

First steps: Extraction + Linking

Linking: Problem & Methodology [2, 1]

Within the proof of a theorem, identify which result is used (and therefore which result the theorem depends on): from which paper does the result come from? which specific result from that paper is used? Semantic Scholar Citations

1] 1213.1552

Extraction: Problem & Methodology [4]

Classify whether a paragraph of text is part of a mathematical statement (theorem, definition, etc.), part of a proof, or neither (basic text).

We train (deep learning) classifiers from an automatically labeled dataset from arXiv:

Font (LSTM) Use the sequence of fonts assigned to each character of a paragraph

Vision (EfficientNet) Use the bitmap rendering of the PDF

- Text (custom-trained BERT-like LM) Use the text extracted from the PDF
- Multimodal (GMU) Integration of features from 3 modalities
- Sequence model On each unimodal and multimodal model, also take into account the sequence of labels

Extraction: Preliminary Results

Modality	Seq. approach	#Batches	#Params (M)	Accuracy (%)	Mean \mathbf{F}_1 (%)
Dummy				59.41	24.85
Line-based [5]			110	57.31	55.71
Font	_ CRF	11 11+1	2 2	64.93 71.50	45.48 64.51
Vision	_ CRF	9 9+1	53 53	69.44 74.63	60.33 70.82
Text	_ CRF	20 20+1	124 124	76.45 83.10	72.33 80.99
Multimodal	CRF	10 10+1	185 185	76.86 84.19	73.87 82.91

that \mathbf{B}_{ℓ} does not satisfy the $\#HOM(\cdot)$ -tractability condition, so $\#HOM(\mathbf{B}_{\ell})$ is $\#P$ -complete by Theorem 5.1. Let f and g be the functions described in the statement of Theorem 4.1. Clearly, $\#HOM(\mathbf{B}_{\ell}) \leq_T^p g$. Since $g \leq_T^p f$ by Theorem 4.1, we obtain that f is $\#P$ -complete, as desired.	are equivalence relations on pr_1B , pr_2B respectively. The equivalence classes of θ_1 and θ_2 are in one-to-one correspondence.					
rem 5.2. \Box Define the \sharp CONDENS(·)- <i>tractability condition</i> to be satisfied by a structure B iff the algorithm of Proposition 2.2 returns a list $(\beta_1, \mathbf{B}_1), \dots, (\beta_k, \mathbf{B}_k)$ such that each structure B _i satisfies the \sharp HOM(·)- tractability condition. We have the following; the proof is analogous to that of Theorem 5.3.	Theorem 33 (Bulatov [3]). If Γ is congruence singular, $\#CSP(\Gamma)$ is in FP. Otherwise $\#CSP(\Gamma)$ is $\#P$ -complete.					
Theorem 5.4 Let B be any structure. If B satisfies the \sharp CONDENS(\cdot)-tractability condition, then the problem \sharp CONDENS(B) is in FP; otherwise, it is \sharp P-complete under polynomial-time Turing reducibility. Moreover, the \sharp CONDENS(\cdot)-tractability condition is decidable.	Article target - 1003.3879					
Article Source- 1710.0234						
References						

- [1] Yacine Brihmouche. TheoremKB : une base de connaissance des résultats mathématiques. Master's thesis, Paris IX Dauphine, September 2022.
- [2] Theo Delemazure. A Knowledge Base of Mathematical Results. Master's thesis, Ecole Normale Supérieure (ENS), September 2020.
- [3] Shrey Mishra, Yacine Brihmouche, Théo Delemazure, Antoine Gauquier, and Pierre Senellart. First Steps in Building a Knowledge Base of Mathematical Results. In Proc. SDP, Bangkok, Thailand, August 2024.
- [4] Shrey Mishra, Antoine Gauquier, and Pierre Senellart. Multimodal machine learning for extraction of theorems and proofs in the scientific literature. CoRR, abs/2307.09047, 2023.
- [5] Shrey Mishra, Lucas Pluvinage, and Pierre Senellart. Towards extraction of theorems and proofs in scholarly articles. In Patrick Healy, Mihai Bilauca, and Alexandra Bonnici, editors, DocEng '21: ACM Symposium on Document Engineering 2021, Limerick, Ireland, August 24-27, 2021, pages 25:1–25:4. ACM, 2021.

https://github.com/PierreSenellart/theoremkb

[3], 4th Workshop on Scholarly Document Processing at ACL 2024 — Bangkok, Thailand pierre@senellart.com