much fewer
fine-tuning data than the RoBERTa model (trained on a corpus of
15 times more text data). Although SciBERT performs better than
our pretrained model on this metric as well, note that it has been
trained on 5.5 times more scientific papers than our pretrained
model.

The performance of a wide variety of vision-based models is
displayed in Table 5. For the simplest model, we experiment with
different forms of pooling for the last convolutional layer: none,
max pooling, or average pooling. We see that no pooling yields
performance, on a small model that is quite close and compara-
ble to much larger models. We also notice that average pooling
works quite well in most cases, while also cutting the number of
parameters to nearly a third.

For font sequence information, in addition to our model formed
of an LSTM with 128 cells, and in order to investigate potential
further gains, we try switching LSTM cells to GRU [7]; and using a
Bidirectional LSTM to capture sequential information across both
forward and backward axis. Our results from Table 6 indicate that
the bidirectional component in fonts alone does not have a huge
impact in deciding the label of the blocks, even if modest gains are
observed.

We finally show in Table 7 a partial classification report, for the
best model in each class.

7 Conclusion
Summarizing the results obtained in the previous section, we put for-
ward our multimodal model with block-sequential sliding-window
transformer model as a state-of-the-art candidate for identification
of theorems and proofs for scientific articles. The level of accuracy
and mean F1 reached, if not perfect, is acceptable for automatic
processing of articles and construction of a knowledge base of theo-
rems, which may need to be further manually cleaned and curated.
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Table 1: Overall performance comparison (accuracy and mean F1 over the three classes basic, theorem, and proof ) of individual
modality models and multimodal model, with and without the sequential approach; for each model, the number of batches
(1 000 PDF documents, roughly 200k samples) it was trained on is indicated (here + indicates additional batches on which
further training of sequential paragraph model)

Modality Model chosen Seq. approach #Batches #Params (M) Accuracy (%) Mean F1 (%)

Dummy always predicts basic — — — 59.41 24.85
Top-𝑘 first word use only first word — — — 52.84 44.20
Line-based [32] Bert (fine-tuned) — — 110 57.31 55.71

Font LSTM 128 cells
- 11 2 64.93 45.48

CRF 11+8 2 71.50 64.51
SW Transformer 11+8 2 76.22 71.77

Vision EfficientNetV2m_avg
- 9 53 69.44 60.33

CRF 9+8 53 74.63 70.82
SW Transformer 9+8 65 79.59 77.66

Text Pretrained RoBERTa-like
- 20 124 76.45 72.33

CRF 20+8 124 83.10 80.99
SW Transformer 20+8 129 87.50 86.67

Multimodal Cross-modal attention
- 2 185 78.50 75.37

CRF 2+8 185 84.39 82.91
SW Transformer 2+8 198 87.81 87.18

HAT 2+8 232 87.52 86.58

Table 2: Performance comparison of multimodal fusion techniques (with @dimensions and model architecture)

Model Architecture #Params (Total/Trainable) Accuracy (%) Mean F1 (%)

Concatenated raw features(@2176) 179M/8K 77.90 74.34
docker layers(@1280) + concat(@3840) 180M/1M 78.11 74.95
docker layers(@1280) +fusion (@768) 183M/4M 78.50 75.38
docker layers(@1280) +fusion (@1280) 185M/6M 78.43 75.24
docker layers(@1280) +fusion (@2304) 189M/10M 78.42 75.13
bilinear mechanism (@1280) 182M/3M 77.99 74.78
docker layers (@1280) +bilinear gated mechanism(@1280) 185M/6M 78.30 75.11
docker layers(@1280) +GMU mechanism (@1280) 185M/6M 78.11 75.52
docker layers (@1280) +attention mechanism (@1280) 185M/6M 78.50 75.37
docker layers(@1280) +multihead attention (@1280, 8 heads) 244M/65M 78.33 75.26
EmbraceNet mechanism (@1280) (balanced prob +docker layers (@1280) incl) 182M/3M 77.73 74.70
EmbraceNet mechanism (@1280)(weighted prob +docker layers (@1280) incl) 182M/3M 77.73 74.55
docker layers(@1280) +fusion (@2304) +fusion (@768) 191M/12M 78.50 75.32
docker layer (@1280) +Cross-modal attention (@1280) +fusion (@768) 186M/7M 78.45 75.24
docker layer (@1280) +GMU mechanism (@1280)+fusion (@768) 186M/7M 78.33 75.28

Table 3: Performance comparison of text models

Inf. time Accuracy Mean F1
Model #Batches (ms/step) (%) (%) #Params

Dummy — — 59.41 24.85 —
RoBERTa base 20 23 76.61 71.66 124M
Pretrained 20 23 76.45 72.33 124M
SciBERT base 20 23 76.89 73.00 110M

Text stands out as the most effective single modality for our analy-
sis, surpassing vision and font sequence in performance, though the
latter boasts the highest efficiency and minimal parameter usage,
approximately 70 times less than our language model.

Table 4: Samples to target accuracy for text models

Model Data size Samples to 65% Samples to 70%

RoBERTa base 160 GB 41 472 186 496
Pretrained 11 GB, 197k papers 39 552 141 632
SciBERT base 1.14M papers 36 928 91 200

An important distinctive feature of our research is that we focus
on analyzing scientific documents spanning multiple pages, unlike
typical document AI methods designed for single-page documents
(e.g., receipts, bills) and simpler tasks (e.g., total bill calculation,
document type classification).

Here are some advantages of our approach:
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Table 5: Performance comparison of vision models

Inf. time Accuracy Mean F1
Model #Batches (ms/step) (%) (%) #Params

Dummy - - 59.41 24.85 -
EfficientNetB0 5 29 65.27 46.00 6.9M
EfficientNetB0_max 5 35 58.22 25.00 4.0M
EfficientNetB0_avg 5 34 62.93 39.66 4.0M
EfficientNetB4_avg 5 61 65.87 47.33 17.6M
EfficientNetB7_avg 5 145 61.22 42.33 64.1M
EfficientNetV2s_avg 5 70 59.41 25.00 20.3M
EfficientNetV2m_avg 5 94 64.02 42.66 53.2M
EfficientNetB4_avg 9 88 68.47 54.33 17.6M
EfficientNetV2s_avg 9 71 59.81 27.00 20.3M
EfficientNetV2m_avg 9 92 69.44 60.33 53.2M

Table 6: Performance comparison of font models

Inf. time Accuracy Mean F1
Model #Batches (ms/step) (%) (%) #Params

Dummy - - 59.41 24.85 -
LSTM (128) 11 14 64.93 45.48 1.72M
GRU (128) 11 14 60.59 42.71 1.72M
BiLSTM (128) 11 26 64.71 45.66 1.82M

Table 7: Class-wise precision and recall scores for best unimodal, multimodal, and sequential models

Font Vision Text Multimodal Sequence CRF Sequence Transformers

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Basic 0.6534 0.9750 0.6902 0.9119 0.7963 0.8539 0.7953 0.8863 0.8538 0.8993 0.9047 0.8970
Theorem 0.8657 0.3770 0.7778 0.6158 0.7498 0.6038 0.8561 0.6845 0.8569 0.8019 0.8768 0.9030

Proof 0.5039 0.0375 0.6086 0.2223 0.6860 0.6717 0.7129 0.6184 0.8022 0.7570 0.8157 0.8376

• Processing entire PDFs while capturing sequential depen-
dencies: Our model processes entire PDFs, generating labels for
each paragraph in a single forward pass and capturing sequential
dependencies across pages. For reference, our 198M model can pro-
cess an entire PDF at once, whereas LayoutLMv3 [18] (368M) and
Nougat (250M) [4] can only process one page at a time.

• Modular andmultimodal:Our approach is both multimodal
and modular. We demonstrate this by integrating a custom pre-
trained Roberta model, which will allow us to switch to different
text backbones to extend this work (e.g., LLAMA [42], SPECTER [8],
ORCA-MATH [33]) without redesigning the entire architecture as
for future versions of the LayoutLM family. This flexibility mirrors
the CLIP [38] model’s approach (see Table 10 of the CLIP paper)
and is not possible with other models like LayoutLM.

• Scalability and speed: Unlike LayoutLM models that require
OCR (adding to inference time, see 𝛼 parameter in table 1 of Donut
paper that factors the OCR time when comparing to LayoutLM).
While Nougat and Donut are OCR-free and faster, they are still
slower than our approach, to be used in a real-world setting to help
researchers. For reference, Nougat takes 19.6 seconds for 6 pages on
an Nvidia A10G, whereas Grobid processes 10.6 PDFs/sec on a CPU
(see limitation section of Nougat paper). This efficiency is crucial

to evaluate our dataset of 200k papers, which would take several
months. We also cut down the number of parameters by switching
the vanilla transformer encoder block to a more efficient sliding
window encoder block that reduces the number of parameters
leading to a reduced inference time and memory usage.

• Alternate and lighter models: Unlike typical model sizes
offering small and large variants of the same model (in terms of
parameter count) models, we provide models at different modality
levels. This allows for the integration of extremely lighter alterna-
tives, such as a 2M parameter CRF model trained on fonts, which
achieves 71% accuracy for an extremely low-resource setting, see
table 7 for per class modality performance.

One limitation of our work is that we have only trained and
evaluated our model on English-language mathematical articles.
Though they represent a significant portion of the mathematical
literature, articles in other languages do exist and one would need
to check whether the approach proposed extends to, say, Russian-
or Arabic-language articles. This can be extended by removing the
English language filter in the preprocessing step.

Our approach is a first building block towards building a knowl-
edge base of theorems from the raw PDFs, but further research is
required before one will be able to provide such an application.
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8 Ethical Considerations
We do not envision any major ethical concerns from the develop-
ment of machine learning models to extract mathematical state-
ments and proofs from mathematical articles.

As for all imperfect methods, results should not be blindly used
in settings where perfect accuracy is required.

The training of machine learning models in general, and deep
learning models in particular, requires a significant amount of com-
putation time and energy consumption, which contributes to the
production of greenhouse gases and global warming. We attempted
to somewhat mitigate this by focusing on models with good perfor-
mance but reasonable numbers of parameters. We also note that
the supercomputer used for the computation is powered with low-
carbon electricity, and that residual heat produced by the computing
power is used as part of an urban heat distribution network.

Finally, note that though we used publicly available research
articles from arXiv, acquired respecting arXiv’s terms and con-
ditions, redistribution of the dataset is not allowed by the arXiv
licensing agreement (except for the few papers that are explicitly

marked with a Creative Commons license). Distribution of the
model learned from this publicly available dataset is somewhat of
a grey legal area (as is the release of all machine learning models
trained on publicly available data without a specific license of use,
such as most openly available large language models). To allow
reproducibility while respecting licensing terms, we provide at
https://github.com/mv96/mm_extraction: full instructions on how
to rebuild the same dataset by retrieving data from arXiv; all ground
truth annotations (label of each paragraph block of each article in
the dataset); trained models; full code to train them, released as free
software.
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A Extra Material for Section 3 (Unimodal Models)
A.1 Text Modality
We investigate the difference in base vocabulary of different language models: Figure 7 compares the overlap of vocabulary between various
language models – the one we are proposing (trained_tokenizer in the figure) has a maximum of 33% overlap with others, including
SciBERT which is trained on scientific text, suggesting the relevance of a pretrained model with vocabulary specific to our corpus.

Figure 7: Vocabulary overlap among popular language models (BERT, DistilBERT, SciBERT, in cased or uncased variants) and
our pretrained model (labeled as trained_tokenizer here)

In our pretraining, we used 11 GB of pretraining text data (196 846 scientific articles, see Section 5), trained over 11 epochs. We used the
LAMB optimizer [YLR+20] and produced the results using a total batch size of 256 across 4 NVIDIA A100 GPUs with a distributed mirrored
strategy and an initial learning rate of 2 × 10−5. The total pretraining time was 176 hours.

Beyond vocabulary, the nature and size of pretraining data critically influence a language model’s performance and its speed of generaliza-
tion. Research, including the Chinchilla study [HBM+22], highlights the significant impact of data size, introducing the “Chinchilla scaling
laws”. For example, Chinchilla (70B) outperformed Gopher (280B) by 7% by quadrupling its training data, demonstrating these principles
even beyond a trillion tokens, as seen with the LLAMA [TLI+23] model (7B) surpassing GPT-3 (175B [BMR+20]).

In this paper, we choose not to utilize several billion-parameter models for the reasons outlined below:
• Focus on integration over depth: Our primary aim is theorem–proof identification, prioritizing the combination of various

modalities for a holistic approach over delving into advanced, singular modalities that may not offer comparative advantages. We
start with base models, considering scalability and relevance to our scientific domain.

• Budgetary limitations: The computational cost of training and evaluating large models, especially across multiple modalities,
necessitates a pragmatic approach. We test with base models due to their feasibility and the modular nature of our framework, which
allows for flexibility in model choice and scaling.

We report pretraining results on two pretraining configurations (see Table 8): a BERT-like model in addition to the RoBERTa-like model
described in the main text. As a quantitative measure of the quality of the pretraining, we report the perplexity of the pretrained language
model on the MLM task, similar to Table 3 in the RoBERTa paper [LOG+19]. We show the evolution of the MLM loss in Figure 8. For a
qualitative analysis, we intentionally picked up samples that require specific vocabulary understanding on the MLM task, see Table 9.

An example of use of Grad-CAM for visualization of the attention heads of a language model in Figure 9.
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Language model Batch size Steps Learning rate Perplexity (epoch #10) Time per epoch (h)

BERT-like (110M) 256 47 773 2 × 10−5 3.034 11
RoBERTa-like (124M) 256 47 773 2 × 10−5 2.857 16

Table 8: Pretraining configurations (on arXiv dataset)

Figure 8: MLM loss for two pretrained models, as a function of the pretraining epoch

Masked sentence Pretrained BERT-like model BERT model

This concludes the [MASK]. proof lemma claim theorem case thesis game story film play episode novel

We show this by [MASK]. induction . definition a lemma contradic-
tion

ourselves accident name themselves ear
hand

By [MASK]’s inequality. jensen holder young minkowski cauchy fourier brown russell fisher newton

The [MASK] is definite positive. inequality case slimit sum function result sign value answer form

In particular any field is a [MASK]. . 1 group f field field theory domain variety category

To determine the shortest distance in a
graph, one can use [MASK]’s algorithm.

dijkstra grover tarjan newton hamilton shannon newton taylor wilson moore

An illustration of the superiority of quan-
tum computer is provided by [MASK]’s
algorithm.

grover shor dijkstra yao kitaev turing newton shannon maxwell einstein

One of the ways of avoiding [MASK] is
using cross validation, that helps in esti-
mating the error over test set, and in decid-
ing what parameters work best for your
model.

overfitting error errors misspecification
noise

errors error this bias uncertainty

Table 9: Inference of BERT-like pretrained model on selected MLM tasks
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Figure 9: Visualising the attention maps of a finetuned transformer Language model
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A.2 Vision Modality
Utilizing Grad-CAM [SCD+17], we visually demonstrate the visual model’s attention to specific elements such as “Proof”, “Theorem”
keywords r the use of italics, highlighting its effectiveness in recognizing mathematical documentation nuances (see Figure 10).

Figure 10: Grad-CAM visualizations of some sample blocks

In Figure 11, we plot the cumulative distribution of heights and widths of paragraph blocks in our dataset, which is used to fix the common
target resolution of all images.

Figure 11: Cumulative distribution of heights (left) and widths (right) of paragraph blocks in our dataset

A.3 Font Modality
We illustrate in Figure 12 the output of pdfalto on an example PDF document, highlighting the font sequence information.

B Extra Material for Section 4 (Multimodal and Sequential Models)
Comparison to SOTA models (in Doc AI). LayoutLM’s different versions use coordinate information at the token level after OCR (see

Figure 2 of the LayoutLM paper), enabling token-level classification or single-label assignment to a page’s content. This approach can’t
natively label specific paragraphs based on logical structure from Grobid. For tasks available with LayoutLM, see available model heads in
LayoutLM’s HuggingFace API documentation.

Donut and Nougat employ an encoder–decoder architecture (mainly for generative or Q&A tasks), while our approach is encoder-only
(assigning labels to fixed paragraphs). This makes direct comparison challenging due to the generative nature of decoder models. We compare
our models with Hierarchical Attention Transformer (HAT), specifically suited for long documents, as they are encoder-only and can label
paragraphs effectively. We also provide HATs with multimodal capability.
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Figure 12: Font information as presented in the output of the pdfalto tool. Note that, for instance, the Z or𝑚 characters of the
title are written in different fonts from the other tokens.

Details on LayoutLM comparisons to baselines. In the LayoutLM study, Table 5 showcases comparisons with various baselines for document
classification tasks, many of which are unimodal, alongside a single multimodal approach adapted from [DPR19]. Successive iterations,
LayoutLMv2 and LayoutLMv3, primarily benchmark against the initial version or this same multimodal baseline, as evidenced in Table 3 of
[XXL+21] and Table 1 of [HLC+22]. This pattern of comparison is echoed in other document classification frameworks like LiLT [WJD22],
where the multimodal baseline incorporates significantly less powerful backbones. The baseline for multimodal comparison utilizes an
XGBoost classifier [CG16], processing class scores (not features) from basic backbones (VGG-16 [SZ15] for visual and BOW for text), a setup
that superficially engages with multimodality compared to LayoutLM’s use of ResNet-101 and BERT. Despite employing less advanced
backbones, the performance of this multimodal network (93.03, as seen in Table 5 of the LayoutLM paper) closely approaches that of
LayoutLM (94.42). This observation raises critical questions about the source of LayoutLM’s performance gains: Are they due to its unique
loss functions, or merely the result of employing stronger baseline architectures for comparison?

Related Work on DiT.. DiT [LXL+22], a notable architecture for document classification leveraging a vanilla Vision Transformer (ViT)
backbone, is showcased for its adaptability to classification tasks in Table 1 of its publication. This table, however, limits its comparison
to DiT’s performance (92.11) against the ResNext model (90.65), which we consider a suboptimal baseline due to advancements in CNN
models like EfficientNet and EfficientNetv2. These newer models not only enhance performance but also optimize training and inference
times. For context, Table 2 in the EfficientNet paper [TL19] and Table 7 in the EfficientNetv2 paper [TL21] offer direct comparisons with the
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ResNext and vanilla ViT backbones, respectively, demonstrating the superiority of EfficientNet variants. Notably, Table 1 of the DiT paper
[LXL+22] omits metrics such as FLOPs or training time per epoch, details that are explicitly addressed in Table 7 of [TL21], underscoring
EfficientNetv2’s advancements over ViT-based architectures.

Details on transformer architecture for sequential approach. Our investigation leverages transformer-based BERT like architecture to
process multimodal features (1280 +6 layout features), enhancing the traditional model to support the complex structure of PDF documents
in our dataset. By adjusting the “maxlen” parameter, our approach accommodates very large document lengths (see data distribution, Figure
13), significantly exceeding standard transformer configurations. This modification involves splitting longer documents and integrating
layout embeddings, including page information, to enhance the attention mechanism across paragraphs, thus addressing the challenge of
extensive document lengths.

Figure 13: Overview of dataset distribution (number of paragraphs in each PDF in the training and validation data)

Empirical evidence suggests that dividing PDFs into smaller segments or applying a focused attention mechanism on a small window
substantially improves model generalization (see Tables 14 and 18). Contrary to initial expectations, increasing the encoder’s complexity
did not proportionally enhance performance (see Table 16). A strategic reduction in the feedforward network’s dimensionality, from the
suggested fourfold in BERT paper to 1.5 times, not only elevated accuracy but also streamlined the model’s architecture, (see Table 17),
demonstrating efficiency gains alongside performance improvements.

In response to the discerned improvement in transformer models when handling shorter data segments, our research pivots towards
employing a sliding window mechanism (as described in Figure 4). This method processes sequences of uniform size, applying padding as
required, and functions via a non-overlapping approach, thereby enhancing computational efficiency by lowering the complexity of token
attention from𝑂 (𝑁 2) to𝑂 (𝑁 × 𝑘) where k denotes the window size. This shift not only facilitates data preprocessing by removing the need
for manual data segmentation but also introduces window size as a pivotal hyperparameter, substantially improving performance across
diverse “maxlen” configurations. The implementation of this sliding window technique necessitated modifications in training duration;
specifically, training epochs were doubled for each incremental doubling of “maxlen”, maintaining consistent performance across varying
data lengths. This strategic adaptation ensures model robustness and accuracy, even with extended document paragraphs (see Table 20). We
also make comparisons with Hierarchical Attention Transformers but do not find any significant performance gains (see Tables 11 and 10)
over a simple sliding-window transformer.

Hierarchical Attention Transformers. The intricate process of sequentially labeling paragraphs benefits from the nuanced understanding
of adjacent textual relationships, a task adeptly managed by the sliding-window transformer model. Nevertheless, this approach may not
fully account for long-term dependencies and interactions across windows, elements crucial for comprehensive document classification
tasks where understanding global document context is paramount. To navigate these complexities, models like RoBERT/ToBERT [PZV+19],
Longformer [BPC20], and BigBird [ZGD+20] have been developed, specifically designed to bridge this gap. RoBERT/ToBERT enhances the
sliding window framework with additional layers to capture wider textual relationships, while Longformer and BigBird refine the attention
mechanism to balance local and global textual insights effectively.

Building on these advancements, the Hierarchical Attention Transformer Network (HAT) [CDF+22] employs a layered approach, utilizing
transformer encoders to forge a deeper connection between separated windows. Diverging from Longformer and BigBird’s emphasis on
modified attention mechanisms, HAT leverages a series of encoder blocks to methodically process multimodal features across stacked sliding
windows, thus addressing long-term dependencies more comprehensively.
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In our exploration, HAT model integrates two distinct types of encoder blocks: the Sliding Window Encoder (SWE) for encoding
within-window modal information and the Context-Wise Encoder (CWE) for bridging content across windows. While SWE hones in on
local attention, CWE extends its reach to encompass a broader context, employing an architecture designed to facilitate cross-window
communication.

Table 10: HAT Performance with 2 interleaving layers (SWE=1, CWE=1, and for Max Len 1024 and 32 epochs, similar to the
training configurations reported in Table 20)

Window Size Params (M) Train Loss Accuracy (%) Mean F1 (%)

16 47 0.3465 86.20 85.80
32 47 0.3415 86.58 85.93
64 47 0.3006 86.44 85.47
128 47 0.2990 85.18 84.10
256 47 0.3279 87.52 86.58
512 47 0.5040 79.81 78.03

Table 11: HAT Performance with 3 interleaving layers (SWE=1, CWE=1, and for Max Len 1024 and 32 epochs, similar to the
training configurations reported in Table 20)

Window Size Params(M) Train Loss Accuracy (%) Mean F1 (%)

16 74 0.2996 86.01 85.15
32 74 0.2917 86.43 85.78
64 74 0.2758 86.70 86.05
128 74 0.2871 86.62 85.90
256 74 0.4460 80.45 78.96
512 74 0.5304 76.95 75.46

Despite the potential of HAT in enhancing model performance through structural and attentional depth, our investigations reveal that,
within our multimodal framework, the added complexity of HAT does not unequivocally translate to superior performance over simpler
sliding window constructs, highlighting a nuanced balance between architectural innovation and task-specific efficacy. We implement the
interleaving architecture (as denoted in Figure 3b of HAT paper [CDF+22].)

To investigate the interleaving HAT we operate on variable hierarchical window sizes similar to the parameter sliding window (see Tables
10 and 11)

C Extra Material for Section 6 (Experimental Results)
C.1 Experimental Results
We show how different models (across different modalities) scale performance with the increasing data in Figures 14, 15, and 16, respectively
for the text, vision, and font models.
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Figure 14: Accuracy of language models on fine-tuning task with respect to number of batches

Figure 15: Accuracy of Vision models on fine-tuning task with respect to number of batches

Figure 16: Accuracy of Font models on fine-tuning task with respect to number of batches
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Figure 17: Excerpt from an example Russian-language paper [GM15] with high performance of font model

Despite the low score obtained by the font models, they can still be of use in certain situations. For example, anecdotally, Figure 17 shows
an example of a Russian-language article whose blocks are correctly classified by the font-based model, while the text model is not able to
use any clues as it was trained on English text.

C.2 Hyper parameter tuning of SW Transformer
In this section, we present our investigation into the hyperparameters for our sliding window (SW) transformer model. Initially, we examined
a configuration akin to the original BERT architecture, featuring 16 attention heads, and varied the maximum sequence length (maxlen)7.
Our findings, documented in Table 13, indicate that a larger maxlen detrimentally affects model performance. Consequently, we established
a maxlen of 256 and proceeded to experiment with varying the number of attention heads, as detailed in Table 13. Further experimentation
was conducted with even smaller maxlen values while maintaining 20 attention heads, a configuration derived from Table 12.

Subsequent investigations focused on the effect of varying the number of hidden units in the feedforward network and the number
of encoder stacks, with results presented in Tables 15 and 16, respectively. Based on the insights gained from Table 15, we developed a
more parameter-efficient encoder block configuration, employing 1.5 times the number of feedforward units, which demonstrated superior
performance and efficiency compared to the 4x setting recommended in the original BERT paper, as shown in Table 17.

Additionally, we incorporated a sliding window mechanism into the model, as outlined in Table 18, and conducted a detailed exploration
of window sizes, documented in Table 19. Upon identifying an optimal sliding window size, we increased the number of training epochs to
offset the impact data size when using smaller maxlen inputs, with the outcomes reported in Table 20.

Table 12: Impact of large Max Length on Transformer Model

Max Len Train loss Accuracy (%) Mean F1 (%)

1024 0.4984 80.37 77.06
512 0.4953 80.46 77.39
256 0.4565 80.65 78.64
128 0.4843 78.79 76.16

Table 13: Impact of Attention Heads (with maxlen = 256) based on results from table 12

Heads Train Loss Accuracy (%) Mean F1 (%)

8 0.5014 80.80 78.11
12 0.5007 80.83 78.06
16 0.4986 80.86 78.13
20 0.4992 80.84 78.15

7It is important to note that if a document exceeds the specified maxlen, it is divided into two separate segments, each treated as an independent document with padding added to
maintain dimensional consistency.
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Table 14: Impact of small Max Length on Transformer Model (with heads=20) based on results from table 13

Max Len Train Loss Accuracy (%) Mean F1 (%)

128 0.4846 81.20 78.61
64 0.4609 82.03 79.48
32 0.4307 85.46 83.90
16 0.3890 85.17 85.01
8 0.3970 83.16 81.15

Table 15: Impact of different ff-dim multipliers on Transformer Model (with maxlen=16, heads=20) based on results from table
14, 13)

ff-dim Train Loss #Params Accuracy (%) Mean F1 (%)

6 times 0.3905 26.90M 85.03 84.88
4 times 0.3890 20.34M 85.17 85.01
2 times 0.3888 13.79M 85.24 84.90
1 times 0.3906 10.51M 85.46 84.93
0.5 times 0.3967 8.87M 84.81 84.51
0.25 times 0.3960 8.05M 85.24 84.53

Table 16: Impact of Encoder Blocks (with maxlen=16, heads=20, 𝑓 𝑓 -dim=1× on Transformer model based on results from table
15, 13 , 14)

Encoders Train Loss #Params Accuracy (%) Mean F1 (%)

1 0.3906 10.51M 85.46 84.93
2 0.3890 20.35M 84.91 84.67

Table 17: Comparison of Bert like and Efficient Transformer Models (with maxlen=16, heads=20, encoders=1)

Model Train Loss #Params Accuracy (%) Mean F1 (%)

BERT like 𝑓 𝑓 -dim=4× 0.3890 20.34M 85.17 85.01
Efficient 𝑓 𝑓 -dim=1.5× 0.3864 12.15M 85.63 85.25

Table 18: Impact of SW mechanism of (window size=16) applied to encoder architecture found in table 17

Max Len Accuracy (%) Mean F1 (%)

1024 82.23 80.82
512 82.84 80.68
256 83.04 80.62
128 84.45 83.22
64 86.26 85.51
32 86.59 85.97
16 86.33 85.65

Table 19: Impact of Window Size (Maxlen =32) on Transformer model based on the results from table 18)

Sliding Window Train Loss Accuracy (%) Mean F1 (%)

32 0.3728 85.39 84.537
16 0.3496 86.78 86.079
8 0.3639 86.15 85.438
4 0.3903 84.55 83.361
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Table 20: Increasing the number of Epochs to counter smaller maxlen (SW=16) based on the results from table 19

Maxlen Validation Samples Epochs Train Loss Accuracy (%) Mean F1 (%)

32 18K 1 0.3465 86.80 86.21
64 10K 2 0.3415 86.70 86.05
128 6K 4 0.3352 87.30 86.76
256 5K 8 0.3157 87.33 86.99
512 4K 16 0.2771 87.52 86.58
1024 4K 32 0.2726 87.81 87.18
2048 4K 32 0.2692 86.58 85.41
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C.3 Interpretability
Though our models are not directly interpretable, we can get some post-hoc explanations of their performance: for the text modality, we can
visualize [Vig19] the attention heads, see Figure 9 where we visualize the last layer of the language model to see what the model focuses on.
Informal experiments suggest, unsurprisingly, that tokens indicative of these environments (such as the “Theorem” or “Proof” tokens, or
numberings) are given a strong weight in determining the label of the paragraphs. For the vision model, we can use the Grad-CAM [SCD+17]
visualization, see Figure 10, which indeed shows that some layout-based information is captured by the model.
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