
Expected Shapley-Like Scores of Boolean Functions:
Complexity and Applications to Probabilistic Databases

Pratik Karmakar

pratik.karmakar@u.nus.edu

School of Computing, National University of Singapore,

CNRS@CREATE Ltd

Singapore

Mikaël Monet

mikael.monet@inria.fr

Université de Lille, CNRS, Inria,

UMR 9189 - CRIStAL

F-59000 Lille, France

Pierre Senellart

pierre@senellart.com

DI ENS, ENS, PSL University,

CNRS & Inria & Institut Universitaire de France

Paris, France

Stéphane Bressan

steph@nus.edu.sg

National University of Singapore

Singapore

ABSTRACT
Shapley values, originating in game theory and increasingly promi-

nent in explainable AI, have been proposed to assess the contribu-

tion of facts in query answering over databases, along with other

similar power indices such as Banzhaf values. In this work we

adapt these Shapley-like scores to probabilistic settings, the ob-

jective being to compute their expected value. We show that the

computations of expected Shapley values and of the expected val-

ues of Boolean functions are interreducible in polynomial time,

thus obtaining the same tractability landscape. We investigate the

specific tractable case where Boolean functions are represented as

deterministic decomposable circuits, designing a polynomial-time

algorithm for this setting. We present applications to probabilistic

databases through database provenance, and an effective imple-

mentation of this algorithm within the ProvSQL system, which

experimentally validates its feasibility over a standard benchmark.

KEYWORDS
Shapley value, Banzhaf value, probabilistic databases, provenance,

knowledge compilation, d-D circuits

1 INTRODUCTION
The Shapley value is a popular notion from cooperative game theory,

introduced by Lloyd Shapley [30]. Its idea is to “fairly” distribute the

rewards of a game among the players. The Banzhaf power index [8],

another power distribution index with slightly different weights

also plays an important role in voting theory. These are two in-

stances of power indices for coalitions, which also include the John-

ston [16, 17], Deegan–Packel [11], and Holler–Packel indices [14],

see [22] for a survey. Shapley and Banzhaf values, in particular, have

found recent applications in explainable machine learning [19, 33]

and valuation of data inputs in data management [2, 13].

In this work, we revisit the computation of such values (which

we call Shapley-like values or scores) in a setting where data is

uncertain. Our objective is then to investigate the tractability of

expected Shapley-like value computations for Boolean functions,

having in mind the potential application of computation of expected

Shapley-like values of facts for a query over probabilistic databases.

In particular, some results have been obtained in the literature that

reduces the complexity of (non-probabilistic) Shapley-value compu-

tation to and from the computation of the model count of a Boolean

function (or to the computation of the probability of a query in

probabilistic databases) under some technical conditions [13, 18];

we aim at understanding this connection better by investigating

whether expected Shapley(-like) value computation, which com-

bines the computation of a power index and a probabilistic setting,

is harder than each of these aspects taken in isolation.

We provide the following contributions. First (in Section 2), we

formally introduce the notion of Shapley-like scores and of the ex-

pected value of such scores on Boolean functions whose variables

are assigned independent probabilities. In Section 3, we investigate

the connection between the computation of expected Shapley-like

scores and the computation of the expected value of a Boolean func-

tion. In particular, we show a very general result (Corollary 3.6) that

expected Shapley value computation is interreducible in polynomial

time to the expected value computation problem over any class of

Boolean functions for which it is possible to compute its value over

the empty set in polynomial time; we also obtain a similar result

(Corollary 3.11) for the computation of expected Banzhaf values.

We then assume in Section 4 that we have a tractable representation

of a Boolean function as a decomposable and deterministic circuit;

in this case, we show a concrete polynomial-time algorithm for

Shapley-like score computation (Algorithm 1) and some simplifi-

cations thereof for specific settings. We then apply in Section 5

these results to the case of probabilistic databases, showing (Corol-

lary 5.2) that expected Shapley value computation is interreducible

in polynomial time to probabilistic query evaluation. In Section 6

we show through an experimental evaluation that the algorithms

proposed in this paper are indeed feasible in practical scenarios.

Before concluding the paper, we discuss related work in Section 7.

For space reason, most proofs are relegated to the appendix.

2 PRELIMINARIES
For 𝑛 ∈ N we write [𝑛] def

= {0, . . . , 𝑛}. We denote by P the class of

problems solvable in polynomial time. For a set𝑉 , we denote by 2
𝑉

its powerset.

Boolean functions. A Boolean function over a finite set of vari-
ables 𝑉 is a mapping 𝜑 : 2

𝑉 → {0, 1}. To talk about the complexity

ar
X

iv
:2

40
1.

06
49

3v
1

 [
cs

.D
B

]
 1

2
Ja

n
20

24

https://orcid.org/0009-0008-1111-8801
https://orcid.org/0000-0002-6158-4607
https://orcid.org/0000-0002-8727-1086
https://orcid.org/0000-0001-5536-3296

Pratik Karmakar, Mikaël Monet, Pierre Senellart, and Stéphane Bressan

of problems over a class of Boolean functions, one must first specify

how the functions are specified as input. By a class of Boolean func-
tions, we then mean a class of representations of Boolean functions;

for instance, truth tables, decision trees, Boolean circuits, and so

on, with any sensible encoding. In particular, we consider that the

size of 𝑉 is always provided in unary as part of the input.

Let𝜑 : 2
𝑉 → {0, 1} and 𝑥 ∈ 𝑉 . We denote by𝜑+𝑥 (resp.,𝜑−𝑥) the

Boolean function on 𝑉 \ {𝑥} that maps 𝑍 ⊆ 𝑉 \ {𝑥} to 𝜑 (𝑍 ∪ {𝑥})
(resp., to 𝜑 (𝑍)).

Expected value. For 𝑥 ∈ 𝑉 let 𝑝𝑥 ∈ [0, 1] be a probability value.

For 𝑍 ⊆ 𝑉 ′ ⊆ 𝑉 , Π𝑉 ′ (𝑍)
def

=

(∏
𝑥∈𝑍 𝑝𝑥

)
×
(∏

𝑥∈𝑉 ′\𝑍 (1 − 𝑝𝑥)
)
is

the probability of 𝑍 being drawn from 𝑉 ′ under the assumption

that every 𝑥 ∈ 𝑉 ′ is chosen independently with probability 𝑝𝑥 .

Note that the 𝑝-values do not appear in the notation Π𝑉 ′ (𝑍): this is
to simplify notation. For 𝜑 : 2

𝑉 → {0, 1}, define then the expected

value of 𝜑 as EV(𝜑) def

=
∑
𝑍⊆𝑉 Π𝑉 (𝑍)𝜑 (𝑍). Note that this is simply

the probability of 𝜑 being true. We then define the corresponding

problem for a class of Boolean functions F .

PROBLEM : EV(F) (Expected Value)
INPUT : A Boolean function 𝜑 ∈ F over variables 𝑉 and

probability values 𝑝𝑥 for each 𝑥 ∈ 𝑉
OUTPUT : The quantity EV(𝜑)

Here, we consider as usual that the probabilities values are rational

numbers
𝑝
𝑞 for (𝑝, 𝑞) ∈ N × N∗, provided as ordered pairs (𝑝, 𝑞)

where 𝑝 and 𝑞 themselves are encoded in binary.

Shapley-like scores. Let 𝑐 : N×N→ Q be a function, that we call

the coefficient function, and let 𝜑 : 2
𝑉 → {0, 1} and 𝑥 ∈ 𝑉 . Define

the Shapley-like score with coefficients 𝑐 of 𝑥 in 𝑉 with respect to 𝜑 ,
or simply score when clear from context, by

Score𝑐 (𝜑,𝑉 , 𝑥)
def

=
∑︁

𝐸⊆𝑉 \{𝑥 }
𝑐 (|𝑉 |, |𝐸 |) ×

[
𝜑 (𝐸 ∪ {𝑥}) − 𝜑 (𝐸)

]
.

Example 2.1. Let 𝑐
Shapley

(𝑘, ℓ) def

=
ℓ!(𝑘−𝑙−1)!

𝑘!
=
(𝑘−1

𝑙

)−1

𝑘−1 and

𝑐
Banzhaf

(𝑘, ℓ) def

= 1. Then Score𝑐
Shapley

(𝜑,𝑉 , 𝑥) (Score𝑐
Banzhaf

(𝜑,𝑉 , 𝑥))
is the usual Shapley (Banzhaf) value, with set of players𝑉 and wealth
function 𝜑 . The Penrose–Banzhaf power [20], a normalization of
Banzhaf values, can also be defined by coefficients (𝑘, ℓ) ↦→ 2

𝑘−1.

For each fixed coefficient function 𝑐 and class of Boolean func-

tions F , we define the corresponding computational problem.

PROBLEM : Score𝑐 (F)
INPUT : A Boolean function 𝜑 ∈ F over variables 𝑉 , a

variable 𝑥 ∈ 𝑉
OUTPUT : The quantity Score𝑐 (𝜑,𝑉 , 𝑥)

Expected Shapley-like scores. We now introduce the probabilistic

variant of Shapley-like scores, which is our main object of study.

Definition 2.2. Let 𝑐 be a coefficient function, 𝜑 : 2
𝑉 → {0, 1}

a Boolean function over variables 𝑉 , probability values 𝑝𝑦 for 𝑦 ∈ 𝑉 ,

and 𝑥 ∈ 𝑉 . Define the expected score of 𝑥 for 𝜑 as:

EScore𝑐 (𝜑, 𝑥)
def

=
∑︁
𝑍⊆𝑉
𝑥∈𝑍

(Π𝑉 (𝑍) × Score𝑐 (𝜑, 𝑍, 𝑥)) ,

where in Score𝑐 (𝜑, 𝑍, 𝑥) we see 𝜑 as a function from 2
𝑍 to {0, 1}.

In words, this is the expected value of the corresponding score,

when players are independently selected to be part of the cooper-

ative game. Notice that subsets 𝑍 ⊆ 𝑉 not containing 𝑥 are not

summed over: this is because in this case 𝑥 is not a player of the

selected game and we thus declare its “contribution” to be null. This

definition is also strongly motivated by its applications to proba-

bilistic databases (cf. Section 5). We then define the corresponding

computational problem, for a fixed 𝑐 and F :

PROBLEM : EScore𝑐 (F) (Expected Score)
INPUT : A Boolean function𝜑 ∈ F over variables𝑉 , prob-

ability values 𝑝𝑦 for each𝑦 ∈ 𝑉 , a variable 𝑥 ∈ 𝑉
OUTPUT : The quantity EScore𝑐 (𝜑, 𝑥)

Reductions. For two computational problems 𝐴 and 𝐵, we write

𝐴 ⩽P 𝐵 to assert the existence of a polynomial-time Turing re-

duction from 𝐴 to 𝐵, i.e., a reduction that is allowed to use 𝐵 as

an oracle. We write 𝐴 ≡P 𝐵 when 𝐴 ⩽P 𝐵 and 𝐵 ⩽P 𝐴, meaning

that the problems are equivalent under such reductions. Using this

notation we can state a first trivial fact:

Fact 2.3. We have Score𝑐 (F) ⩽P EScore𝑐 (F) for any coefficient
function 𝑐 and class of Boolean functions F .

This is simply because EScore𝑐 (𝜑, 𝑥) = Score𝑐 (𝜑,𝑉 , 𝑥) when
𝑝𝑦 = 1 for all𝑦 ∈ 𝑉 , so that our probabilistic variants of such scores

are proper generalizations of the non-probabilistic ones.

3 EQUIVALENCEWITH EXPECTED VALUES
In this section we link the complexity of computing expected

Shapley-like scores with that of computing expected values. The

point is that EV(F) is a central problem that has already been stud-

ied in depth for most meaningful classes of Boolean functions, with

classes for which that problem is in P while the general problem

is #P-hard. In a sense then, if we can show for some problem 𝐴

that 𝐴 ≡P EV(F), this settles the complexity of 𝐴. We start in

Section 3.1 by the direction that is most interesting in practice to

obtain efficient algorithms: going from expected values to expected

scores. We show that this is always possible, under the assumption

that the coefficient function is computable in polynomial time. We

then give results for the other direction in Section 3.2, where the

picture is more complex.

3.1 From Expected Values to Expected Scores
Let us call a coefficient function 𝑐 tractable if 𝑐 (𝑘, ℓ) can be computed

in P when 𝑘 and ℓ are given in unary as input. It is easy to see that

𝑐
Banzhaf

and its normalized version are tractable. This is also the

case of 𝑐
Shapley

, using the fact that binomial coefficients can be

computed in time 𝑂 (𝑘 × ℓ) by dynamic programming (assuming

arguments are given in unary). Under this assumption, we show

that computing expected Shapley-like scores always reduces in

polynomial time to computing expected values.

Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases

Theorem 3.1. We have EScore𝑐 (F) ⩽P EV(F) for any tractable
coefficient function 𝑐 and any class F of Boolean functions.

We obtain for instance that EScore𝑐 (F) is in P for decision

trees, ordered binary decision diagrams (OBDDs), deterministic

and decomposable Boolean circuits, Boolean circuits of bounded

treewidth [4], and so on, since EV(F) is in P for these classes. By

Fact 2.3, this also recovers the results from [2, 13, 18] that (non-

expected) Shapley and Banzhaf scores are in P for the tractable

classes that they consider.

We prove Theorem 3.1 in the remaining of this section. To do so,

we first define two intermediate problems.

PROBLEM : EV★(F) (Expected Value of Fixed Size)
INPUT : A Boolean function 𝜑 ∈ F over variables 𝑉 ,

probabilities 𝑝𝑥 for each 𝑥 ∈ 𝑉 , and 𝑘 ∈ [|𝑉 |]
OUTPUT : The quantity EV𝑘 (𝜑)

def

=
∑

𝑍⊆𝑉
|𝑍 |=𝑘

Π𝑉 (𝑍)𝜑 (𝑍)

PROBLEM : ENV★,★(F) (Expected Nested Value of Fixed
Sizes)

INPUT : A Boolean function 𝜑 ∈ F over 𝑉 , probabilities

𝑝𝑥 for each 𝑥 ∈ 𝑉 , and integers 𝑘, ℓ ∈ [|𝑉 |]
OUTPUT : The quantity

ENV𝑘,ℓ (𝜑)
def

=
∑

𝑍⊆𝑉
|𝑍 |=𝑘

Π𝑉 (𝑍)
∑

𝐸⊆𝑍
|𝐸 |=ℓ

𝜑 (𝐸)

Notice that ENV𝑘,ℓ (𝜑) = 0 when 𝑘 < ℓ . Also, observe that EV(𝜑) =∑ |𝑉 |
𝑘=0

EV𝑘 (𝜑) and that EV𝑘 (𝜑) = ENV𝑘,𝑘 (𝜑), so that EV(F) ⩽P
EV★(F) ⩽P ENV★,★(F) for any F .

We will then prove the chain of reductions EScore𝑐 (F) ⩽P
ENV★,★(F) ⩽P EV★(F) ⩽P EV(F), in this order, which implies

Theorem 3.1 indeed.

Lemma 3.2. Wehave EScore𝑐 (F) ⩽P ENV★,★(F) for any tractable
coefficient function 𝑐 and any class of Boolean functions F .

Proof sketch. Let 𝜑 : 2
𝑉 → {0, 1}, probabilities 𝑝𝑦 for each

𝑦 ∈ 𝑉 , 𝑥 ∈ 𝑉 , and 𝑛
def

= |𝑉 |. We first prove the following equation:

EScore𝑐 (𝜑, 𝑥) = 𝑝𝑥

𝑛∑︁
𝑘=0

𝑘∑︁
ℓ=0

𝑐 (𝑘 + 1, ℓ)
(
ENV𝑘,ℓ (𝜑+𝑥) − ENV𝑘,ℓ (𝜑−𝑥)

)
.

(1)

Then, we show how to use the oracle to ENV★,★(F) to compute

all the values ENV𝑘,ℓ (𝜑+𝑥) and ENV𝑘,ℓ (𝜑−𝑥) (note that this is not
obvious at first glance, because F might not be closed under condi-

tioning). □

The following lemma contains the most technical part of the

proof of Theorem 3.1. It is proved using polynomial interpolation

with carefully crafted probability values.

Lemma 3.3. We have ENV★,★(F) ⩽P EV★(F) for any F .

Proof. Let 𝜑 ∈ F over variables 𝑉 , probability values 𝑝𝑥 for

each 𝑥 ∈ 𝑉 , and 𝑘, ℓ ∈ [|𝑉 |]. Let 𝑛 def

= |𝑉 |. Our goal is to com-

pute ENV𝑘,ℓ (𝜑). We will in fact use polynomial interpolation to

compute all the values ENV𝑗,ℓ (𝜑) for 𝑗 ∈ [𝑛], and return ENV𝑘,ℓ (𝜑).

Let 𝑧0, . . . , 𝑧𝑛 be 𝑛 + 1 distinct positive values in Q. For 𝑖 ∈
[𝑛] and 𝑥 ∈ 𝑉 , define 𝑐

𝑧𝑖
𝑥

def

= 2𝑧𝑖𝑝𝑥 + 1 − 𝑝𝑥 and 𝑝
𝑧𝑖
𝑥

def

=
𝑧𝑖𝑝𝑥

𝑐
𝑧𝑖
𝑥

,

and define Π𝑧𝑖
and EV𝑧𝑖 (𝜑) as expected. Notice that these are all

valid probability mappings, i.e., all values 𝑝
𝑧𝑖
𝑥 are well-defined and

between 0 and 1, and observe that 1 − 𝑝𝑧𝑖𝑥 =
(𝑧𝑖𝑝𝑥)+(1−𝑝𝑥)

𝑐
𝑧𝑖
𝑥

. Define

further 𝐶𝑧𝑖
def

=
∏

𝑥∈𝑉 𝑐
𝑧𝑖
𝑥 . Then:

EV𝑧𝑖
ℓ
(𝜑) =

∑︁
𝐸⊆𝑉
|𝐸 |=ℓ

Π𝑧𝑖
𝑉
(𝐸)𝜑 (𝐸)

=
∑︁
𝐸⊆𝑉
|𝐸 |=ℓ

𝜑 (𝐸)
∏
𝑥∈𝐸

𝑝
𝑧𝑖
𝑥

∏
𝑥∈𝑉 \𝐸

(1 − 𝑝𝑧𝑖𝑥)

=
1

𝐶𝑧𝑖

∑︁
𝐸⊆𝑉
|𝐸 |=ℓ

𝜑 (𝐸)
∏
𝑥∈𝐸

𝑧𝑖𝑝𝑥

∏
𝑥∈𝑉 \𝐸

[(𝑧𝑖𝑝𝑥) + (1 − 𝑝𝑥)] .

Next we develop the innermost product as it is parenthesized and

distribute the

∏
𝑥∈𝐸 𝑧𝑖𝑝𝑥 term, obtaining:

EV𝑧𝑖
ℓ
(𝜑) = 1

𝐶𝑧𝑖

∑︁
𝐸⊆𝑉
|𝐸 |=ℓ

𝜑 (𝐸)
∑︁

𝐸⊆𝑍⊆𝑉

∏
𝑥∈𝑍

𝑧𝑖𝑝𝑥

∏
𝑥∈𝑉 \𝑍

(1 − 𝑝𝑥)

=
1

𝐶𝑧𝑖

∑︁
𝐸⊆𝑉
|𝐸 |=ℓ

𝜑 (𝐸)
𝑛∑︁
𝑗=0

∑︁
𝐸⊆𝑍⊆𝑉
|𝑍 |=𝑗

∏
𝑥∈𝑍

𝑧𝑖𝑝𝑥

∏
𝑥∈𝑉 \𝑍

(1 − 𝑝𝑥)

=
1

𝐶𝑧𝑖

∑︁
𝐸⊆𝑉
|𝐸 |=ℓ

𝜑 (𝐸)
𝑛∑︁
𝑗=0

𝑧𝑖
𝑗

∑︁
𝐸⊆𝑍⊆𝑉
|𝑍 |=𝑗

Π𝑉 (𝑍)

=
1

𝐶𝑧𝑖

𝑛∑︁
𝑗=0

𝑧𝑖
𝑗
∑︁
𝐸⊆𝑉
|𝐸 |=ℓ

𝜑 (𝐸)
∑︁

𝐸⊆𝑍⊆𝑉
|𝑍 |=𝑗

Π𝑉 (𝑍) .

=
1

𝐶𝑧𝑖

𝑛∑︁
𝑗=0

𝑧𝑖
𝑗ENV𝑗,ℓ (𝜑), (2)

where in the last equality we have inverted the two innermost sums.

Using the oracle to EV★(F), we compute 𝑐𝑖
def

= 𝐶𝑧𝑖 × EV𝑧𝑖
ℓ
(𝜑)

for 𝑖 ∈ [𝑛] in polynomial time. By Equation (2), this gives us a

system of linear equations𝐴𝑋 = 𝐶 , with𝐶𝑖
def

= 𝑐𝑖 ,𝑋 𝑗
def

= ENV𝑗,ℓ (𝜑)
and 𝐴𝑖 𝑗

def

= 𝑧𝑖
𝑗
. We see that 𝐴 is a non-singular Vandermonde

matrix, so we can in polynomial time recover all the values 𝑋 𝑗 and

return ENV𝑘,ℓ (𝜑), as promised. This concludes the proof. □

We can finally state the last step of the proof of Theorem 3.1,

again proved using polynomial interpolation.

Lemma 3.4. We have EV★(F) ⩽P EV(F) for any F .

3.2 From Expected Scores to Expected Values
In this section we show reductions in the other direction for 𝑐

Shapley

and 𝑐
Banzhaf

, under additional assumptions on the class F .

Shapley score. Let us call a class of Boolean functions F reason-
able if the following problem is in P: given as input (a representation
of)𝜑 ∈ F , compute𝜑 (∅). It is clear that all classes mentioned in this

paper are reasonable in that sense. Then, under this assumption:

Pratik Karmakar, Mikaël Monet, Pierre Senellart, and Stéphane Bressan

Proposition 3.5. We have EV(F) ⩽P EScore𝑐
Shapley

(F) for any
reasonable class F of Boolean functions.

Proof. For 𝜑 : 2
𝑍 → {0, 1}, it is well known that the following

equation, called the efficiency property, holds:∑︁
𝑥∈𝑍

Score𝑐
Shapley

(𝜑, 𝑍, 𝑥) = 𝜑 (𝑍) − 𝜑 (∅) .

Let then 𝜑 ∈ F over variables 𝑉 and probability values 𝑝𝑥 for each

𝑥 ∈ 𝑉 ; our goal is to compute EV(𝜑). We have:∑︁
𝑥∈𝑉

EScore𝑐
Shapley

(𝜑, 𝑥) =
∑︁
𝑥∈𝑉

∑︁
𝑍⊆𝑉
𝑥∈𝑍

Π𝑉 (𝑍) × Score𝑐Shapley
(𝜑, 𝑍, 𝑥)

=
∑︁
𝑍⊆𝑉

∑︁
𝑥∈𝑍

Π𝑉 (𝑍) × Score𝑐Shapley
(𝜑, 𝑍, 𝑥)

=
∑︁
𝑍⊆𝑉

Π𝑉 (𝑍)
[
𝜑 (𝑍) − 𝜑 (∅)

]
= EV(𝜑) − 𝜑 (∅) . (3)

We can compute the left-hand size in P using oracle calls, and we

can compute 𝜑 (∅) in P as well because F is reasonable, therefore

we can compute EV(𝜑) in P indeed. This concludes the proof. □

This implies, for instance, that EScore𝑐
Shapley

(F) is intractable
over arbitrary circuits, even monotone bipartite 2-DNF formu-

las [26]. Combining with Theorem 3.1, we obtain in particular:

Corollary 3.6. We have EScore𝑐
Shapley

(F) ≡P EV(F) for any
reasonable class F of Boolean functions.

Hence, at least with respect to polynomial-time computability,

this settles the complexity of EScore𝑐
Shapley

(F) for such classes.

Banzhaf score. Next, we show a similar result for the Banzhaf

value, under a different, though commonplace, assumption.

Definition 3.7. A class F is said to be closed under condition-

ing if the following problem is in P: given 𝜑 ∈ F over variables 𝑉
and 𝑥 ∈ 𝑉 , compute a representation in F of 𝜑+𝑥 . We say F is closed
under conjunctions (resp., disjunctions) with fresh variables if the
following is in P: given 𝜑 ∈ F over variables 𝑉 and 𝑥 ∉ 𝑉 , compute
a representation in F of the Boolean function 𝜑 ∧ 𝑥 (resp., 𝜑 ∨ 𝑥).

Proposition 3.8. We have EV(F) ⩽P EScore𝑐
Banzhaf

(F) for any
class F that is closed under conditioning and that is also closed under
either conjunctions or disjunctions with fresh variables.

This implies that EScore𝑐
Banzhaf

is intractable, for instance, over

monotone 2-CNFs or monotone 2-DNFs.

Proposition 3.8 requires more work than Proposition 3.5: we do

it in two steps by introducing (yet) another intermediate problem.

PROBLEM : ENV(F) (Expected Nested Value)
INPUT : A Boolean function 𝜑 ∈ F over variables 𝑉 and

probability values 𝑝𝑥 for each 𝑥 ∈ 𝑉
OUTPUT : The quantity

ENV(𝜑) def

=
∑
𝑍⊆𝑉 Π𝑉 (𝑍)

∑
𝐸⊆𝑍 𝜑 (𝐸)

The next two lemmas then imply Proposition 3.8.

Lemma 3.9. We have ENV(F) ⩽P EScore𝑐
Banzhaf

(F) for any F
closed under conjunctions (resp., disjunctions) with fresh variables.

Proof sketch. First, for 𝜑 ′ : 2
𝑉 ′ → {0, 1} and 𝑥 ∈ 𝑉 ′, we

prove the equation

EScore𝑐
Banzhaf

(𝜑 ′, 𝑥) = 𝑝𝑥 [ENV(𝜑 ′+𝑥) − ENV(𝜑 ′−𝑥)] . (4)

Let then𝜑 : 2
𝑉 → {0, 1} be the Boolean function for which wewant

to compute ENV(𝜑), and let 𝑥 ∉ 𝑉 be a fresh variable. We use the

closure property of F to compute a representation of 𝜑 ′
def

= 𝜑 ⊙ 𝑥 ,
with ⊙ being ∧ or ∨ depending on the closure property. We then

show using Equation (4) that ENV(𝜑) can be recovered from the

single oracle call EScore𝑐
Banzhaf

(𝜑 ′, 𝑥), with 𝑉 ′
def

= 𝑉 ∪ {𝑥}, with
same probability values for 𝑦 ∈ 𝑉 and 𝑝𝑥 = 1. □

Lemma 3.10. We have EV(F) ⩽P ENV(F) for any class F that
is closed under conditioning.

Proof sketch. This is again a rather technical proof by poly-

nomial interpolation, in which we curiously seem to need the as-

sumption of closure under conditioning. □

And thus, combining with Theorem 3.1, we obtain:

Corollary 3.11. We have EScore𝑐
Banzhaf

(F) ≡P EV(F) for any
class F that is closed under conditioning and that is also closed under
either conjunctions or disjunctions with fresh variables.

We leave as future work a more systematic (tedious) study of

when EV(F) ⩽P EScore𝑐 (F) holds for other coefficient functions.

4 DD CIRCUITS
We now present algorithms to compute expected Shapley-like

scores in polynomial time over deterministic and decomposable

Boolean circuits. Since computing expected values can be done in

linear time over such circuits, the fact that computing expected

Shapley-like scores over them is in P is already implied by our

main result, Theorem 3.1. We nevertheless present more direct al-

gorithms for these circuits as they are easier and more natural to

implement than the convoluted chain of reductions with various

oracle calls and matrix inversions from the previous section. We

will moreover use these algorithms in our experimental evaluation

in Section 6. We start by defining what are these circuits.

Boolean circuits. Let 𝐶 be a Boolean circuit over variables 𝑉 ,

featuring ∧, ∨, ¬, constant 0- and 1-gates, and variable gates (i.e.,

gates labeled by a variable in 𝑉). We write Vars(𝐶) ⊆ 𝑉 the set of

variables that occur in the circuit. The size |𝐶 | of𝐶 is its number of

wires. For a gate 𝑔 of 𝐶 , we write 𝐶𝑔 the subcircuit rooted at 𝑔, and

write Vars(𝑔) its set of variables. An ∧-gate 𝑔 of𝐶 is decomposable if
for every two input gates 𝑔1 ≠ 𝑔2 of 𝑔, Vars(𝑔1) ∩Vars(𝑔2) = ∅. We

call𝐶 decomposable if all ∧-gates in it are. An ∨-gate 𝑔 of𝐶 is deter-
ministic if the Boolean functions captured by each pair of distinct

input gates of 𝑔 are pairwise disjoint; i.e., there is no assignment

that satisfies them both. We call 𝐶 deterministic if all ∨-gates in it

are. A deterministic and decomposable (d-D) Boolean circuit [25] is a
Boolean circuit that is both deterministic and decomposable. An ∨-
gate 𝑔 is smooth if for any input 𝑔′ of 𝑔 we have Vars(𝑔) = Vars(𝑔′),
and 𝐶 is smooth is all its ∨-gates are. We say that 𝐶 is tight if it
satisfies the following three conditions: (1) Vars(𝐶) = 𝑉 ; (2) 𝐶 is

smooth; and (3) every ∧ and every ∨ gate of 𝐶 has exactly two

children. The following is folklore.

Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases

Lemma 4.1. Given as input a d-D circuit 𝐶 over variables 𝑉 , we
can compute in𝑂 (|𝐶 | × |𝑉 |) a d-D circuit𝐶′ over𝑉 that is equivalent
to 𝐶 and that is tight.

General polynomial-time algorithm. It is thus enough to explain

how to compute expected Shapley-like scores for tight d-Ds; let 𝐶

be such a circuit on variables𝑉 . We start from Equation (1), restated

here for convenience:

EScore𝑐 (𝐶, 𝑥) = 𝑝𝑥

|𝑉 |−1∑︁
𝑘=0

𝑘∑︁
ℓ=0

𝑐 (𝑘 + 1, ℓ)
(
ENV𝑘,ℓ (𝐶1) − ENV𝑘,ℓ (𝐶0)

)
.

Here, 𝐶1 (resp., 𝐶0) is the circuit 𝐶 in which we have replaced

every variable gate labeled by 𝑥 by a constant 1-gate (resp., a con-

stant 0-gate). It can easily be checked that 𝐶0 and 𝐶1 are tight d-Ds

over 𝑉 \ {𝑥}. Therefore, it suffices to compute, for an arbitrary

tight d-D circuit 𝐶′, the ENV★,★ quantities. To do this, we crucially

need the determinism and decomposability properties. The idea is

to compute corresponding quantities for each gate of the circuit,

in a bottom-up fashion. This is similar to what is done in [6, The-

orem 2] and [13, Proposition 4.4], but the expressions we obtain

are more involved because we have a quadratic number of parame-

ters for each gate of the circuit, as opposed to a linear number of

such parameters in these earlier works. The resulting algorithm

for the whole procedure is shown in Algorithm 1. Intuitively, the

values 𝛽
𝑔

𝑘,ℓ
correspond to the ENV𝑘,ℓ -values for the subcircuit of𝐶1

rooted at gate 𝑔, the values 𝛾
𝑔

𝑘,ℓ
correspond to those for 𝐶0, and

𝛿 values are intermediate quantities that we have to compute. Thus:

Theorem 4.2. Let 𝑐 be a tractable coefficient function. Given a d-D
circuit 𝐶 on variables 𝑉 , probability values 𝑝𝑦 for 𝑦 ∈ 𝑉 , and 𝑥 ∈ 𝑉 ,
Algorithm 1 correctly computes EScore𝑐 (𝐶, 𝑥) in polynomial time.
Moreover, if we ignore the cost of arithmetic operations, it is in time
𝑂
(
|𝐶 | × |𝑉 |5 + T𝑐 (|𝑉 |) × |𝑉 |2

)
where T𝑐 (𝛼) is the cost of computing

the coefficient function on inputs ⩽ 𝛼 .

We can show that the number of bits of numerators and denom-

inators of the 𝛽 , 𝛾 and 𝛿 values is roughly 𝑂 (𝑏 × |𝑉 |), for 𝑏 the

bound on the number of bits of numerators and denominators of

all 𝑝𝑦 values. Therefore to obtain the exact complexity, without

ignoring the time to perform additions and multiplications over

such numbers, one has to add an 𝑂 (𝑏 × |𝑉 |) multiplicative factor.

In the case where all probabilities are identical, we can obtain a

lower complexity by reusing techniques from [13]:

Proposition 4.3. Let 𝑐 be a tractable coefficient function. Given
a d-D 𝐶 on variables 𝑉 , a unique probability value 𝑝 = 𝑝𝑦 for
all 𝑦 ∈ 𝑉 , and 𝑥 ∈ 𝑉 , EScore𝑐 (𝐶, 𝑥) can be computed in time
𝑂
(
|𝑉 |2 × (|𝐶 | |𝑉 | + |𝑉 |2 + T𝑐 (|𝑉 |))

)
assuming unit-cost arithmetic.

Quadratic-time algorithm for expected Banzhaf score. For the
expected Shapley value, instantiating Algorithm 1 with 𝑐 = 𝑐

Shapley

seems to be the best that we can do. For the expected Banzhaf value

however, we can design a more efficient algorithm. We start from

Equation (4), restated here in terms of circuits:

EScore𝑐
Banzhaf

(𝐶, 𝑥) = 𝑝𝑥 [ENV(𝐶1) − ENV(𝐶0)] . (5)

We can show that ENV can be computed in linear time over tight d-

D circuits, thus obtaining a𝑂 (|𝐶 |×|𝑉 |) complexity for EScore𝑐
Banzhaf

over arbitrary d-D circuits by Lemma 4.1:

Algorithm 1: Expected Shapley-like scores for determinis-

tic and decomposable Boolean circuits

Input :A d-D 𝐶 on variables 𝑉 , probability values 𝑝𝑦
for 𝑦 ∈ 𝑉 , and 𝑥 ∈ 𝑉 .

Output :The value EScore𝑐 (𝐶, 𝑥)

1 Let 𝑛′ = |𝑉 | − 1 and let 𝑔out be the output gate of 𝐶;

2 Make 𝐶 tight using Lemma 4.1, and call it 𝐶 again;

3 Compute values 𝛿𝑔
𝑘
for every gate 𝑔 in𝐶 and 𝑘 ∈ [𝑛′] by

bottom-up induction on 𝐶 as follows:
4 if 𝑔 is a constant gate or a variable gate with

Vars(𝑔) = {𝑥} then
5 𝛿

𝑔

0
← 1 and 𝛿

𝑔

𝑘
← 0 for 𝑘 ⩾ 1;

6 else if 𝑔 is a variable gate with Vars(𝑔) = {𝑦} and 𝑦 ≠ 𝑥

then
7 𝛿

𝑔

0
← 1 − 𝑝𝑦 , 𝛿𝑔

1
← 𝑝𝑦 , and 𝛿

𝑔

𝑘
← 0 for 𝑘 ⩾ 2;

8 else if 𝑔 is a ¬-gate with input gate 𝑔′ then
9 𝛿

𝑔

𝑘
← 𝛿

𝑔′

𝑘
for 𝑘 ∈ [𝑛′];

10 else if 𝑔 is an ∨-gate with input gates 𝑔1, 𝑔2 then
11 𝛿

𝑔

𝑘
← 𝛿

𝑔1

𝑘
for 𝑘 ∈ [𝑛′];

12 else if 𝑔 is an ∧-gate with input gates 𝑔1, 𝑔2 then
13 𝛿

𝑔

𝑘
← ∑𝑘

𝑘1=0
𝛿
𝑔1

𝑘1

𝛿
𝑔2

𝑘−𝑘1

for 𝑘 ∈ [𝑛′];
14 end
15 Compute values 𝛽𝑔

𝑘,ℓ
and 𝛾𝑔

𝑘,ℓ
for every gate 𝑔 in 𝐶

and 𝑘, ℓ ∈ [𝑛′] by bottom-up induction on 𝐶:
16 if 𝑔 is a constant 𝑎-gate (𝑎 ∈ {0, 1}) then
17 𝛽

𝑔

0,0
, 𝛾

𝑔

0,0
← 𝑎, and 𝛽

𝑔

𝑘,ℓ
, 𝛾

𝑔

𝑘,ℓ
← 0 for (𝑘, ℓ) ≠ (0, 0);

18 else if 𝑔 is a variable gate with Vars(𝑔) = {𝑥} then
19 𝛽

𝑔

0,0
← 1, 𝛾

𝑔

0,0
← 0, and 𝛽

𝑔

𝑘,ℓ
, 𝛾

𝑔

𝑘,ℓ
← 0 for

(𝑘, ℓ) ≠ (0, 0);
20 else if 𝑔 is a variable gate with Vars(𝑔) = {𝑦} and 𝑦 ≠ 𝑥

then
21 𝛽

𝑔

0,0
, 𝛽

𝑔

1,0
, 𝛾

𝑔

0,0
, 𝛾

𝑔

1,0
← 0, 𝛽

𝑔

1,1
, 𝛾

𝑔

1,1
← 𝑝𝑥 , and

𝛽
𝑔

𝑘,ℓ
, 𝛾

𝑔

𝑘,ℓ
← 0 for all other values of 𝑘, ℓ ;

22 else if 𝑔 is a ¬-gate with input gate 𝑔′ then
23 𝛽

𝑔

𝑘,ℓ
←

(𝑘
ℓ

)
𝛿
𝑔

𝑘
− 𝛽𝑔

′

𝑘,ℓ
for 𝑘, ℓ ∈ [𝑛′];

24 𝛾
𝑔

𝑘,ℓ
←

(𝑘
ℓ

)
𝛿
𝑔

𝑘
− 𝛾𝑔

′

𝑘,ℓ
for 𝑘, ℓ ∈ [𝑛′];

25 else if 𝑔 is an ∨-gate with input gates 𝑔1, 𝑔2 then
26 𝛽

𝑔

𝑘,ℓ
← 𝛽

𝑔1

𝑘,ℓ
+ 𝛽𝑔2

𝑘,ℓ
for 𝑘, ℓ ∈ [𝑛′];

27 𝛾
𝑔

𝑘,ℓ
← 𝛾

𝑔1

𝑘,ℓ
+ 𝛾𝑔2

𝑘,ℓ
for 𝑘, ℓ ∈ [𝑛′];

28 else if 𝑔 is an ∧-gate with input gates 𝑔1, 𝑔2 then
29 𝛽

𝑔

𝑘,ℓ
← ∑𝑘

𝑘1=0

∑𝑘1

ℓ1=0
𝛽
𝑔1

𝑘1,ℓ1
× 𝛽𝑔2

𝑘−𝑘1,ℓ−ℓ1 for

𝑘, ℓ ∈ [𝑛′];
30 𝛾

𝑔

𝑘,ℓ
← ∑𝑘

𝑘1=0

∑𝑘1

ℓ1=0
𝛾
𝑔1

𝑘1,ℓ1
×𝛾𝑔2

𝑘−𝑘1,ℓ−ℓ1 for 𝑘, ℓ ∈ [𝑛
′];

31 end

32 return 𝑝𝑥

𝑛′∑︁
𝑘=0

𝑘∑︁
ℓ=0

𝑐 (𝑘 + 1, ℓ)
(
𝛽
𝑔out
𝑘,ℓ
− 𝛾𝑔out

𝑘,ℓ

)
;

Pratik Karmakar, Mikaël Monet, Pierre Senellart, and Stéphane Bressan

Theorem 4.4. Given a d-D𝐶 on variables𝑉 , probability values 𝑝𝑦
for 𝑦 ∈ 𝑉 , and 𝑥 ∈ 𝑉 , we can compute in time𝑂 (|𝐶 | × |𝑉 |) (ignoring
the cost of arithmetic operations) the quantity EScore𝑐

Banzhaf
(𝐶, 𝑥).

Comparing to and recovering the algorithms of [13] and [2]. We

end this section by discussing how this relates to the algorithms

proposed in [13] and [2], respectively for Shapley and Banzhaf

value computation in a deterministic (non-probabilistic) setting.

First, we note that we can specialize Algorithm 1 to the compu-

tation of Shapley values by setting all 𝑝𝑦 to 1, which means that,

when computing ENV𝑘,ℓ -values, we only need to consider the case

where 𝑘 = 𝑛 as all 𝑍 ⊆ 𝑉 with |𝑍 | < 𝑛 have Π𝑉 (𝑍) = 0. This leads

to the following simplifications: 𝛿
𝑔

𝑘
values need not be computed

as they are all 0’s except for 𝛿
𝑔

|Vars(𝑔) | = 1; similarly, 𝛽
𝑔

𝑘,ℓ
and 𝛾

𝑔

𝑘,ℓ

values need only be computed when 𝑘 = |Vars(𝑔) |, all other being
set to 0. This simplifies the computation to remove a factor of |𝑉 |2,
and we essentially recover the algorithm described in [13]. Note

that the final complexity obtained is 𝑂 (|𝐶 | × |𝑉 |3), which is better

than the complexity from Proposition 4.3.

Second, we observe that the algorithm underlying Theorem 4.4

has the same complexity as the exact algorithm in [2] for computing

(non-expected) Banzhaf values. We note that [2] considers decom-
position trees instead of d-D circuits, but any decomposition tree

is in fact a d-D circuit in disguise, since a decomposable OR of the

form 𝐴 ∨ 𝐵 can be rewritten as ¬(¬𝐴 ∧ ¬𝐵), with the AND being

decomposable. Their algorithm works in linear time on decomposi-

tion trees that are tight (see their Section 3.1), hence we obtain the

same complexity while solving a seemingly more general problem:

we study the expected Banzhaf values (which degenerates to the

non-expected setting when all probabilities are 1), and d-D circuits

are more general than decomposition trees as they allow sharing

of subexpressions (i.e., the circuit is a DAG instead of a tree).

5 PROBABILISTIC DATABASES
(Probabilistic) databases and queries. Let Σ = {𝑅1, . . . , 𝑅𝑛} be

a signature, consisting of relation names each with their associ-

ated arity ar(𝑅𝑖) ∈ N, and Const be a set of constants. A fact over
(Σ,Const) is a term of the form𝑅(𝑎1, . . . , 𝑎ar(𝑅)), for𝑅 ∈ Σ and𝑎𝑖 ∈
Const. A (Σ,Const)-database 𝐷 (or simply a database 𝐷) is a finite
set of facts over (Σ,Const). We assume familiarity with the most

common classes of query languages and refer the reader to [1, 7] for

the basic definitions. A Boolean query is a query𝑞 that takes as input
a database 𝐷 and outputs 𝑞(𝐷) ∈ {0, 1}. If 𝑞(𝑥) is a query with free

variables 𝑥 and 𝑡 is a tuple of constants of appropriate length, we de-

note by 𝑞 [𝑥/𝑡] the Boolean query defined by 𝑞 [𝑥/𝑡] (𝐷) = 1 if and

only if 𝑡 is in the output of𝑞(𝑥) on𝐷 . A tuple-independent probabilis-
tic database, or TID for short, consists of a database 𝐷 together with

probability values 𝑝 𝑓 for every fact 𝑓 ∈ 𝐷 . For a Boolean query 𝑞

and TIDD = (𝐷, (𝑝 𝑓)𝑓 ∈𝐷), the probability thatD satisfies𝑞, written

Pr(D |= 𝑞), is defined as Pr(D |= 𝑞) def

=
∑
𝐷 ′⊆𝐷 s.t. 𝑞 (𝐷 ′)=1

Pr(𝐷′),
where Pr(𝐷′) is∏𝑓 ∈𝐷 ′ 𝑝 𝑓 ×

∏
𝑓 ∈𝐷\𝐷 ′ (1−𝑝 𝑓). For a fixed Boolean

query 𝑞, we denote by PQE(𝑞) the computational problem that

takes as input a TID D and outputs Pr(D |= 𝑞).

(Expected) Shapley-like scores. Let 𝑐 : N×N→ Q be a coefficient

function, 𝑞 a Boolean query, 𝐷 a database and 𝑓 ∈ 𝐷 a fact. Follow-

ing the literature [13, 23, 24], we define the Shapley-like score with

coefficients 𝑐 of 𝑓 in 𝐷 with respect to 𝑞, or simply score when clear,

by
1 Score𝑐 (𝑞, 𝐷, 𝑓)

def

=
∑
𝐸⊆𝐷\{ 𝑓 } 𝑐 (|𝐷 |, |𝐸 |) ×

[
𝑞(𝐸∪{𝑓 }) −𝑞(𝐸)

]
.

We denote by Score𝑐 (𝑞) the corresponding computational problem.

Let now D = (𝐷, (𝑝 𝑓)𝑓 ∈𝐷) be a TID and 𝑓 ∈ 𝐷 , and define the

expected score of 𝑓 for 𝑞 in D as:

EScore𝑐 (𝑞,D, 𝑓)
def

=
∑︁

𝑍⊆𝐷,𝑓 ∈𝑍
(Pr(𝑍) × Score𝑐 (𝑞, 𝑍, 𝑓)) ,

where in Score𝑐 (𝑞, 𝑍, 𝑓) we see 𝑞 as a function from 2
𝑍
to {0, 1}.

Define the problem EScore𝑐 (𝑞) as expected. Note that all of this
matches our definitions of expected values, Shapley-like and ex-

pected Shapley-like scores for Boolean functions.

As usual, if the query 𝑞(𝑥) has free variables, for a tuple 𝑡 of

appropriate length we can define similarly, for 𝑓 ∈ 𝐷 , the expected

score of 𝑓 by using the Boolean query𝑞 [𝑥/𝑡] in the above definition.
This score then represents the contribution of 𝑓 to 𝑡 potentially

being in the query result (one might in particular be interested in

explaining why a tuple is not in the query result).

Then Theorem 3.1 directly translates into this setting of Shapley-

like scores of facts over probabilistic databases:

Theorem 5.1. We have EScore𝑐 (𝑞) ⩽P PQE(𝑞) for any tractable
coefficient function 𝑐 and any Boolean query 𝑞.

Proof. It suffices to instantiate Theorem 3.1 with the set of

Boolean functions F𝑞
def

= {𝜑𝑞,𝐷 | 𝐷 is a database}, where 𝜑𝑞,𝐷 :

2
𝐷 → {0, 1}, the Boolean provenance [28] of query 𝑞 over 𝐷 , is

defined by 𝜑𝑞,𝐷 (𝐷′)
def

= 𝑞(𝐷′) for 𝐷′ ⊆ 𝐷 . Here, it is implicit that

the Boolean function 𝜑𝑞,𝐷 is represented by 𝐷 itself. □

In the case of the Shapley value, we can even get a full equiva-

lence from Corollary 3.6:

Corollary 5.2. We have EScore𝑐
Shapley

(𝑞) ≡P PQE(𝑞) for any
Boolean query 𝑞.

Proof. One direction is Theorem 5.1. The other direction comes

fromCorollary 3.6, using the same F𝑞 as in the proof of Theorem 5.1,

and noticing that F𝑞 is reasonable because the query is fixed. □

In particular, this gives a dichotomy on EScore𝑐
Shapley

(𝑞) between P
and #P-hard for unions of conjunctive queries (UCQs), or more

generally for queries that are closed under homomorphisms [3, 10].
This should be compared with the corresponding result for (non-

expected) Score𝑐
Shapley

(𝑞), where a dichotomy is currently only

known for self-join–free conjunctive queries [18, 23].
For Banzhaf values, even though EScore𝑐

Banzhaf
(𝑞) ⩽P PQE(𝑞) is

true for any Boolean query by Theorem 5.1, it is not clear how to

obtain the other direction from Proposition 3.8: indeed, the class F𝑞
from above has in general no reason to be closed under condi-

tioning nor under taking conjunctions or disjunctions with fresh

variables. Yet, we mention that [23, Proposition 5.6] shows a di-

chotomy for (non-expected) Score𝑐
Banzhaf

(𝑞) for self-join–free CQs:
the tractable queries are the hierarchical queries, while for non-

hierarchical queries the problem is #P-hard. This dichotomy then

1
We point out that the facts of𝐷 are traditionally partitioned between endogenous and
exogenous facts, but we do not make this distinction in our work. This is to simplify

the presentation, as usual definitions would extend in a straightforward manner.

Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases

directly extends to EScore𝑐
Banzhaf

(𝑞): the tractable side follows from
our Theorem 5.1 because PQE(𝑞) is in P for hierarchical queries,

while the hardness result is inherited by Fact 2.3 from the hardness

of Score𝑐
Banzhaf

(𝑞) shown in [23].

Provenance computation and compilation. Unfortunately, not all
queries are tractable for probabilistic query evaluation. When faced

with an intractable query, another approach is to use the intensional
method [31], which is to compute and compile the Boolean prove-

nance of the query on the database in a formalism from knowledge

compilation that enjoys tractable computation of expected values,

such as d-D circuits. When the provenance has been computed as a

d-D circuit, we can use the results from Section 4 to compute the

expected Shapley-like scores. This is the route that we take in the

next section to compute these scores in practice.

6 IMPLEMENTATION AND EXPERIMENTS
In this section, we experimentally show that the computation of

expected Shapley-like scores is feasible in practice on some realistic

queries over probabilistic databases, despite the #P-hardness of
the problem in general and the high 𝑂 (|𝐶 | × |𝑉 |5) upper bound
(see Theorem 4.2) on the complexity of Algorithm 1 for d-Ds. The

objective is not to provide a comprehensive experimental evaluation

but to simply validate that algorithms presented in this work have

reasonable complexity for practical applications.

Implementation. We rely on ProvSQL [29], an open-source Post-

greSQL extension that computes (between other things) the Boolean

provenance of a query over a database. We let ProvSQL compute

the Boolean provenance of SQL queries over relational databases

as a Boolean circuit, and have extended this system to add the fol-

lowing features
2
: (1) We compile Boolean provenance into a d-D

in the simple but common decomposable case where every ∧- or
∨-gate 𝑔 is decomposable, i.e., for every two inputs 𝑔1 and 𝑔2 to 𝑔,

Vars(𝑔1) ∩ Vars(𝑔2) = ∅. Note that, as we have already observed in

Section 4, a decomposable ∨-gate of the form𝐴∨𝐵 can be rewritten,

using De Morgan’s laws, into a decomposable ∧-gate. (2) For cases
where this is not possible, we attempt to compile Boolean prove-

nance into a d-D by computing, if possible, a tree decomposition of

the circuit of treewidth ⩽ 10, and by then following the construction

detailed in [4, Section 5.1] to turn any Boolean circuit into a d-D in

linear time when the treewidth is fixed. (3) Otherwise, we default to

ProvSQL’s default compilation of circuits into d-Ds, which amounts

to coding the circuit as a CNF using the Tseitin transformation [32]

and then calling an external knowledge compiler, d4 [21]. (4) We

have implemented directly within ProvSQL Algorithm 1 to compute

expected Shapley values on d-Ds, its simplification when all 𝑝𝑦 are

set to 1 detailed at the end of Section 4, as well as the algorithm

to compute expected Banzhaf values in the proof of Theorem 4.4.

They are all implemented with floating-point numbers.

Note that, in particular, this approach is not restricted to queries

that fall on the tractable side of the dichotomy of [10].

2
The corresponding code will be made freely available when anonymity requirements

are removed.

In addition, we benefit from the fact that, since late 2021, ProvSQL

stores the provenance circuit in main memory, which speeds prove-

nance computation up (earlier versions stored the provenance cir-

cuit within the database, on disk).

Experiment setup. Following [2, 13], we used the TPC-H 1 GB

benchmark, with standard generated data and 8 standard TPC-H

queries adapted to remove nesting and aggregation, as provided by

the authors of [13]
3
. We use the exact same queries as in [13], except

that the LIMIT operator used for the experiments of that paper was

removed, to obtain a larger and more realistic benchmark (we end

up with 105 154 output tuples for these 8 queries). Probabilities

were drawn uniformly at random for all facts.

Experiments were run on a desktop Linux PC with Xeon W3550

2.80GHz CPU, 64 GB RAM (8 GB of which were made available for

PostgreSQL’s shared buffers), running version 14.9 of PostgreSQL

and the latest version of ProvSQL as of December 2023. Data for

PostgreSQL is stored on standard magnetic hard drives in RAID 1.

Results. We show in Table 1 results of these experiments. For

each query, we report: the number of output tuples; the total time

required by ProvSQL to evaluate the query and compute the prove-

nance representation of every output tuple; the total time required

by the compilation of the Boolean provenance circuits of all query

results to d-Ds; the method used to produce these d-Ds
4
; the aver-

age number of gates of the resulting d-Ds; the total time needed

to compute (expected) Shapley values of all query outputs for all

relevant facts
5
in the deterministic case (where all probabilities

are set to 1) and in the probabilistic case; the same for (expected)

Banzhaf values. All times are in seconds, repeated over 20 runs of

each query, with the mean and standard deviation shown. To avoid

caching of provenance across multiple runs or multiple queries, the

ProvSQL provenance circuit was reset each time and PostgreSQL

restarted.

We have the following observations regarding the experimental

results (also compare with the results from Table 1 of [13]).

(1) ProvSQL is able to compute in a reasonable amount of time

(at most a couple of seconds) the output of all queries, along with

their Boolean provenance as a circuit; this contrasts with the results

of [13] where provenance computation time could take up to 6 hours

for query 3, even when limited to output only 100 tuples; we assume

this is the result of recent ProvSQL optimizations and in-memory

storage of the Boolean provenance circuit.

(2) Compilation to a d-D takes a time that is comparable, and

somewhat lower, to provenance computation, and uses a combina-

tion of interpreting the circuit as a decomposable one and the tree

decomposition algorithm of [4]; compilation through an external

knowledge compiler, which was what was done in [13], is never

required. Note that compilation is much faster than reported in [13]

(remember that the times in [13] need to be multiplied by the num-

ber of output tuples, whereas we report the sum of all compilation

3
https://github.com/navefr/ShapleyForDbFacts

4
A different method might be used for each output tuple; we report the proportion of

“dec.” when the obtained circuit was already decomposable; and of “tree dec.” when we

used the tree decomposition approach; none of the circuits produced required using

an external knowledge compiler.

5
By relevant facts, we mean here the facts that appear in the provenance circuits.

Indeed, the other facts have a score of zero.

https://github.com/navefr/ShapleyForDbFacts

Pratik Karmakar, Mikaël Monet, Pierre Senellart, and Stéphane Bressan

Table 1: Provenance computation time, knowledge compilation time and method, and total Shapley/Banzhaf computation time
for all output tuples and all facts, in the deterministic case and for expected values in the probabilistic case. The queries are the
same TPC-H queries used in [13] (without the LIMIT operator used in [13]). All times reported are in seconds.

TPC-H # Output Provenance Compilation Compilation Avg d-D Shapley time Banzhaf time
query tuples time time method #gates Determ. Expect. Determ. Expect.

3 11620 2.125 ± 0.029 1.226 ± 0.008 33% dec., 67% tree dec. 22 0.762 ± 0.005 1.758 ± 0.011 0.467 ± 0.003 0.468 ± 0.002

5 5 1.117 ± 0.022 0.044 ± 0.000 100% tree dec. 1115 0.766 ± 0.001 40.910 ± 0.447 0.191 ± 0.001 0.191 ± 0.000

7 4 1.215 ± 0.053 0.017 ± 0.000 100% tree dec. 750 0.269 ± 0.001 9.381 ± 0.020 0.085 ± 0.001 0.085 ± 0.000

10 1783 1.229 ± 0.023 0.018 ± 0.000 98% dec., 2% tree dec. 5 0.023 ± 0.000 0.037 ± 0.000 0.015 ± 0.000 0.015 ± 0.000

11 61 0.174 ± 0.023 0.001 ± 0.000 87% dec., 13% tree dec. 7 0.001 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.001 ± 0.000

16 466 0.247 ± 0.027 0.084 ± 0.000 100% tree dec. 65 0.159 ± 0.001 0.455 ± 0.005 0.094 ± 0.001 0.094 ± 0.001

18 91159 2.711 ± 0.298 0.749 ± 0.005 97% dec., 3% tree dec. 4 0.655 ± 0.002 1.008 ± 0.007 0.489 ± 0.003 0.490 ± 0.003

19 56 1.223 ± 0.239 0.000 ± 0.000 100% dec. 3 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

times); the provenance circuits for queries 5 and 7 could not even

be compiled to a d-D in [13].

(3) The total time required for deterministic Shapley value com-

putation is of similar magnitude as query evaluation as well and

comparable to those reported in [13] (except in one case, for query 19,

where numbers reported in [13] are abnormally high).

(4) Computing expected Shapley values in a probabilistic setting

using Algorithm 1 incurs a higher cost, but remains more practical

in practice than the high theoretical complexity of this algorithm

may suggest – the maximum time required is for query 5, with 41

seconds to compute the expected Shapley values over five d-Ds

whose average size is over a thousand of gates.

(5) There is of course virtually no difference between computing

deterministic and expected Banzhaf values, since the algorithm we

use (that of Theorem 4.4), is the same. The total time required for

this algorithm is significantly lower than that of deterministic Shap-

ley value computation, especially for circuits with large numbers of

gates or variables, as consistent with the established complexities.

(6) Though query evaluation and provenance computation can

be marred with significant performance differences from one run

to the next (due to disk caching, interaction with PostgreSQL, etc.),

there is little variation of the performance of knowledge compilation

and expected Shapley-like value computation.

To summarize, the experiments validate the practicality of the

algorithms presented in this paper for computation of expected

Shapley-like scores over probabilistic databases.

7 RELATEDWORK
There are two lines of work that our results should be compared to.

The first one studies the complexity of computing (non-expected)

Shapley-like values for databases and Boolean functions. The sec-

ond one studies the complexity of computing the SHAP-score, a

score used in explainable AI and machine learning. In both cases

the problem has been studied by relating it to that of computing ex-

pected values or of computing model counts, and also by proposing

tractable algorithms for deterministic and decomposable Boolean

circuits. In this sense then, the structure of our paper is similar to

existing literature. Yet we think that all these problem variants are

worth studying because the underlying notions are solutions to

different problems. We summarize the existing related literature

here and compare to it, starting with what is closest to our work.

Shapley-like scores. The authors of [13, 23, 24, 27] study the com-

plexity of the problems Score𝑐
Shapley

and Score𝑐
Banzhaf

, over Boolean

functions or, most often, instantiated in the setting of relational

databases. See [9] for a survey for databases. In particular, [13]

shows that, for any query, the problem Score𝑐
Shapley

can be reduced

in polynomial time to probabilistic query evaluation for the same

query. In a contemporaneous draft, the authors of [18] show an

analogous result for Boolean functions, also obtaining the other

direction of the reduction (under some assumptions). Formally,

define the model counting problem for class F of Boolean func-

tions as follows: given as input 𝜑 ∈ F over variables 𝑉 , compute

#𝜑
def

= {𝑍 ∈ 2
𝑉 | 𝜑 (𝑍) = 1}. They then show (we refer to their

article for the definition of closure under OR-substitutions):

Theorem 7.1 ([18, Corollary 7]). We have Score𝑐
Shapley

(F) ≡P
MC(F) for any class F that is closed under OR-substitutions.

Notice the resemblance between, on the one side, these last two

results that we mention, and on the other side our Corollaries 3.6

and 5.2. The difference is that we study the expected Shapley values.

There is a priori no reason for the tractable cases to be the same

as the non-expected variant: indeed, the counting (or probabilistic)

version of a problem is often much harder than the decision one —

for instance probabilistic query evaluation is often intractable for

queries for which regular evaluation is easy.
6
By our results, this

phenomenon does not occur for EScore𝑐
Shapley

. Since EScore𝑐
Shapley

strictly generalizes Score𝑐
Shapley

(by Fact 2.3), the reduction from

EScore𝑐
Shapley

to EV is more challenging, and indeed one can check

that our polynomial interpolation proofs are more involved than,

say, [13, Proposition 3.1]. On the other hand, our life is made easier

to prove the other direction of these equivalences. This explainswhy

we do not need the assumption of closure under OR-substitutions

in Corollary 3.6, and this is also what allows us to obtain a complete
equivalence to probabilistic query evaluation in Corollary 5.2, no
matter the Boolean query, whereas in the case of non-expected

Shapley values this is only known for self-join–free CQs. As for

algorithms for d-D circuits, we refer to the end of Section 4 for a

comparison to [13] and [2].

SHAP-score. The authors of [5, 6, 12, 33] study the complexity

of computing the SHAP-score. In particular [12, 33] show that it

6
So one could say that expected Shapley scores are to Shapley scores what probabilistic

query evaluation is to non-probabilistic query evaluation.

Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases

is equivalent to computing expected values, and [5, 6] propose

polynomial-time algorithms for d-D circuits. Thus, the landscape is

similar to what we obtain here. However, there is to the best of our

knowledge no formal connection between the SHAP-score and the

expected scores that we study here: in a nutshell, we compute the

expected Shapley value where the game function is the Boolean

function𝜑 , whereas the SHAP score is computing the Shapley value

where the game function is a conditional expectation of 𝜑 . Hence,

the two sets of results seem to be independent.

8 CONCLUSION
We proposed the new notion of expected Shapley-like scores for

Boolean functions, proved that computing these scores can always

be reduced in polynomial-time to the well-studied problem of com-

puting expected values, and that these two problems are often even

equivalent (under commonplace assumptions). We designed algo-

rithms for deterministic and decomposable Boolean circuits and

implemented them in the setting of probabilistic databases, where

our preliminary experimental results show that these scoring mech-

anisms could actually be used in practice. We leave as future work

the study of approximation algorithms for this new notion. In par-

ticular, it is known that Score𝑐
Shapley

(𝑞) has a fully polynomial-time
randomized scheme [15] whenever 𝑞 is a UCQ [9], and one could

study whether this stays true for the probabilistic variant. Still we

note that, since the reduction from Fact 2.3 is parsimonious, we

inherit the few hardness results of the non-probabilistic setting,

such as those of [27] for conjunctive queries with negations.

Pratik Karmakar, Mikaël Monet, Pierre Senellart, and Stéphane Bressan

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.

[2] Omer Abramovich, Daniel Deutch, Nave Frost, Ahmet Kara, and Dan Olteanu.

2023. Banzhaf Values for Facts in Query Answering. arXiv preprint
arXiv:2308.05588 (2023).

[3] Antoine Amarilli. 2023. Uniform Reliability for Unbounded Homomorphism-

Closed Graph Queries. In ICDT (LIPIcs, Vol. 255). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 14:1–14:17. https://arxiv.org/abs/2209.11177

[4] Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre Senellart. 2020.

Connecting knowledge compilation classes and width parameters. Theory of
Computing Systems 64 (2020), 861–914.

[5] Marcelo Arenas, Pablo Barceló, Leopoldo E. Bertossi, and Mikaël Monet. 2021.

The Tractability of SHAP-Score-Based Explanations for Classification over Deter-

ministic and Decomposable Boolean Circuits. In AAAI. AAAI Press, 6670–6678.
[6] Marcelo Arenas, Pablo Barceló, Leopoldo E Bertossi, and Mikaël Monet. 2023. On

the Complexity of SHAP-Score-Based Explanations: Tractability via Knowledge

Compilation and Non-Approximability Results. J. Mach. Learn. Res. 24, 63 (2023),
1–58.

[7] Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, and Andreas Pieris.

2022. Database Theory. Work in progress, latest version at https://github.com/

pdm-book/community.

[8] John F Banzhaf III. 1964. Weighted voting doesn’t work: A mathematical analysis.

Rutgers L. Rev. 19 (1964), 317.
[9] Leopoldo Bertossi, Benny Kimelfeld, Ester Livshits, and Mikaël Monet. 2023. The

Shapley value in database management. ACM Sigmod Record 52, 2 (2023), 6–17.

[10] Nilesh Dalvi and Dan Suciu. 2013. The dichotomy of probabilistic inference for

unions of conjunctive queries. Journal of the ACM (JACM) 59, 6 (2013), 1–87.
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf

[11] John Deegan and Edward W Packel. 1978. A new index of power for simple

n-person games. International Journal of Game Theory 7 (1978), 113–123.

[12] Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. 2021.

On the Tractability of SHAP Explanations. In AAAI. AAAI Press, 6505–6513.
[13] Daniel Deutch, Nave Frost, Benny Kimelfeld, andMikaël Monet. 2022. Computing

the Shapley value of facts in query answering. In SIGMOD Conference. ACM,

1570–1583.

[14] Manfred J Holler and Edward W Packel. 1983. Power, luck and the right index.

Zeitschrift für Nationalökonomie 43 (1983), 21–29.
[15] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. 1986. Random generation

of combinatorial structures from a uniform distribution. TCS 43 (1986), 169–188.
[16] Ron J Johnston. 1977. National sovereignty and national power in European

institutions. Environment and Planning A 9, 5 (1977), 569–577.

[17] Ronald John Johnston. 1978. On the measurement of power: Some reactions to

Laver. Environment and Planning A 10, 8 (1978), 907–914.

[18] Ahmet Kara, Dan Olteanu, and Dan Suciu. 2023. From Shapley Value to Model

Counting and Back. arXiv preprint arXiv:2306.14211 (2023).
[19] Adam Karczmarz, Tomasz P. Michalak, Anish Mukherjee, Piotr Sankowski, and

Piotr Wygocki. 2022. Improved feature importance computation for tree models

based on the Banzhaf value. In Uncertainty in Artificial Intelligence, Proceedings
of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI 2022,
1-5 August 2022, Eindhoven, The Netherlands (Proceedings of Machine Learning
Research, Vol. 180), James Cussens and Kun Zhang (Eds.). PMLR, 969–979. https:

//proceedings.mlr.press/v180/karczmarz22a.html

[20] Werner Kirsch and Jessica Langner. 2010. Power indices and minimal winning

coalitions. Social Choice and Welfare 34, 1 (2010), 33–46. http://www.jstor.org/

stable/41108037

[21] Jean-Marie Lagniez and Pierre Marquis. 2017. An Improved Decision-DNNF

Compiler. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles
Sierra (Ed.). ijcai.org, 667–673. https://doi.org/10.24963/IJCAI.2017/93

[22] Annick Laruelle. 1999. On the choice of a power index. Technical Report. Instituto
Valenciano de Investigaciones Económicas.

[23] Ester Livshits, Leopoldo Bertossi, Benny Kimelfeld, and Moshe Sebag. 2021. The

Shapley value of tuples in query answering. Logical Methods in Computer Science
17 (2021).

[24] Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. 2020.

The Shapley value of tuples in query answering. In ICDT, Vol. 155. Schloss
Dagstuhl, 20:1–20:19. https://arxiv.org/abs/1904.08679

[25] Mikaël Monet. 2020. Solving a Special Case of the Intensional vs Extensional

Conjecture in Probabilistic Databases. In Proceedings of PODS. 149–163.
[26] J Scott Provan and Michael O Ball. 1983. The complexity of counting cuts and

of computing the probability that a graph is connected. SIAM J. Comput. 12, 4
(1983), 777–788. https://epubs.siam.org/doi/abs/10.1137/0212053

[27] Alon Reshef, Benny Kimelfeld, and Ester Livshits. 2020. The impact of negation

on the complexity of the Shapley value in conjunctive queries. In Proceedings of
PODS. 285–297. https://arxiv.org/abs/1912.12610

[28] Pierre Senellart. 2017. Provenance and Probabilities in Relational Databases:

From Theory to Practice. SIGMOD Record 46, 4 (Dec. 2017).

[29] Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. 2018. ProvSQL:

Provenance and Probability Management in PostgreSQL. Proc. VLDB Endow. 11,
12 (2018), 2034–2037. http://www.vldb.org/pvldb/vol11/p2034-senellart.pdf

[30] Lloyd S Shapley et al. 1953. A value for n-person games. (1953).

[31] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic
Databases. Morgan & Claypool Publishers.

[32] G Tseitin. 1968. On the complexity of derivation in propositional calculus. Studies
in Constrained Mathematics and Mathematical Logic (1968).

[33] Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. 2022. On

the tractability of SHAP explanations. Journal of Artificial Intelligence Research
74 (2022), 851–886.

http://webdam.inria.fr/Alice/
https://arxiv.org/abs/2308.05588
https://arxiv.org/abs/2209.11177
https://arxiv.org/abs/1811.02944
https://arxiv.org/abs/2104.08015
https://arxiv.org/abs/2104.08015
https://arxiv.org/abs/2104.08015
https://github.com/pdm-book/community
https://github.com/pdm-book/community
https://github.com/pdm-book/community
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://arxiv.org/abs/2112.08874
https://arxiv.org/abs/2112.08874
http://www2.stat.duke.edu/~scs/Courses/Stat376/Papers/ConvergeRates/RandomizedAlgs/JerrumValiantVaziraniTCS1986.pdf
http://www2.stat.duke.edu/~scs/Courses/Stat376/Papers/ConvergeRates/RandomizedAlgs/JerrumValiantVaziraniTCS1986.pdf
https://arxiv.org/abs/2306.14211
https://arxiv.org/abs/2306.14211
https://proceedings.mlr.press/v180/karczmarz22a.html
https://proceedings.mlr.press/v180/karczmarz22a.html
http://www.jstor.org/stable/41108037
http://www.jstor.org/stable/41108037
https://doi.org/10.24963/IJCAI.2017/93
http://www.ivie.es/downloads/docs/wpasad/wpasad-1999-10.pdf
https://arxiv.org/abs/1904.08679
https://arxiv.org/abs/1912.11864
https://arxiv.org/abs/1912.11864
https://epubs.siam.org/doi/abs/10.1137/0212053
https://arxiv.org/abs/1912.12610
https://pierre.senellart.com/publications/senellart2017provenance.pdf
https://pierre.senellart.com/publications/senellart2017provenance.pdf
http://www.vldb.org/pvldb/vol11/p2034-senellart.pdf

Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases

A PROOFS FOR SECTION 3 (EQUIVALENCEWITH EXPECTED VALUES)
A.1 From Expected Values to Expected Scores

Lemma 3.2. We have EScore𝑐 (F) ⩽P ENV★,★(F) for any tractable coefficient function 𝑐 and any class of Boolean functions F .

Proof. Let 𝜑 : 2
𝑉 → {0, 1} in F , probability values 𝑝𝑦 for 𝑦 ∈ 𝑉 , and 𝑥 ∈ 𝑉 . We wish to compute EScore𝑐 (𝜑, 𝑥). Observe that

EScore𝑐 (𝜑, 𝑥) = 𝐴 − 𝐵, where

𝐴 =
∑︁
𝑍⊆𝑉
𝑥∈𝑍

Π𝑉 (𝑍)
∑︁

𝐸⊆𝑍\{𝑥 }
𝑐 (|𝑍 |, |𝐸 |)𝜑 (𝐸 ∪ {𝑥})

𝐵 =
∑︁
𝑍⊆𝑉
𝑥∈𝑍

Π𝑉 (𝑍)
∑︁

𝐸⊆𝑍\{𝑥 }
𝑐 (|𝑍 |, |𝐸 |)𝜑 (𝐸) .

Let us focus on 𝐴. Letting 𝑉 ′
def

= 𝑉 \ {𝑥}, notice that these are the variables over which 𝜑+𝑥 is defined. Letting 𝑛
def

= |𝑉 ′ |, we have

𝐴 =
∑︁
𝑍⊆𝑉
𝑥∈𝑍

Π𝑉 (𝑍)
∑︁

𝐸⊆𝑍\{𝑥 }
𝑐 (|𝑍 |, |𝐸 |)𝜑+𝑥 (𝐸)

= 𝑝𝑥

∑︁
𝑍⊆𝑉 ′

Π𝑉 ′ (𝑍)
∑︁
𝐸⊆𝑍

𝑐 (|𝑍 | + 1, |𝐸 |)𝜑+𝑥 (𝐸)

= 𝑝𝑥

∑︁
𝑍⊆𝑉 ′

∑︁
𝐸⊆𝑍

𝑐 (|𝑍 | + 1, |𝐸 |)Π𝑉 ′ (𝑍)𝜑+𝑥 (𝐸)

= 𝑝𝑥

𝑛∑︁
𝑘=0

∑︁
𝑍⊆𝑉 ′
|𝑍 |=𝑘

𝑘∑︁
ℓ=0

∑︁
𝐸⊆𝑍
|𝐸 |=ℓ

𝑐 (𝑘 + 1, ℓ)Π𝑉 ′ (𝑍)𝜑+𝑥 (𝐸)

= 𝑝𝑥

𝑛∑︁
𝑘=0

𝑘∑︁
ℓ=0

𝑐 (𝑘 + 1, ℓ)
∑︁
𝑍⊆𝑉 ′
|𝑍 |=𝑘

∑︁
𝐸⊆𝑍
|𝐸 |=ℓ

Π𝑉 ′ (𝑍)𝜑+𝑥 (𝐸)

= 𝑝𝑥

𝑛∑︁
𝑘=0

𝑘∑︁
ℓ=0

𝑐 (𝑘 + 1, ℓ)ENV𝑘,ℓ (𝜑+𝑥) .

We can do exactly the same for 𝐵 (replacing 𝜑+𝑥 by 𝜑−𝑥), after which we obtain Equation (1) from the proof sketch, repeated here:

EScore𝑐 (𝜑, 𝑥) = 𝑝𝑥

𝑛∑︁
𝑘=0

𝑘∑︁
ℓ=0

𝑐 (𝑘 + 1, ℓ)
(
ENV𝑘,ℓ (𝜑+𝑥) − ENV𝑘,ℓ (𝜑−𝑥)

)
.

We can compute the coefficients 𝑐 (𝑘 + 1, ℓ) in P because 𝑐 is tractable. Therefore, all that is left to show is that we can compute in P all the

values ENV𝑘,ℓ (𝜑+𝑥) and ENV𝑘,ℓ (𝜑−𝑥) for 𝑘, ℓ ∈ [𝑛]. We point out that this is not obvious, because F might not be closed under conditioning,

and unfortunately setting 𝑝𝑥 to 0 or 1 is not enough to directly give us the values we want. In [18], this annoying subtlety is handled by

using the closure under OR-substitutions of the class F (see the proof of their Lemma 3.2). In our case, we will overcome this problem by

using the fact that we can freely choose the probabilities.

Let 𝑧 ∈ [0, 1], and for 𝑦 ∈ 𝑉 ′ = 𝑉 \ {𝑥} define 𝑝𝑧𝑦
def

= 𝑝𝑦 , and 𝑝
𝑧
𝑥 = 𝑧. Define Π𝑧

and ENV𝑧★,★(𝜑) as expected. We claim that the following

equation holds, for 𝑖, 𝑗 ∈ [𝑛 + 1]:

ENV𝑧𝑖, 𝑗 (𝜑) = 𝑧
[
ENV𝑖−1, 𝑗 (𝜑−𝑥) + ENV𝑖−1, 𝑗−1 (𝜑+𝑥)

]
+ (1 − 𝑧)ENV𝑖, 𝑗 (𝜑−𝑥), (6)

where we extended the definition of ENV★,★(𝜑+𝑥) and ENV★,★(𝜑−𝑥) to have value zero for out-of-bound (𝑖, 𝑗)-indices. Before proving this

claim, let us explain why this allows us to conclude. Indeed, we can then use the oracle to ENV★,★(F) with 𝑧 = 0 to compute all the values

ENV𝑘,ℓ (𝜑−𝑥). Once these are known, we use the oracle again but this time with 𝑧 = 1, and thanks to Equation (6) again we can recover all

the values ENV𝑘,ℓ (𝜑+𝑥).
Therefore all that is left to do is prove Equation (6). We have:

ENV𝑧𝑖, 𝑗 (𝜑)
def

=
∑︁
𝑍⊆𝑉
|𝑍 |=𝑖

Π𝑉 (𝑍)
∑︁
𝐸⊆𝑍
|𝐸 |=𝑗

𝜑 (𝐸)

Pratik Karmakar, Mikaël Monet, Pierre Senellart, and Stéphane Bressan

=
∑︁
𝑍⊆𝑉
|𝑍 |=𝑖
𝑥∉𝑍

Π𝑉 (𝑍)
∑︁
𝐸⊆𝑍
|𝐸 |=𝑗

𝜑 (𝐸)

+
∑︁
𝑍⊆𝑉
|𝑍 |=𝑖
𝑥∈𝑍

Π𝑉 (𝑍)
∑︁
𝐸⊆𝑍
|𝐸 |=𝑗

𝜑 (𝐸).

Call 𝑇 the top term, 𝐵 the bottom one. We have:

𝑇 = (1 − 𝑧)
∑︁
𝑍⊆𝑉 ′
|𝑍 |=𝑖

Π𝑉 ′ (𝑍)
∑︁
𝐸⊆𝑍
|𝐸 |=𝑗

𝜑 (𝐸)

= (1 − 𝑧)
∑︁
𝑍⊆𝑉 ′
|𝑍 |=𝑖

Π𝑉 ′ (𝑍)
∑︁
𝐸⊆𝑍
|𝐸 |=𝑗

𝜑−𝑥 (𝐸)

= (1 − 𝑧)ENV𝑖, 𝑗 (𝜑−𝑥).

Let us now inspect 𝐵.

𝐵 = 𝑧
∑︁
𝑍⊆𝑉 ′
|𝑍 |=𝑖−1

Π𝑉 ′ (𝑍)
∑︁

𝐸⊆𝑍∪{𝑥 }
|𝐸 |=𝑗

𝜑 (𝐸)

= 𝑧
∑︁
𝑍⊆𝑉 ′
|𝑍 |=𝑖−1

Π𝑉 ′ (𝑍)
∑︁

𝐸⊆𝑍∪{𝑥 }
|𝐸 |=𝑗
𝑥∉𝐸

𝜑 (𝐸)

+ 𝑧
∑︁
𝑍⊆𝑉 ′
|𝑍 |=𝑖−1

Π𝑉 ′ (𝑍)
∑︁

𝐸⊆𝑍∪{𝑥 }
|𝐸 |=𝑗
𝑥∈𝐸

𝜑 (𝐸) .

Call 𝑇 ′ and 𝐵′ the top and bottom terms. Then:

𝑇 ′ = 𝑧
∑︁
𝑍⊆𝑉 ′
|𝑍 |=𝑖−1

Π𝑉 ′ (𝑍)
∑︁
𝐸⊆𝑍
|𝐸 |=𝑗

𝜑−𝑥 (𝐸)

= 𝑧 × ENV𝑖−1, 𝑗 (𝜑−𝑥),

and

𝐵′ = 𝑧
∑︁
𝑍⊆𝑉 ′
|𝑍 |=𝑖−1

Π𝑉 ′ (𝑍)
∑︁
𝐸⊆𝑍
|𝐸 |=𝑗−1

𝜑 (𝐸 ∪ {𝑥})

= 𝑧
∑︁
𝑍⊆𝑉 ′
|𝑍 |=𝑖−1

Π𝑉 ′ (𝑍)
∑︁
𝐸⊆𝑍
|𝐸 |=𝑗−1

𝜑+𝑥 (𝐸)

= 𝑧 × ENV𝑖−1, 𝑗−1 (𝜑+𝑥).

Putting it all together, we indeed obtain Equation (6), thus concluding the proof. □

Lemma 3.4. We have EV★(F) ⩽P EV(F) for any F .

Proof. Let 𝜑 ∈ F over variables 𝑉 , probability values 𝑝𝑥 for each 𝑥 ∈ 𝑉 , and 𝑘 ∈ [|𝑉 |]. Let 𝑛 def

= |𝑉 |. We wish to compute EV𝑘 (𝜑). We

use again polynomial interpolation to compute all the values EV𝑗 (𝜑) for 𝑗 ∈ [𝑛] and return EV𝑘 (𝜑).
Let 𝑧0, . . . , 𝑧𝑛 be 𝑛 + 1 distinct positive values in Q. For 𝑖 ∈ [𝑛] and 𝑥 ∈ 𝑉 , define 𝑐

𝑧𝑖
𝑥

def

= 1 − 𝑝𝑥 + 𝑧𝑖𝑝𝑥 , define 𝑝
𝑧𝑖
𝑥

def

=
𝑧𝑖𝑝𝑥

𝑐
𝑧𝑖
𝑥

, and

define Π𝑧𝑖
and EV𝑧𝑖 (𝜑) as expected. Again, these are all valid probability mappings, and observe that this time 1 − 𝑝𝑧𝑖𝑥 =

1−𝑝𝑥
𝑐
𝑧𝑖
𝑥

. Defining as

before 𝐶𝑧𝑖
def

=
∏

𝑥∈𝑉 𝑐
𝑧𝑖
𝑥 , it is this time much easier to derive the equality EV𝑧𝑖 (𝜑) = 1

𝐶𝑧𝑖

∑𝑛
𝑗=0

𝑧𝑖
𝑗EV𝑗 (𝜑):

EV𝑧𝑖 (𝜑) def

=
∑︁
𝑍⊆𝑉

Π𝑧𝑖
𝑉
(𝑍)𝜑 (𝑍)

Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases

=

𝑛∑︁
𝑗=0

∑︁
𝑍⊆𝑉
|𝑍 |=𝑗

Π𝑧𝑖
𝑉
(𝑍)𝜑 (𝑍)

=

𝑛∑︁
𝑗=0

∑︁
𝑍⊆𝑉
|𝑍 |=𝑗

𝜑 (𝑍)
∏
𝑥∈𝑍

𝑝
𝑧𝑖
𝑥

∏
𝑥∈𝑉 \𝑍

(1 − 𝑝𝑧𝑖𝑥)

=
1

𝐶𝑧𝑖

𝑛∑︁
𝑗=0

∑︁
𝑍⊆𝑉
|𝑍 |=𝑗

𝜑 (𝑍)𝑧𝑖 |𝑍 |
∏
𝑥∈𝑍

𝑝𝑥

∏
𝑥∈𝑉 \𝑍

(1 − 𝑝𝑥)

=
1

𝐶𝑧𝑖

𝑛∑︁
𝑗=0

𝑧𝑖
𝑗
∑︁
𝑍⊆𝑉
|𝑍 |=𝑗

𝜑 (𝑍)Π𝑉 (𝑍)

=
1

𝐶𝑧𝑖

𝑛∑︁
𝑗=0

𝑧𝑖
𝑗EV𝑗 (𝜑).

We can then conclude just like in the proof of Lemma 3.3. □

A.2 From Expected Scores to Expected Values
Lemma 3.9. We have ENV(F) ⩽P EScore𝑐

Banzhaf
(F) for any F closed under conjunctions (resp., disjunctions) with fresh variables.

Proof. Let us first show that for 𝜑 ′ : 2
𝑉 ′ → {0, 1} and probability values 𝑝𝑦 for 𝑦 ∈ 𝑉 ′ and 𝑥 ∈ 𝑉 ′ we have the equation claimed in the

proof sketch, restated here:

EScore𝑐
Banzhaf

(𝜑 ′, 𝑥) = 𝑝𝑥 [ENV(𝜑 ′+𝑥) − ENV(𝜑 ′−𝑥)] .
The derivation is similar to that of Lemma 3.2, but simpler. Observe that EScore𝑐

Banzhaf
(𝜑, 𝑥) = 𝐴 − 𝐵, where

𝐴 =
∑︁
𝑍⊆𝑉 ′
𝑥∈𝑍

Π𝑉 ′ (𝑍)
∑︁

𝐸⊆𝑍\{𝑥 }
𝜑 ′ (𝐸 ∪ {𝑥})

𝐵 =
∑︁
𝑍⊆𝑉 ′
𝑥∈𝑍

Π𝑉 ′ (𝑍)
∑︁

𝐸⊆𝑍\{𝑥 }
𝜑 ′ (𝐸).

Let us focus on 𝐴. Letting 𝑉 ′′
def

= 𝑉 ′ \ {𝑥}, notice that these are the variables over which 𝜑 ′+𝑥 is defined. Letting 𝑛
def

= |𝑉 ′′ |, we have

𝐴 =
∑︁
𝑍⊆𝑉 ′
𝑥∈𝑍

Π𝑉 ′ (𝑍)
∑︁

𝐸⊆𝑍\{𝑥 }
𝜑 ′+𝑥 (𝐸)

= 𝑝𝑥

∑︁
𝑍⊆𝑉 ′′

Π𝑉 ′′ (𝑍)
∑︁
𝐸⊆𝑍

𝜑 ′+𝑥 (𝐸)

= 𝑝𝑥ENV(𝜑 ′+𝑥).

We can do the same for 𝐵 to obtain

𝐵 = 𝑝𝑥ENV(𝜑 ′−𝑥),
hence the equation.

We now prove Lemma 3.9 in the case that F is closed under conjunctions with fresh variables. Let then 𝜑 : 2
𝑉 → {0, 1}, and probabilities

𝑝𝑦 for𝑦 ∈ 𝑉 . We want to compute ENV(𝜑). Since F is closed under conjunctions with fresh variables, let 𝑥 ∉ 𝑉 and compute a representation

of 𝜑 ′
def

= 𝜑 ∧ 𝑥 in F . We call the oracle to EScore𝑐
Banzhaf

on 𝜑 ′ with same probabilities for 𝑦 ∈ 𝑉 and with 𝑝𝑥
def

= 1. By the above equation

(with 𝑉 ′ = 𝑉 ∪ {𝑥}) this immediately gives us ENV(𝜑) and concludes.

For the case when F is closed under disjunctions with fresh variables we do the same but with 𝜑 ′
def

= 𝜑 ∨ 𝑥 : now by Equation (4)

the oracle call returns

[∑
𝑍⊆𝑉 Π𝑉 (𝑍)

∑
𝐸⊆𝑍 1

]
− ENV(𝜑), which is equal to

[∑
𝑍⊆𝑉 Π𝑉 (𝑍)2 |𝑍 |

]
− ENV(𝜑). We conclude the proof

by showing that the first term is equal to

∏
𝑦∈𝑉 (1 + 𝑝𝑦), which can be computed in polynomial time, hence we can indeed recover

ENV(𝜑). Indeed, let 𝑛 def

= |𝑉 |, and order the variables of 𝑉 arbitrarily as 𝑦1, . . . , 𝑦𝑛 . For 𝑖 ∈ [𝑛], define 𝑉𝑖
def

= {𝑦 𝑗 | 1 ⩽ 𝑗 ⩽ 𝑖 ∈ [𝑛]}

Pratik Karmakar, Mikaël Monet, Pierre Senellart, and Stéphane Bressan

(note that 𝑉0 = ∅), and 𝑑𝑖
def

=
∑
𝑍⊆𝑉𝑖 Π𝑉𝑖 (𝑍)2 |𝑍 | . Observe that the quantity that we want is 𝑑𝑛 . But it is clear that 𝑑0 = 1 and that

𝑑𝑖 =
∑
𝑍⊆𝑉𝑖
𝑦𝑖∉𝑍

Π𝑉𝑖 (𝑍)2 |𝑍 | +
∑
𝑍⊆𝑉𝑖
𝑦𝑖 ∈𝑍

Π𝑉𝑖 (𝑍)2 |𝑍 | = (1 − 𝑝𝑦𝑖)𝑑𝑛−1 + 𝑝𝑦𝑖 × 𝑑𝑛−1 × 2 = (1 + 𝑝𝑦𝑖)𝑑𝑛−1 for 1 ⩽ 𝑖 ⩽ 𝑛, which concludes. □

Lemma 3.10. We have EV(F) ⩽P ENV(F) for any class F that is closed under conditioning.

Proof. Let 𝜑 ∈ F over variables𝑉 with 𝑛
def

= |𝑉 | and probability values 𝑝𝑥 for each 𝑥 ∈ 𝑉 ; we want to compute EV(𝜑). We use polynomial

interpolation to compute all the values EV𝑗 (𝜑) for 𝑗 ∈ [𝑛], after which we can simply return

∑𝑛
𝑗=0

EV𝑗 (𝜑) = EV(𝜑).
Without loss of generality, we can assume that 𝑝𝑥 < 1 for all 𝑥 ∈ 𝑉 . Indeed, if there is 𝑥 such that 𝑝𝑥 = 1, we consider 𝑉 ′ = 𝑉 \ {𝑥} and

𝜑 ′ = 𝜑+𝑥 . Then EV𝑗 (𝜑) = EV𝑗−1 (𝜑 ′) for any 𝑗 ⩾ 1 and EV0 (𝜑) = 0. This is indeed without loss of generality because F is closed under

conditioning, so that 𝜑+𝑥 is in F .
Let 𝑀

def

= max𝑥∈𝑉 𝑝𝑥 < 1. Let 𝑧0, . . . , 𝑧𝑛 be 𝑛 + 1 distinct rational values in (0, 1 − 𝑀). For 𝑖 ∈ [𝑛] and 𝑥 ∈ 𝑉 , we define this time

𝑝
𝑧𝑖
𝑥

def

=
𝑧𝑖𝑝𝑥
1−𝑝𝑥 , and define Π𝑧𝑖

and EV𝑧𝑖 (𝜑) as expected. Again, these are all valid probability mappings. Define 𝐶
def

=
∏

𝑥∈𝑉 (1 − 𝑝𝑥). We will

show that we have ENV𝑧𝑖 (𝜑) = 1

𝐶

∑𝑛
𝑗=0

𝑧
𝑗
𝑖
EV𝑗 (𝜑), which allows us to conclude as in the proof of Lemma 3.3. Indeed:

ENV𝑧𝑖 (𝜑) =
∑︁
𝑍⊆𝑉

Π𝑧𝑖
𝑉
(𝑍)

∑︁
𝐸⊆𝑍

𝜑 (𝐸)

=
∑︁
𝐸⊆𝑉

𝜑 (𝐸)
∑︁

𝐸⊆𝑍⊆𝑉
Π𝑧𝑖
𝑉
(𝑍)

=
∑︁
𝐸⊆𝑉

𝜑 (𝐸)
∑︁

𝐸⊆𝑍⊆𝑉

∏
𝑥∈𝑍

𝑝
𝑧𝑖
𝑥

∏
𝑥∈𝑉 \𝑍

(1 − 𝑝𝑧𝑖𝑥)

=
1

𝐶

∑︁
𝐸⊆𝑉

𝜑 (𝐸)
∑︁

𝐸⊆𝑍⊆𝑉

∏
𝑥∈𝑍

𝑧𝑖𝑝𝑥

∏
𝑥∈𝑉 \𝑍

(1 − 𝑝𝑥 − 𝑧𝑖𝑝𝑥)

=
1

𝐶

∑︁
𝐸⊆𝑉

𝜑 (𝐸)
∏
𝑥∈𝐸

𝑧𝑖𝑝𝑥

∏
𝑥∈𝑉 \𝐸

[(𝑧𝑖𝑝𝑥) + (1 − 𝑝𝑥 − 𝑧𝑖𝑝𝑥)]

=
1

𝐶

∑︁
𝐸⊆𝑉

𝜑 (𝐸)
∏
𝑥∈𝐸

𝑧𝑖𝑝𝑥

∏
𝑥∈𝑉 \𝐸

(1 − 𝑝𝑥)

=
1

𝐶

𝑛∑︁
𝑗=0

∑︁
𝐸⊆𝑉
|𝐸 |=𝑗

𝑧
𝑗
𝑖
Π𝑉 (𝐸)𝜑 (𝐸)

=
1

𝐶

𝑛∑︁
𝑗=0

𝑧
𝑗
𝑖
EV𝑗 (𝜑) . □

B PROOFS FOR SECTION 4 (DD CIRCUITS)
B.1 Proof of Theorem 4.2

Theorem 4.2. Let 𝑐 be a tractable coefficient function. Given a d-D circuit 𝐶 on variables 𝑉 , probability values 𝑝𝑦 for 𝑦 ∈ 𝑉 , and 𝑥 ∈ 𝑉 ,
Algorithm 1 correctly computes EScore𝑐 (𝐶, 𝑥) in polynomial time. Moreover, if we ignore the cost of arithmetic operations, it is in time
𝑂
(
|𝐶 | × |𝑉 |5 + T𝑐 (|𝑉 |) × |𝑉 |2

)
where T𝑐 (𝛼) is the cost of computing the coefficient function on inputs ⩽ 𝛼 .

Proving Theorem 4.2, as explained in Section 4, boils down to showing how we can compute, given a tight d-D circuit, the ENV★,★
quantities. We then show:

Proposition B.1. Given as input a tight d-D circuit 𝐶′ on variables 𝑉 ′ and probability values 𝑝𝑦 for 𝑦 ∈ 𝑉 ′ we can compute all the values
ENV𝑘,ℓ (𝐶) for 𝑘, ℓ ∈ [|𝑉 ′ |] in 𝑂 (|𝐶′ | × |𝑉 ′ |4), ignoring the cost of arithmetic operations.

Recall that this will be instantiated with 𝐶′ = 𝐶0 and 𝐶
′ = 𝐶1 for the circuits 𝐶0 and 𝐶1 from Section 4 (which should not be confused

with circuit 𝐶 of that section). Also note that, even though by Equation (1) we only need to compute the values for 𝑘 ⩾ ℓ (since they are zero

when 𝑘 > ℓ), we still do as if we wanted to naively compute them all. This allows us to obtain cleaner expressions, in which the ranges for

the sums are easier to read. Let us define 𝑛′
def

= |𝑉 ′ |.
We first explain how to compute an intermediate quantity that will be needed later.

Definition B.2. For a gate 𝑔 ∈ 𝐶′ and integer 𝑘 ∈ [𝑛′], define 𝛿𝑔
𝑘

def

=
∑
𝑍⊆Vars(𝑔)
|𝑍 |=𝑘

ΠVars(𝑔) (𝑍). (Note that 𝛿
𝑔

𝑘
= 0 when 𝑘 > Vars(𝑔′).)

Notice that 𝛿
𝑔

𝑘
only depends on the “structure” of the circuit, but not on its semantics.

Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases

Lemma B.3. We can compute in 𝑂 (|𝐶′ | × 𝑛′2) all quantities 𝛿𝑔
𝑘
, ignoring the cost of arithmetic operations.

Proof. We compute them by bottom-up induction on 𝐶′.

Constant gates. Let 𝑔 be a constant gate. Then Vars(𝑔) = ∅, so 𝛿𝑔
𝑘
= 0 for 𝑘 ⩾ 1, and 𝛿

𝑔

0
= 1 (indeed Π∅ (∅) = 1 since this is the neutral

element of multiplication).

Input gates. Let 𝑔 be an input gate, with variable 𝑦. Then Vars(𝑔) = {𝑦}, so 𝛿𝑔
𝑘
= 0 for 𝑘 ⩾ 2, while 𝛿

𝑔

0
= ΠVars(𝑔) (∅) = 1 − 𝑝𝑦 and

𝛿
𝑔

1
= ΠVars(𝑔) ({𝑦}) = 𝑝𝑦 .

Negation gates. Let 𝑔 be a ¬-gate with input 𝑔′. Notice that Vars(𝑔) = Vars(𝑔′). So we have 𝛿
𝑔

𝑘
= 𝛿

𝑔′

𝑘
for all 𝑘 ∈ [𝑛′] and we are done

since the values 𝛿
𝑔′

𝑘
have already been computed inductively.

Deterministic smooth ∨-gates. Let 𝑔 be a smooth deterministic ∨-gate with inputs 𝑔1, 𝑔2. Since 𝑔 is smooth we have Vars(𝑔) =
Vars(𝑔1) = Vars(𝑔2). In particular we have 𝛿

𝑔

𝑘
= 𝛿

𝑔1

𝑘
for all 𝑘 ∈ [𝑛′] and we are done.

Decomposable ∧-gates. Let 𝑔 be a decomposable ∧-gate with inputs 𝑔1, 𝑔2. Notice that Vars(𝑔) = Vars(𝑔1) ∪ Vars(𝑔2) with the union

being disjoint. We can then decompose 𝑍 into a “left” part 𝑍1 ⊆ Vars(𝑔1) of size 𝑘1 ∈ {0, . . . , 𝑘} and a “right” part 𝑍2 ⊆ Vars(𝑔2) of
size 𝑘 − 𝑘1. We then have:

𝛿
𝑔

𝑘
=

∑︁
𝑍⊆Vars(𝑔)
|𝑍 |=𝑘

ΠVars(𝑔) (𝑍)

=

𝑘∑︁
𝑘1=0

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

∑︁
𝑍2⊆Vars(𝑔2)
|𝑍2 |=𝑘−𝑘1

ΠVars(𝑔1) (𝑍1)ΠVars(𝑔2) (𝑍2)

=

𝑘∑︁
𝑘1=0

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

ΠVars(𝑔1) (𝑍1)
∑︁

𝑍2⊆Vars(𝑔2)
|𝑍2 |=𝑘−𝑘1

ΠVars(𝑔2) (𝑍2)

=

𝑘∑︁
𝑘1=0

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

ΠVars(𝑔1) (𝑍1)𝛿𝑔2

𝑘−𝑘1

=

𝑘∑︁
𝑘1=0

𝛿
𝑔2

𝑘−𝑘1

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

ΠVars(𝑔1) (𝑍1)

=

𝑘∑︁
𝑘1=0

𝛿
𝑔1

𝑘1

𝛿
𝑔2

𝑘−𝑘1

,

and we are done.

The complexity of every step is𝑂 (𝑛′) except for ∧-gates where the complexity is𝑂 (𝑛′2); each step needs to be repeated for every gate of𝐶′,
which gives the stated complexity. This concludes the proof of Lemma B.3. □

We next define ENV★,★-quantities for all gates of the circuit 𝐶′.

Definition B.4. For a gate 𝑔 ∈ 𝐶′ and 𝑘, ℓ ∈ [𝑛′], define

𝛼
𝑔

𝑘,ℓ

def

=
∑︁

𝑍⊆Vars(𝑔)
|𝑍 |=𝑘

∑︁
𝐸⊆𝑍
|𝐸 |=ℓ

ΠVars(𝑔) (𝑍)𝐶′𝑔 (𝐸) .

If we can show that we can compute all quantities 𝛼
𝑔

𝑘,ℓ
in the required complexity then we are done: indeed, we can then take 𝑔 to be the

output gate of 𝐶′, which gives us the quantities ENV𝑘,ℓ (𝐶′) that we wanted. We show just that in the next lemma.

Lemma B.5. We can compute in 𝑂 (|𝐶′ | × 𝑛′4) all the quantities 𝛼𝑔
𝑘,ℓ

.

Proof. This is again done by bottom-up induction on 𝐶′.

Constant gates. Let 𝑔 be a constant gate. Then Vars(𝑔) = ∅, so 𝛼𝑔
𝑘,ℓ

= 0 when (𝑘, ℓ) ≠ (0, 0), and 𝛼𝑔
0,0

= 1 if 𝑔 is a constant 1-gate and

𝛼
𝑔

0,0
= 0 if it is a constant 0-gate.

Pratik Karmakar, Mikaël Monet, Pierre Senellart, and Stéphane Bressan

Input gates. Let 𝑔 be an input gate, with variable 𝑦. Then Vars(𝑔) = {𝑦}, so all values other than 𝛼
𝑔

0,0
, 𝛼

𝑔

1,0
and 𝛼

𝑔

1,1
are null, and one

can easily check that 𝛼
𝑔

0,0
= 𝛼

𝑔

1,0
= 0 and 𝛼

𝑔

1,1
= 𝑝𝑦 .

Negation gates. Let 𝑔 be a ¬-gate with input 𝑔′. Notice that Vars(𝑔) = Vars(𝑔′) and that 𝐶′𝑔 (𝐸) = 1 −𝐶′
𝑔′ (𝐸) for any 𝐸 ⊆ Vars(𝑔). We

have

𝛼
𝑔

𝑘,ℓ
=

∑︁
𝑍⊆Vars(𝑔)
|𝑍 |=𝑘

∑︁
𝐸⊆𝑍
|𝐸 |=ℓ

ΠVars(𝑔) (𝑍) (1 −𝐶′𝑔′ (𝐸))

=

[(
𝑘

ℓ

) ∑︁
𝑍⊆Vars(𝑔)
|𝑍 |=𝑘

ΠVars(𝑔) (𝑍)
]
− 𝛼𝑔

′

𝑘,ℓ

=

(
𝑘

ℓ

)
𝛿
𝑔

𝑘
− 𝛼𝑔

′

𝑘,ℓ
,

and we are done thanks to Lemma B.3.

Deterministic smooth ∨-gates. Let 𝑔 be a smooth deterministic ∨-gate with inputs 𝑔1, 𝑔2. Since 𝑔 is smooth we have Vars(𝑔) =
Vars(𝑔1) = Vars(𝑔2), and since it is deterministic we have 𝐶′𝑔 (𝐸) = 𝐶′𝑔1

(𝐸) + 𝐶′𝑔1

(𝐸) for any 𝐸 ⊆ Vars(𝑔). Therefore we obtain

𝛼
𝑔

𝑘,ℓ
= 𝛼

𝑔1

𝑘,ℓ
+ 𝛼𝑔2

𝑘,ℓ
and we are done.

Decomposable ∧-gates. Let 𝑔 be a decomposable ∧-gate with inputs 𝑔1, 𝑔2. Notice that Vars(𝑔) = Vars(𝑔1) ∪ Vars(𝑔2) with the union

being disjoint, and that𝐶′𝑔 (𝐸) = 𝐶′𝑔1

(𝐸 ∩ Vars(𝑔1)) ×𝐶′𝑔2

(𝐸 ∩ Vars(𝑔2)) and ΠVars(𝑔) (𝑍) = ΠVars(𝑔1) (𝑍 ∩ Vars(𝑔1)) × ΠVars(𝑔2) (𝑍 ∩
Vars(𝑔2)) for any 𝑍, 𝐸 ⊆ Vars(𝑔). We decompose the summations over 𝑍 and 𝐸 as we did in the proof of Lemma B.3 for ∧-gates. For
readability we use colors to point out which parts of the expressions are modified or moved around.

𝛼
𝑔

𝑘,ℓ
=

∑︁
𝑍⊆Vars(𝑔)
|𝑍 |=𝑘

∑︁
𝐸⊆𝑍
|𝐸 |=ℓ

ΠVars(𝑔) (𝑍)𝐶′𝑔 (𝐸)

=

𝑘∑︁
𝑘1=0

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

∑︁
𝑍2⊆Vars(𝑔2)
|𝑍2 |=𝑘−𝑘1

∑︁
𝐸⊆𝑍1∪𝑍2

|𝐸 |=ℓ

ΠVars(𝑔1) (𝑍1)ΠVars(𝑔2) (𝑍2)𝐶′𝑔 (𝐸)

=

𝑘∑︁
𝑘1=0

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

∑︁
𝑍2⊆Vars(𝑔2)
|𝑍2 |=𝑘−𝑘1

𝑘1∑︁
ℓ1=0

∑︁
𝐸1⊆𝑍1

|𝐸1 |=ℓ1

∑︁
𝐸2⊆𝑍2

|𝐸2 |=ℓ−ℓ1

ΠVars(𝑔1) (𝑍1)ΠVars(𝑔2) (𝑍2)𝐶′𝑔1

(𝐸1)𝐶′𝑔2

(𝐸2)

=

𝑘∑︁
𝑘1=0

𝑘1∑︁
ℓ1=0

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

∑︁
𝑍2⊆Vars(𝑔2)
|𝑍2 |=𝑘−𝑘1

∑︁
𝐸1⊆𝑍1

|𝐸1 |=ℓ1

∑︁
𝐸2⊆𝑍2

|𝐸2 |=ℓ−ℓ1

ΠVars(𝑔1) (𝑍1)ΠVars(𝑔2) (𝑍2)𝐶′𝑔1

(𝐸1)𝐶′𝑔2

(𝐸2)

=

𝑘∑︁
𝑘1=0

𝑘1∑︁
ℓ1=0

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

∑︁
𝐸1⊆𝑍1

|𝐸1 |=ℓ1

∑︁
𝑍2⊆Vars(𝑔2)
|𝑍2 |=𝑘−𝑘1

∑︁
𝐸2⊆𝑍2

|𝐸2 |=ℓ−ℓ1

ΠVars(𝑔1) (𝑍1)ΠVars(𝑔2) (𝑍2)𝐶′𝑔1

(𝐸1)𝐶′𝑔2

(𝐸2)

=

𝑘∑︁
𝑘1=0

𝑘1∑︁
ℓ1=0

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

∑︁
𝐸1⊆𝑍1

|𝐸1 |=ℓ1

ΠVars(𝑔1) (𝑍1)𝐶′𝑔1

(𝐸1)
∑︁

𝑍2⊆Vars(𝑔2)
|𝑍2 |=𝑘−𝑘1

∑︁
𝐸2⊆𝑍2

|𝐸2 |=ℓ−ℓ1

ΠVars(𝑔2) (𝑍2)𝐶′𝑔2

(𝐸2)

=

𝑘∑︁
𝑘1=0

𝑘1∑︁
ℓ1=0

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

∑︁
𝐸1⊆𝑍1

|𝐸1 |=ℓ1

ΠVars(𝑔1) (𝑍1)𝐶′𝑔1

(𝐸1)𝛼𝑔2

𝑘−𝑘1,ℓ−ℓ1

=

𝑘∑︁
𝑘1=0

𝑘1∑︁
ℓ1=0

𝛼
𝑔2

𝑘−𝑘1,ℓ−ℓ1

∑︁
𝑍1⊆Vars(𝑔1)
|𝑍1 |=𝑘1

∑︁
𝐸1⊆𝑍1

|𝐸1 |=ℓ1

ΠVars(𝑔1) (𝑍1)𝐶′𝑔1

(𝐸1)

=

𝑘∑︁
𝑘1=0

𝑘1∑︁
ℓ1=0

𝛼
𝑔1

𝑘1,ℓ1
× 𝛼𝑔2

𝑘−𝑘1,ℓ−ℓ1 .

Expected Shapley-Like Scores of Boolean Functions: Complexity and Applications to Probabilistic Databases

and we are done.

The complexity is given by that of the step for ¬- and ∧-gates, which are the most costly at 𝑂 (𝑛′4) (recall that computing

(𝑘
ℓ

)
is in 𝑂 (𝑘 × ℓ)),

which we need to multiply by the size of the circuit. This concludes the proof of Lemma B.5. □

In Algorithm 1, the 𝛽 values are the 𝛼 values for 𝐶1 and the 𝛾 values are the 𝛼 values for 𝐶0, and they are computed in a single pass over

the circuit𝐶 instead of first computing𝐶1 and𝐶0 and making passes over these two circuits. Therefore, Algorithm 1 is correct. To obtain the

final complexity, we need to add the cost of line 32, which is in𝑂 (𝑛′2 × T(𝑛′)) ignoring the cost of arithmetic operations, and remember that

|𝐶1 | and |𝐶0 | are in 𝑂 (|𝐶 | × |𝑉 |) by Lemma 4.1.

What remains to argue is that the number of bits (numerator and denominator) of all the 𝛼 and 𝛿 values stays polynomial. But for 𝛼
𝑔

𝑘,ℓ
for

instance we have

𝛼
𝑔

𝑘,ℓ

def

=
∑︁

𝑍⊆Vars(𝑔)
|𝑍 |=𝑘

∑︁
𝐸⊆𝑍
|𝐸 |=ℓ

ΠVars(𝑔) (𝑍)𝐶′𝑔 (𝐸)

⩽ 2
2 |𝑉 |

max

𝑍⊆Vars(𝑔)
ΠVars(𝑔) (𝑍).

If the number of bits of all numerators and denominators of all 𝑝𝑥 is bounded by 𝑏, then the numerator of 𝛼
𝑔

𝑘,ℓ
is bounded by 2

2 |𝑉 |
2
𝑏 |𝑉 | =

2
(𝑏+2) |𝑉 |

, so indeed have a polynomial number of bits for the numerators, and similar reasoning works for denominators and for the 𝛿

values.

B.2 Proof of Proposition 4.3
Proposition 4.3. Let 𝑐 be a tractable coefficient function. Given a d-D 𝐶 on variables 𝑉 , a unique probability value 𝑝 = 𝑝𝑦 for all 𝑦 ∈ 𝑉 ,

and 𝑥 ∈ 𝑉 , EScore𝑐 (𝐶, 𝑥) can be computed in time 𝑂
(
|𝑉 |2 × (|𝐶 | |𝑉 | + |𝑉 |2 + T𝑐 (|𝑉 |))

)
assuming unit-cost arithmetic.

Proof. To prove Proposition 4.3 we consider a d-D circuit 𝐶 over variables 𝑉 with 𝑛 = |𝑉 |. For a variable 𝑥 ∈ 𝑉 ,

EScore𝑐 (𝐶, 𝑥) =
∑︁
𝑍⊆𝑉
𝑥∈𝑍

Π𝑉 (𝑍) × Score𝑐 (𝐶,𝑍, 𝑥)

=
∑︁
𝑍⊆𝑉
𝑥∈𝑍

Π𝑉 (𝑍)
∑︁

𝐸⊆𝑍\{𝑥 }
𝑐 (|𝑍 |, |𝐸 |) × [𝐶 (𝐸 ∪ {𝑥}) −𝐶 (𝐸)]

=
∑︁

𝐸⊆𝑉 \{𝑥 }

∑︁

𝐸⊆𝑍⊆𝑉 \{𝑥 }
𝑐 (|𝑍 | + 1, |𝐸 |) × 𝑝𝑥 × Π𝑉 (𝑍)

 [𝐶 (𝐸 ∪ {𝑥}) −𝐶 (𝐸)]
=

|𝑉 |−1∑︁
ℓ=0

∑︁
𝐸⊆𝑉 \{𝑥 }
|𝐸 |=ℓ

|𝑉 |−1∑︁
𝑘=ℓ

∑︁

𝐸⊆𝑍⊆𝑉 \{𝑥 }
|𝑍 |=𝑘

𝑐 (𝑘 + 1, ℓ) × 𝑝𝑘+1 (1 − 𝑝)𝑛−𝑘−1

 [𝐶 (𝐸 ∪ {𝑥}) −𝐶 (𝐸)]
=

|𝑉 |−1∑︁
ℓ=0

|𝑉 |−1∑︁
𝑘=ℓ

[(
𝑛 − 1 − ℓ
𝑘 − ℓ

)
× 𝑐 (𝑘 + 1, ℓ) × 𝑝𝑘+1 (1 − 𝑝)𝑛−𝑘−1

] ∑︁
𝐸⊆𝑉 \{𝑥 }
|𝐸 |=ℓ

[𝐶 (𝐸 ∪ {𝑥}) −𝐶 (𝐸)]

=

|𝑉 |−1∑︁
ℓ=0

[#SATℓ (𝐶1) − #SATℓ (𝐶0)]
|𝑉 |−1∑︁
𝑘=ℓ

[(
𝑛 − 1 − ℓ
𝑘 − ℓ

)
× 𝑐 (𝑘 + 1, ℓ) × 𝑝𝑘+1 (1 − 𝑝)𝑛−𝑘−1

]
where we set𝐶1 and𝐶0 as usual and #SATℓ (𝐶′) is the number of satisfying valuations of size ℓ of the circuit𝐶′. Using the techniques of [13]
(in particular, Lemma 4.5 of this paper), we can show that all the #SATℓ (𝐶′) values for a tight circuit 𝐶′ over variables |𝑉 ′ | can be computed

in 𝑂 (|𝐶′ | × |𝑉 ′ |2). So, to compute all #𝑆𝐴𝑇ℓ (𝐶0), we first need to make it tight (in 𝑂 (|𝐶 | × |𝑉 |)) and then we have a cost of 𝑂 (|𝐶 | × |𝑉 |3).
Now, to compute the rest of the sum, we need to compute for every ℓ and 𝑘 a binomial coefficient in 𝑂 (𝑛2), a value of the coefficient

function in 𝑂 (T𝑐 (𝑛)) and perform the other multiplications in 𝑂 (1) assuming unit cost arithmetic. We obtain thus an algorithm in

𝑂
(
|𝐶 | × |𝑉 |3 + |𝑉 |2 × (|𝑉 |2 + T𝑐 (|𝑉 |))

)
. □

Pratik Karmakar, Mikaël Monet, Pierre Senellart, and Stéphane Bressan

B.3 Proof of Theorem 4.4
Theorem 4.4. Given a d-D 𝐶 on variables 𝑉 , probability values 𝑝𝑦 for 𝑦 ∈ 𝑉 , and 𝑥 ∈ 𝑉 , we can compute in time 𝑂 (|𝐶 | × |𝑉 |) (ignoring the

cost of arithmetic operations) the quantity EScore𝑐
Banzhaf

(𝐶, 𝑥).

Proof. As argued in Section 4, we need only to prove, thanks to Equation (5), that ENV can be computed in linear time for tight d-D circuits.

Let𝐶′ be a tight d-D over variables𝑉 ′ and 𝑝𝑥 probability values for all 𝑥 ∈ 𝑉 ′. We want to compute ENV(𝜑) def

=
∑
𝑍⊆𝑉 ′ Π𝑉 ′ (𝑍)

∑
𝐸⊆𝑍 𝐶′ (𝐸).

(Recall that this will be instantiated with 𝐶′ = 𝐶1 and 𝐶′ = 𝐶0) from Equation (5).) We do this again by bottom-up induction on the circuit,

computing the corresponding quantities for very gate. Formally, for a gate 𝑔 of 𝐶′, define:

𝛼𝑔
def

=
∑︁

𝑍⊆Vars(𝑔)
ΠVars(𝑔) (𝑍)

∑︁
𝐸⊆𝑍

𝐶′𝑔 (𝐸) .

Notice that we want 𝛼𝑔 for 𝑔 the output gate of 𝐶′. We show next how this can be done.

Constant gates. Let 𝑔 be a constant gate. Then Vars(𝑔) = ∅, so 𝛼𝑔 equals 1 if 𝑔 is a constant 1-gate and 0 if it is a constant 0-gate.

Input gates. Let 𝑔 be an input gate, with variable 𝑦. Then Vars(𝑔) = {𝑦}, so 𝛼𝑔 = 𝑝𝑦 .

Negation gates. Let 𝑔 be a ¬-gate with input 𝑔′. Then 𝐶′𝑔 (𝐸) = 1 −𝐶′𝑔1

(𝐸), therefore 𝛼𝑔 =
[∑

𝑍⊆Vars(𝑔) ΠVars(𝑔) (𝑍)
∑
𝐸⊆𝑍 1

]
− 𝛼𝑔′ .

We have already observed in the proof of Lemma 3.9 that the first term is equal to

∏
𝑦∈Vars(𝑔) (1 + 𝑝𝑦), therefore we obtain

𝛼𝑔 =
[∏

𝑦∈Vars(𝑔) (1 + 𝑝𝑦)
]
− 𝛼𝑔′ .

Deterministic smooth ∨-gates. Let 𝑔 be a smooth deterministic ∨-gate with inputs 𝑔1, 𝑔2. Since 𝑔 is smooth we have Vars(𝑔) =
Vars(𝑔1) = Vars(𝑔2), and since it is deterministic we have 𝐶′𝑔 (𝐸) = 𝐶′𝑔1

(𝐸) +𝐶′𝑔2

(𝐸). Therefore 𝛼𝑔 = 𝛼𝑔1 + 𝛼𝑔2
.

Decomposable ∧-gates. Let 𝑔 be a decomposable ∧-gate with inputs 𝑔1, 𝑔2. We decompose the sum similarly to what we did in the

proof of Theorem 4.2:

𝛼𝑔 =
∑︁

𝑍⊆Vars(𝑔)
ΠVars(𝑔) (𝑍)

∑︁
𝐸⊆𝑍

𝐶′𝑔 (𝐸)

=
∑︁

𝑍1⊆Vars(𝑔1)

∑︁
𝑍2⊆Vars(𝑔2)

ΠVars(𝑔) (𝑍1 ∪ 𝑍2)
∑︁

𝐸1⊆𝑍1

∑︁
𝐸2⊆𝑍2

𝐶′𝑔 (𝐸2 ∪ 𝐸2)

=
∑︁

𝑍1⊆Vars(𝑔1)

∑︁
𝑍2⊆Vars(𝑔2)

ΠVars(𝑔1) (𝑍1)ΠVars(𝑔2) (𝑍2)
∑︁

𝐸1⊆𝑍1

∑︁
𝐸2⊆𝑍2

𝐶′𝑔1

(𝐸1)𝐶′𝑔2

(𝐸2)

=
∑︁

𝑍1⊆Vars(𝑔1)
ΠVars(𝑔1) (𝑍1)

∑︁
𝐸1⊆𝑍1

𝐶′𝑔1

(𝐸1)
∑︁

𝑍2⊆Vars(𝑔2)
ΠVars(𝑔2) (𝑍2)

∑︁
𝐸2⊆𝑍2

𝐶′𝑔2

(𝐸2)

=
∑︁

𝑍1⊆Vars(𝑔1)
ΠVars(𝑔1) (𝑍1)

∑︁
𝐸1⊆𝑍1

𝐶′𝑔1

(𝐸1)𝛼𝑔2

= 𝛼𝑔2

∑︁
𝑍1⊆Vars(𝑔1)

ΠVars(𝑔1) (𝑍1)
∑︁

𝐸1⊆𝑍1

𝐶′𝑔1

(𝐸1)

= 𝛼𝑔2𝛼𝑔1 .

This concludes the proof, as all of this can be done in𝑂 (|𝐶′ |), ignoring the cost of arithmetic operations (and, in any case, the number of bits

stays polynomial). Note that for it to be true for negation gates, we need to compute

∏
𝑦∈Vars(𝑔) (1 + 𝑝𝑦) for every gate, which can be done

during the bottom-up processing of the circuit as well. □

B.4 Complexity in the Case where All Probabilities are 1

As discussed at the end of Section 4, when all probabilities are set to 1, we recover the algorithm of [13] for non-probabilistic Shapley value

computation. We briefly discuss its precise complexity.

In that setting, as discussed, we do not need to compute 𝛿
𝑔

𝑘
values (line 3–14) so we only need to discuss the cost of computing 𝛽

𝑔

𝑘,ℓ

and 𝛾
𝑔

𝑘,ℓ
(lines 15–31) on the one hand, and of line 32 on the other hand. Further, recall that only the setting where 𝑘 = |Vars(𝑔) | is relevant.

This means that the main loop to compute 𝛽 and 𝛾 values is run |Vars(𝑔) | times instead of |Vars(𝑔) |2 times, and furthermore, that in the

case where 𝑔 is an ∧-gate, its computation involves a single sum, as we can set 𝑘1 to be |Vars(𝑔1) | (and thus 𝑘2 to be |Vars(𝑔2) |) on lines 29

and 30. Finally, on line 32, similarly, we only have one sum operator as 𝛽
𝑔out

𝑘,ℓ
and 𝛾

𝑔out

𝑘,ℓ
are zero when 𝑘 ≠ |Vars(𝑔out) |.

Remember that since the circuit needs to be made tight, its size is 𝑂 (|𝐶 | × |𝑉 |). We therefore have for complexity:

𝑂

(
|𝐶 | × |𝑉 | × |𝑉 |2 + |𝑉 | × T𝑐

Shapley
(|𝑉 |)

)
= 𝑂

(
|𝐶 | × |𝑉 |3 + |𝑉 | × |𝑉 |2

)
= 𝑂

(
|𝐶 | × |𝑉 |3

)
.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Equivalence with Expected Values
	3.1 From Expected Values to Expected Scores
	3.2 From Expected Scores to Expected Values

	4 DD Circuits
	5 Probabilistic Databases
	6 Implementation and Experiments
	7 Related work
	8 Conclusion
	References
	A Proofs for Section 3 (Equivalence with Expected Values)
	A.1 From Expected Values to Expected Scores
	A.2 From Expected Scores to Expected Values

	B Proofs for Section 4 (DD Circuits)
	B.1 Proof of Theorem bool axp@forward and not bool axp@forward@suppress axp@fw@rv4.24.2
	B.2 Proof of Proposition bool axp@forward and not bool axp@forward@suppress axp@fw@rvi4.34.3
	B.3 Proof of Theorem bool axp@forward and not bool axp@forward@suppress axp@fw@rvii4.44.4
	B.4 Complexity in the Case where All Probabilities are 1

