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The purpase of this letter is to gate the tims comp . of the truncated Taylor Definition 1. Let the given problem is a known analytic funetion f of one variable = € Z7. Initially, [ ]
series, knewn as Taylor Polynomials [1=1]. Tn particular, it i demonstrated that the examination - e given problemn It ¥ o : rean ¥ A [1 2] 2001.41412
of the P = NP equality, is associated with the d on of whether the #'* derivative of a the authors consider one-dimensional @, and later they generalize the results. Respectively, the time ' 4

particular solution is bounded or not, Accordingly, in sowe coses, 1his is aob toue, aad henee L

complexity of the given problem, according to the literature 4], may be written in the generic form
general,

of:

O(f(x)).

1  Univariate complexity

Definition 1. Let the given problem is s known analytic function f of ane
the nuthors consider one-dimensional . and later they generalize the resu
complexity of the given problem, according to the literature [1], may be
of:

tiabler € 21 Initially,
Respeetively, the fime
ten in the generic form

1.2.6 CoROLLARY. Let Q be open in R", X a closed subset of @ and U
an open subset of @ containing X, Then, there exists a C™ function
¥ on Q such that y(x) =1 if xeX, Yy(x) =0 if xeQ—-U and
0 g ¥ £ 1 everywhere,

I Theorem 1. If | f"+1) (2) |< M, the algorvithin with O(f(x)) complezity, runs in polynemial time. I

PDF file XML file

O(f(x))

ually calenlated by some elementary algelnnic operations of integers or

assumption is considered to be adequate and valid, Accordingly, the

I Lemma 1. If | "tV (x) > M, f cannot be expressed as polynomials. I

Tylor series expans

of f at w4 o may be writlen by

Sl = Flaoh 4 f‘l"‘]w Fo) + fi,'”'e_r o) + lee)

with infinite terms, that is

Sl) = Tolz) + Rl o

1P /£ NP then the sets Ay and Aj in Corollary 4.2 are both not in P.

Corollary 4.3. If P £ NP, then every NP-complete set S has the property that there is a
P sct D such that both S D and SN D are NP-incomplete fi.c., ar in NP yet are not
NP complete).

That is, for cvery NP-complete set § there erist P-separable sets Ay and Ay such that
§= AU Ay and neither Ay nor Ay is NP-_hand.

I P /£ NP then the scts Ay and Ay in Corollary 4.2 arc both not i P.

Corollary 4.3. If P £ NP, then enery NP-complete sct S has the property that there is a
P set D such that both SO D and SND are NP-incomplete (i.c., are in NP yet are not
NP-complete).

That is, for cvery NP-complete set S there crist P-separable sets Ay and Ay such that
S = Ay U Ay and neither Ay nor Ay is NP-hand.

is the Taylor polynomial of arder n, and R, {x) the remainder of the ' degree Taylor

Proof. Let Proof. Let

1.5.2 LeMMA. Let fe C*(R") be m-flat at 0. Then, given & > 0, there
exists g € C*(R") which vanishes in a neighbourhood of 0 and such

that We mention a result by Glaer et al. [GPSZ08] that is similar in spirit to Corollary 4.3
even though it is trying o achieve the oppusite. ClaBier e al. [GPSZ08] call a set A nontrivial

D = {z € T* | #(Jz|) is even}
Note that A = SN D and B = SnD are the sets A and B in Theorem 4.1. o

D = {z € B* | #(jz]) is even}
Note that A = S D and B = ST are the sets A and B in Theorem 4.1. o

1.1.2 PRINCIPLE OF ANALYTIC CONTINUATION. If f is holomorphic
(real analytic) in a connected open set U(£2)in C" (R*) and D*f(a) = 0
forall & = (ay, ..., &) and some ae€ U(Q2), then f = 0. In particular,

Results :

= Corollary 4.3
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We mention a result by Glaer ot al. [GPSZ08] that is similar in spirit to Corollary 4.3
even though it is trying (o achieve the opposite. Clabier ot al. [GPSZ08] eall a set A nontrivial
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P, el o a6 7. . . exactly if both A and A contain at least two elements. Glafier et al. showed (amang other exnctly if both A and A contain at least two clements. Glafier et al. showed (amang other + Theorem 4.4
if f vanishes on a non-empty open subset of U(Q), then f = 0. lg—f ||“' < g things) that every nontrivial set. A that is NP-complete i also m-mitotic. This easily implics things) that every nontrivial set A that is NP-complete is also mwr-mitotic., This easily implies
m the following theorem. the following theorem. * Theorem 4.5

« Definition 4.6

=
Theorem 4.4 ([GPSZ08)). If P £ NP, then every NP-complete sct S has the property that
there is a P set D such that both S\ D and S (VD are NP-complete.
While Corollary 4.3 shows (if I £ NP) that every NP-complete set S can be split into
Pseparable sets that are not NP-complete, Glafier et al’s theorem implies that (regardless
of whether or not P # NP) every nontrivial NP-complete set S can be split into P-separable
sets such that both sets are indeed NP-complete.
Note that regarding P — NP wo have the following.
Thoorom 4.5, I P — NP, then no NP-complefe sct 5 Aas the property thet there  a
P set D such that both SN D and SN D are NP-incomplete (ie., are in NP yet are not
NP-complete).

e = —
Proof. Suppose P = NP. Then the only NP-incomplete sets are § and X*. Dut the only

sots that ean be formed by the union of two sets chosen from {8, 5+ } are @ and 5%, which as

Theorem 4.4 ([GPSZ8]). If P £ NP, then every NP-complete set S has the property that
there is a P set I such that both S D) and SO are NP-complete.

While Corollary 4.3 shows (il P # NP) that every NP-complete sot 5 can be split into
P.separable sets that are not NP-complete, Glafler et al.'s theorem implies that (regardless
of whether or not P £ NP) every nontrivial NP-complete set S can be split into P-scparable
sets such that both sets are indead NP-complete.

Note that regarding P = NP we have the following.

Theorem 4.5, If P — NP, then no NP-complete set S has the property that there ts a
P set D such that both S D and S0y D are NP-incomplete (ie., are in NP yet are not
NP-complete).

Proof. Suppose P = NP. Then the only NP-incomplete sets are # and X*. But the only

st that can be formed by the union of two sets chosen from {#, 27} are @ and 3¢, which as

1.1.3 WEIERSTRASS’ THEOREM. If {J,] is a sequence of holomorphic
functions, converging uniformly on compact subsets of U to a func-
tion /; then f is holomorphic in U. Moreover, for any «, {D°f,} con-
verges to D"f, uniformly on compact sets.

£

1.5.4 THeEOREM OF BoRrEL. Given, for each n-tuple & = (x,, ..., a,)
of non-negative integers, a real constant c,, there exists an fe C*(R")
such that
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t ) + N jusi tioned are NP-incomplete, yet the theorem’s claim is that S is NP-complete.  [1 just mentioned are NP-incomplete, yet the theorem’s claim is that S is NP-complete. [
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Definition 4.6. Two sels Ay and Ay are strongly disjoint exactly if, for cvery k, A;* — 0
or Ay =0.

Corollary 4.7. P / NP if and only if for cach NP-complele sct S there exist sirongly
disjoint, P-sepamble, NP sets Ay C S and Ay C S such that Ay U Ay = S and neither A,
nor Ay is NP-complete.

Definition 4.6. Two sels Ay and Ay are strongly disjoint. ezactly if, for every k, A;* — @
o Ak _g

Corollary 4.7. P / NP if and only if for cach NP-complele sci S there exist sirongly
disjoint, P-sepamble, sets Ay C S and Ay C S such that Ay U Ay = S and neither Ay
- Le

1.5.2 LemMma. Let fe C*(R") be m-flat at 0. Then, given & > 0, there
exists g € C*(R") which vanishes in a neighbourhood of 0 and such

mathematical
results
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Lemma 1. If | f"*Y) (x) > M, f cannot be expressed as polynomials.

R. NARASIMHAN

that IPrm)f. By utilizing Borel's theorem [5], stating that any formal series Y~ a, (x — )" is the !
o 3 An Taylor series of a C™-smooth function defined in an open neighborhood of g, it is derived that if !
University of Chicago "g —f"- < E. |f(") is not bounded, f cannot be written as a power series, and hence as a polynomial, thus the
Chicago, IL 60637, U.S.A. yproblem is not in P. In other words, if the problem was in P, it could be written as a polynomial, |
1and this would be the Taylor series, which is absurd as no n exist such that the f0*) is limited by a |
- 1M, Oy
1.54 THeOREM OF BoreL. Given, for each n-tuple @ = (a;, ..., %,) | e e e e e e e e e e e e e e e e e e mmmmmmmmmmmmmm—————— :
P . e i
of non-negative integers, a real constant c,, there exists an fe C*(R") 3 ,
such that To describe the next subroutine GAUSSIANIZE, we first will need the rejection kernel framework intro-
Theorem 1. If | f"tY) (x) |< M, the algorithm with O(f(x)) compl runs i pol, 1 time.

duced in [BBHI8]. The next lemma captures the total vanation guarantees of the Gaussian rejection kemnels Article Target - 1902.07380

shown in Figure 4.

lJD'f{O) X
a!

Lemma 3.3TCemma 53 in [BBHTS]). Let i be a parameter and suppose that p = p(n) and ¢ = (1) satisf

that0 < g < p< 1L, min(g,1 = q) = Q) andp —q > n" N, Let § = 1||111{|n1.‘,(ﬁ') .Ilr*,.;(: "I)}

In other words, the mapping from C®(R") to the ring of formal power-
series in n-variables given by f+» T(f) is surjective.

Lemma 5.4, Lef n be a paramelfer and suppose that p
p.q €0,1), min(g,1-¢) = Q,(1) andp—q > n~ ) Let § = min {Iw..: (1“)  log (%—'fl)} Supposd
that = p(n) € (0,1) s such that

= p(n) and q = q(n) safisfy that p > q)

Suppose that j¢ = p(n) € (0, 1) satisfies that

4§

ns = =

2y/6logn+ 2log(p—q)!
]
NORTH-HOLLAND Then the map RKg with N |I'm Vog n| iterations can be computed in poly(n) time and satisfies : 2y 6l g n + 2log(p —q)!

AMSTERDAM - NEW YORK - OXFORD

:fn-mx,,q;u,chum..\'m_ 1)) = O(n™*) and dyy (RKg(p, Bern(q)). A(0,1)) = O(n g Then the map

uri:extthm.

RKg = RK (p = N(pu, 1),9 = N(0,1),N)

In contrast with [BBH 18], we apply RK¢; when ju is chosen to be random. We will always apply the
lemma conditioned on the value of p and hence only require it for deterministic g We remark that, through-
out the paper, we will use the notation RK¢; () to denote the random variable output by a run of the pro-

where N = i(in\' Hogn| ean be computed in poly(n) time and satisfies

dry I_I{H,-;i_“t mmip)), .\lillil. 1)) = Oy(n " and dy (RKg( UI'HI(_q_F_J. N (0.1)) = Op(n 'I_I urizextthm Jemm

cedure in 4 using independently generated randomness. The proof of the lemma consists of showing that
the outputs of RK;(Bem(p)) and RK¢(Bem(q)) are close to Ny, 1) and N'(0, 1) conditioned to lie in the

e 5.2 Distributional Lifting
set of z with 1; < £ <

i - i{ and then showing that this event occurs with probability close to one. We
now present GAUSSIANIZE, shown in Figure 4, which maps a planted submatrix problem with Bernoulli
entries to one with Gaussian entries. This reduction allows for inhomogeneous means 1, in the planted

component.

In this section, we introduce a general distributional lifting procedure to reduce from an instance
of planted clique to subgraph problems with larger planted subgraphs. The key inputs to the
procedure are two parameterized families of distributions Py and @ that have a natural cloning
map, as described below,

Lemma 4.5 (Gaussianization). Given a parameter N, let) < Q < P <
and min(Q, 1 -Q)
satisfies that

§ : _ r 1-Q
T < where 4 = min < log Jog 3
2\.- Glog N + 2log(P - Q) | Q 1 I

Classify whether a paragraph of text is part of a mathematical statement (theorem,
definition, etc.), part of a proof, or neither (basic text). i (A5, P.0) 1585 N0.0P) <00

drv (A (Bem(Q)®V*N) , N(0, 1)2V*N) = O(N-1)

1 be such that P — Q = N~
1), let 55 be such that O < p,; < 7 foreachi, j € |[N| where the parameter v > 0

The general distributional lifting procedure begins with an instance G € G, of a planted dense
subgraph problem such as planted clique and applies a rejection kernel element-wise to its adjacency

Extraction: Problem & Methodology [4]

matrix. This yields a symmetric matrix M with zeros on its main diagonal, i.i.d. entries sampled

from Py, on entries corresponding to clique edges and ii.d. entries sampled from Q,, elsewhere
As an iljplll to the |ll|u‘w]ll:l'. we assume a random t'lnll|i1|g map f_| that exactly satisfies

Ja(Pa) ~ PRL and  fa(Qx) ~ Qp1,

for some parameter update function gg. There is a natural cloning map [ for Gaussian and
Poisson distributions, the two families we apply distributional lifting with. Applying this cloning
map entry-wise to M and arranging the resulting entries correctly vields a matrix M of size 2n x 2n
with zeros on its diagonal and a planted submatrix of size 2k x 2k. The only distributional issue
that arises are the anti-diagonal entries, which are now all from Qg ,, although some should be
from P,
and columns and applying Lemma 4.1, Iterating this procedure { times vields a matrix M’ of
2n with a planted submatrix of size 2k x 2k, If Aiy1 = ga(N), then M’ has all i.i.d
18 entries from @), under Hj and a planted submatrix with i.i.d. entries from Py, under H,. We then

threshold the entries of M’ to produce the adjacency matrix of a graph with iLi.d. edge indicators,

for all subsets S C |N| where o denote the entrywise Hadamard product between two matrices. .,- We handle these approximately in total variation by randomly permuting the rows

size 2'n x

We train (deep learning) classifiers from an automatically labeled dataset from arXiv:

conditioned on the vertices in the planted subgraph.
A natural question is: what is the purpose of the families Py and @Q,? If the initial and
final distributions are both graph distributions with Bernoulli edge indicators, it a priori seems
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Lemma 5. A consframl langauge T s strongly rectangular if, and only if, i has a Mal'tseil

? polymorphism. uri:extthm lemma.

which tHOM(B) is in the class FP, from those that are complete for $P. Here, we refer 1o this criterion as ]
the ZHOM( - )-tractability condition; we refer the reader to [8] for a precise formulation of this criterion. The @
dichotomy can be made precise as follows. |

Lemma 8. We can decide whether I' 1s strongly rectangular m Of T time and, if so, deter-

corem 5.1 |1, 8] Letf B Be any structure. 1] B safispes the SHOMT - J-fractability condition, Men the
roblem HOM(B) is in FP; otherwise, it is 2P-complete under polynomial-time Turing reducibiliry '[up[:.'“m_ 1

imine_a Mal'tsev polymorphism o. uri-extthm.lemma

The following was also established.

Theorem 5.2 [8] The sHOM( - )-tructability condition is decidable,

Define the 2SURJHOM( . )-tractabiliry condition to be satisfied by a structure B iff the algorithm of
Proposition 2.1 returns a list (3,,B,), A5, By ) such that each structure B, satisfies the zHOM(-)-
tractability condition. (We remark here that all algorithms behaving as described in Proposition 2.0 will
output the same list, up to permutation, due 10 Theorem 3.1.) We obtain the following

ﬁlﬂ‘nlllln 4. ¥ s a Imf_l.,ﬂrlmr]:hf.\m u‘f 3 rf and nnfy rf il s a imfymm]:hfml n‘f ] | urizextthm. lemma.2

..-o_o

Sequence model On each unimodal and multimodal model, also take into account the
seqguence of labels

Theorem 28. If 1" is strongly balanced, #FCSP[I) s in FP. Ofherwise, #COSP(I) s #P4

Theorem 5.3 Let B be anv structure. If B satisfies the 2SURJHOM( - )-tractability condition, then the ('lmipff te. Moreove r, the lfl!hm’rmry 1s decidable.

problem (SURJHOM(B) is in FP; otherwise, it is 3P -complete under polynomial-time Turing reducibiliry
Moreover, the :SURJHOM( - )-tructability condition is decidable.

uri:extthm. theorer

=)

. — - — .

Proofl. Let (3, By),.... (., Bg). be the list obtained by invoking the algorithm of Proposition 2.1 on B. ] Theorem 5. STRONG BALANCE i i1 NP1 tasthm thanvam &
Suppose B satisfies the ZSURJHOM(- )-tractability condition. Let us argue that {SURJHOM(B) is in

FP. The algorithm is given a structure A as input. By assumption, cach B, satisfies the HOM (- )-tractability [ ]

condition, and so cach of the values Hom(A. B,) can be computed in polynomial time. The algorithm Corollary 2. The relations

outputs the sum ) - Hom{ A, B, ) + + 3 - Hom( A, Bg) ®
Suppose that B does not satisfy the ;SURJHOM( J-tractability condition. There exists an index ( such

that B; does not satisfy the HOM (- )-tractability condition, so tHOM(B, ) is :P-complete by Theorem 5.1

Let [ and g be the functions described in the statement of Theorem 4.1. Clearly, sHOM(B,) <} g. Since

q “ ‘, f by Theorem 4.1, we obtain that f is ;P-complete, as desired
Decidability of the {SURJHOM (- )-tractability condition is immediate from its definition and Theo-

rem3.2. 0
Define the sCONDENS(- )-tractability condirion o be satisfied by a structure B iff the algorithm of

Proposition 2.2 returns a list (9;, By ), (4, Be) such that each structure B, satisfies the zHOM(-)-

tractability condition. We have the following; the proof is analogous o that of Theorem 5.3.

0\(xy,x2) Wy (B(xy.y) A Blra,y) and 8(y1.12) ir (B(x, ) A Blx,y2))

are equivalence relations on pry B, pry B respectively. The equivalence classes of ) and 8y are in

one-to-one corre !Il””d' nee uri-extthm_corollor

Extraction: Preliminary Results

MTheorem 33 [Bulatov [3]). IJT is congruence singular, #CUSP(I') is i FP. Otherunse #OSP(T)
s #P-complete.

uri:extthm. theore:

Theorem 5.4 Let B be any structure. If B satisfies the 3CONDENS( - )-tractability condition, then the
problem :CONDENS(B) is in FP; otherwise, it is $P-complete under polynomial-time Turing reducibiliry.
Moreover, the {CONDENS(: }-tractability condition is decidable

Modality
Dummy
Line-based [5]

Seq. approach #Batches #Params (M) Accuracy (%) Mean F; (%)
5941 24.85
5/7.31 55.71

64.93 45.483
/1.50 64.51

69.44 60.33
/4.63 /0.82

/6.45 /2.33
83.10 80.99

/6.86 /3.87
384.19 82.91
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