
ProFoUnd: Program-analysis–based Form Understanding

Michael Benedikt, Tim Furche, Andreas Savvides
Oxford University

Oxford, United Kingdom
firstname.lastname@cs.ox.ac.uk

Pierre Senellart
Institut Télécom; Télécom ParisTech; CNRS LTCI

Paris, France
pierre.senellart@telecom-paristech.fr

ABSTRACT
An important feature of web search interfaces are the restric-
tions enforced on input values – those reflecting either the
semantics of the data or requirements specific to the interface.
Both integrity constraints and “access restrictions” can be
of great use to web exploration tools. We demonstrate here
a novel technique for discovering constraints that requires
no form submissions whatsoever. We work via statically
analyzing the JavaScript client-side code used to enforce the
constraints, when such code is available. We combine custom
recognizers for JavaScript functions relevant to constraint
checking with a generic program analysis layer. Integrated
with a web browser, our system shows the constraints de-
tected on accessed web forms, and allows a user to see the
corresponding JavaScript code fragment.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—JavaScript ; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—Program
analysis; H.3.5 [Information Storage and Retrieval]:
Online Information Services—Web-based services

General Terms
Design,Experimentation

Keywords
deep Web, JavaScript, static analysis, Web form

1. INTRODUCTION
The hidden web or deep web refers to information accessi-

ble only via web forms. Search engines currently have only
ad-hoc means of accessing this data, which is estimated to
be several orders of magnitude larger than the surface web
[2, 4]. Harvesting data from deep web interfaces has thus
been an object of considerable study in the database and
web communities. Much of the work has been on discovering
the properties of web interfaces – determining the labels
of form fields [7], identifying entry points to hidden web
sources [1], identifying the domains of attributes [5], cluster-
ing form-based sites [8], or matching them to a known logical
schema [3].

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

Figure 1: Search form and JavaScript alert box on
submission for http://www.sharpeproperties.co.uk/

An important feature of web search interfaces are the re-
strictions that they enforce on input values. These include
integrity constraints that reflect restrictions on the underly-
ing data – e.g., a UK postal code must be six characters, a
salary should be a number, etc. They also include restrictions
that reflect requirements that are specific to the interface.
For example, a web-based telephone directory may require
the user to enter a person’s name and street, returning all the
matching phone numbers. Both integrity constraints and “ac-
cess restrictions” can be of great use to web exploration tools.
At the most obvious level, they restrict the way web search
tools or aggregators can explore the web form; a crawler that
is unaware of an access restriction or integrity constraint may
make hundreds or thousands of unnecessary queries to the
search engine. Indeed, without knowing integrity constraints,
a crawler may never get to relevant data, since the number
of queries necessary to find correct data by “brute force” will
be prohibitive. Understanding constraints can also be useful
in other form understanding tasks such as schema matching.

Despite the utility of integrity constraints and access re-
strictions, there has been little work on how to discover them.
In this demonstration, we consider the common case where
client-side code, written in JavaScript, enforces integrity con-
straints and access restrictions in the browser, before the
submission of the form. Our system, ProFoUnd, (Program-
analysis–based Form Understanding) discovers constraints
by statically analyzing the JavaScript code, recognizes refer-
ences to form fields, and detects comparisons that represent
constraints.

Example 1. Consider the web form on the left in Fig-
ure 1. It enforces several constraints on the input, generating
dialog boxes with error messages when these constraints are
not satisfied, such as that shown on the right side of the
figure. A deep web crawler or information extraction tool
that navigated this page might perform many accesses to the
site to obtain any valid entry. A tool that wanted to extract

http://www.sharpeproperties.co.uk/


Field Reference 
Detector

Entry 
Points

Entry Point 
Finder

Code 
Filter

Condi-
tions

Interception 
Finder

Inter-
ception Abstracter

Constraint 
Generator

Con-
straints

Figure 2: ProFoUnd’s architecture

function CheckSimpleSearch(theForm) {
2 if (theForm.minprice && theForm.maxprice) {

if (!isNaN(theForm.minprice.value) &&
!isNaN(theForm.maxprice.value)) {

4 if (parseInt(theForm.minprice.value) >=
parseInt(theForm.maxprice.value)) {

alert(’Please select a maximum price higher than the
minimum price selected’);

6 return false;
}}}

8 return true;
}

Figure 3: JavaScript validation code

all valid data for the site would perform an enormous number
of additional queries if it were unaware of the constraints.

The constraints involved here are all performed on the
client side.1 An excerpt of the code is in Figure 3. ProFoUnd
is able to reverse-engineer the min < max constraint from
analyzing the script, without needing any example.

Analysis of scripting languages like JavaScript is known
to be extremely difficult. JavaScript is weakly-typed and
supports run-time modification of object structure. It allows
the conversion of free-text to code (eval), a feature that is
particularly problematic from the point of view of static anal-
ysis [6]. In addition, the client code that is visible, although
perhaps not large, will often make use of huge JavaScript
libraries. In the example of Figure 1, access functions are
used to navigate to form elements, and a JavaScript vali-
dation function is attached to respond to some event (e.g.,
click, submit). These access functions are often come from
popular cross-domain libraries (JavaScript frameworks), such
as jQuery. Similarly the functions that raise the errors (e.g.,
alert) are not JavaScript primitives, but rather come either
from the browser environment or from libraries.

We deal with the challenge by making use of a two-tiered
approach. We have a set of custom matchers recognizing
library commands performing basic operations critical to
constraint-handling; these include error-handling routines
and idioms for accessing form elements. This eliminates the
necessity of analyzing code within standard libraries. We also
apply routines for several basic program analyses, including
control-flow and alias analysis. We put these together to get
a solution to the constraint-detection problem.

In this demo we will present the first approach to extracting
general client-side validation rules, We briefly introduce our
extensible approach, and an embodiment that deals with the
features of the most popular libraries and frameworks. To
highlight that this is indeed usable for extracting client-side
constraints, we briefly present some experimental results in
Section 3. We then introduce in Section 4 our demonstration
scenario, which involves interfacing ProFoUnd with a browser
to show a user constraints identified in real web forms and
the corresponding JavaScript code fragments.

1In a typical Web application, for security reasons, the con-
straints would also be enforced on the server side.

2. SYSTEM DESCRIPTION
ProFoUnd takes as input the URL of a web form, and

outputs a set of assertions involving the form fields – in our
current implementation, assertions are boolean combinations
of atomic comparisons between form fields and constants.

ProFoUnd is written in Java. Basic form analysis – e.g., de-
tection of fields and their labels are provided by components
from the DIADEM project.2 DIADEM also provides APIs
for accessing the live DOM of the form and manipulating
form fields. JavaScript parsing is not provided by DIADEM,
and thus ProFoUnd relies on the open-source Rhino parser.3

An abstract syntax tree representing relevant code is created,
which is the main artifact manipulated by the system.

No non-trivial JavaScript analysis problem can take into
account JavaScript code in its entirety – it cannot deal with
analyzing third-party libraries, and it cannot determine the
semantics of arbitrary application code. Our approach thus
proceeds by progressively simplifying the code structure,
until we reach a language that is amenable to a traditional
program analysis. In each simplification an approximation
is performed, which can impact soundness or completeness
– the guarantees we can give are thus only experimental.
Our approach to third-party code that is re-used over many
applications follows the two-tiered approach alluded to in the
introduction. We classify the functionality of such libraries
that is relevant to constraint validation, and on a per-library
basis write “translators” that map library code into our global
framework – the main functions we consider are identifying
form fields, attaching code to form submission events, and
raising errors. Our current system supports the libraries
jQuery, YUI 2 & 3, Dojo, MooTools, and Prototype. Our
approach to application-specific code is based on abstraction –
we eliminate code of no interest for constraint validation, and
we simplify features of code not amenable to exact analysis.

The resulting framework consists of several components.
The diagram in Figure 2 shows how these components fit in
together in order to extract constraints.

The most basic component is responsible for detecting
form field references in the code and matching them with the
corresponding form element. We identify for instance such
code fragments as document.getElementById("price") in stan-
dard JavaScript, or $("#price") in jQuery, where price is the
identifier of an <input> element in the HTML page. The
next module is an entry point finder, whose function is to
determine which top-level calls are associated with a form-
submission event. This can be an onsubmit attribute on a
<form> element, a click event dynamically bound to some but-
ton, etc. The code filter extracts the portion of the code that
is relevant to form submission. If JavaScript code is directly
embedded in an HTML form element’s attribute, then the
code filter just extracts that code. Otherwise the component
traces forward from the entry points, pulling in code that
needs to be analyzed. Within this code, blocks that are

2http://diadem-project.info/
3http://www.mozilla.org/rhino/

http://diadem-project.info/
http://www.mozilla.org/rhino/


1

2

3

4

5

6

Figure 4: ProFoUnd interface

A
B

B

B

C

C

C

1

2

3

Figure 5: ProFoUnd constraint and code
views

relevant to constraint analysis are identified; form field refer-
ences are one important feature, and these have already been
detected by the field reference detector. The interception
finder detects code blocks responsible for intercepting form
submissions – informally, error leg code. Our interception
finder makes use of recognizers for common idioms of block-
ing form submission (created as hand-coded patterns) along
with a keyword-based analyzer that detects alert messages
that indicate a constraint (e.g. “Please enter. . . ”).

With the important blocks identified, the decorated code
is then abstracted to a simpler language, eliminating features
that cannot be analyzed directly – this is the job of the
abstracter. Finally, the resulting abstracted code is analyzed
to determine which form references lead to constraints – this
is the job of the constraint generator.

3. EVALUATION
ProFoUnd was tested on a number of randomly selected

real-estate websites with deep web search interfaces.
A total of 70 real estate websites with deep web search

interfaces were randomly selected from the repository created
by the DIADEM project. For those 70 search interfaces, prior
to the experiments, we manually identified that 30 of them
had validation code on the client-side, while the other 40 had
no client-side validation code. For the 30 search interfaces
with client-side validation code, we manually identified all
individual integrity constraints enforced on the client-side.

For the 40 websites with search interfaces that had no
client-side validation code, we tested to see if ProFoUnd
would return any constraints – i.e., any false positives. For
the remaining 30 websites with client-side validation code,
we tested both the precision and recall of ProFoUnd.

The result of the first experiment was that no false positives
were returned. The key thing is that ProFoUnd correctly
detected no interception events occur in any of these sites.
For the 30 search interfaces with client-side validation code,
ProFoUnd detected 22 of the 35 possible constraints correctly.

From running ProFoUnd, we were able to identify various
different types of constraints, including:

• Mandatory fields enforced using standard JavaScript,
others using the ASP.NET web framework, and still
others using jQuery. Note that form interception and
entry points use different idioms in each of these cases.

• Inter-field dependencies, such as the minimum and
maximum price dependency shown in Figure 3. Note
that this constraint makes use of both non-standard
JavaScript (for accessing form fields) and calls to func-
tions such as parseInt() and isNaN().

The constraints that were missed were due to a mixture
of factors: use of complex JavaScript features, such as eval ;
obfuscation of validation code, for example with tools such
as the JavaScript Obfuscator4 or JScrambler5. Note that
obfuscation through variable renaming is not a problem for
ProFoUnd since the analysis does not rely on variable names;
obfuscation by introducing extra layers of computation (use-
less function calls, encryption of character strings, etc.) is.
On a larger sample, we would expect that we would also
miss constraints due to the limitations of our abstracter
and constraint generator – the program analysis that these
are based on is currently extremely näıve, employing no
JavaScript-specific analysis techniques whatsoever. While
we do not hope to be able to handle all occurrences of eval,
in ongoing research we are investigating idiomatic uses of
dynamic JavaScript features that can be incorporated into
the ProFoUnd framework.

4. DEMONSTRATION DETAILS
ProFoUnd is accompanied by a visual GUI for inspecting

the discovered constraints, as well as ProFoUnd’s reasoning
to discover these constraints. It is implemented as an Eclipse
application with an embedded browser that allows the user

4http://www.javascriptobfuscator.com/
5http://jscrambler.com/

http://www.javascriptobfuscator.com/
http://jscrambler.com/


to browse to an arbitrary web page, execute ProFoUnd, and
drill down to relevant fields and fragments of the JavaScript
code where “relevance” follows the architecture from Figure 2.

Figure 4 illustrates the interface of the ProFoUnd GUI.
It consists of six views: (1) The browser view contains a
full-fledged Mozilla-based browser component. It is modified
to allow highlighting of relevant form fields and of hovered
elements, to provide easy insight into the HTML structure.
(2) The constraint view shows all entry points, conditions,
interception points, and constraints identified by ProFoUnd
in a hierarchy. Entry points are code fragments or event
handler attributes referencing a form field. For each entry
point, we list all conditionals in the scope of that fragment
or event handler, if they contain a reference to a form field.
For each conditional, we list first the interception points such
as error messages or return false and second the constraints
identified by ProFoUnd. (3) The code view presents relevant
HTML and JavaScript fragments for the selection in the
constraint view. In Figure 4, a condition is selected and the
corresponding JavaScript code is shown in (3).

The remaining views provide a list of URLs (4), control
over highlighted elements (5), and detailed access to the
DOM for drilling down to specific script elements or event
handler attributes (6). Here, we focus on the first three.

For the demonstration, we have prepared a set of “interest-
ing” examples in (4), but also allow the user to pick websites
of his or her choosing. We will step through sites that exhibit
the complex reasoning carried out by the system. Figure 4
shows the ProFoUnd GUI on a real-world UK real estate web-
site with a fairly complex jQuery based JavaScript validator.
This site has a constraint requiring that the single location
input field is not empty. It also uses that field to display
an error, by setting the value to “Please enter a location or
postcode”, and in consequence also rejects any submission
that has this “default” value. Thus there are two constraints:
that location is not empty and that location is not equal
to the error message. ProFoUnd successfully identifies these
constraints: It finds three possible entry points, i.e., refer-
ences to form fields, but recognizes correctly that only one
of them (highlighted in bold) contains conditions and thus
potentially constraints. The others are event handlers for
auto-completion. Four conditions are identified, but only
three (presented in green) have both interception points and
constraints. The first two yield the same constraint (location
not empty). In the JavaScript code they handle two differ-
ent states of the validation: the first one provides the error
message, the second merely sets the focus on the field. The
final condition handles the case where the value of location
is the error message. Below we show the first condition in
the context of the entry point. The entry point binds an
event handler to the submit event of the search button. The
event handler checks if location is not empty (and the UI
has a certain “stage”, which is not reported as a constraint
as it is not about a form field). The value of location is set
to the error message and a click event handler is provided
to remove the error message if the user clicks into the field.
Finally, the form submission is prevented.

$(’#search’).bind(’submit’, function(e) {
2 if ($(’#location’).val() == "" &&

$(’#searchRadiusTab’).hasClass(’tab current’)) {

$(’#location’).val("Please enter a location or
postcode");

4 $(’#location’).bind(’click’, function() {
$(this).val("");

6 $(’#location’).unbind(’click’).unbind(’keypress’); });
...

8 return false; }
... });

Figure 5 illustrates multi-field constraints, focusing on the
constraint (2) and code (3) views. To keep the discussion
and screenshot brief we choose an artificial form example.
The form has a mandatory keyword field and minimum and
maximum price fields where the minimum should be less
than the maximum and the maximum should not be zero.
This is a typical pattern for search forms in many product
domains. As in the previous example, ProFoUnd correctly
identifies all three constraints (C), each associated with a
different condition (B) under the same entry point (A, the
submit event handler on the form). The first two conditions
use visual clues to communicate an error to the user, only the
last one alerts the user with an error message, successfully
recognized by ProFoUnd.

In the demonstration, we will also show examples for other
typical form patterns, e.g., where event handlers are attached
through attributes, with frameworks other than jQuery, or
by complex auto-generated code from web frameworks such
as ASP. A screencast of the demo can be found at http:

//diadem.cs.ox.ac.uk/profound.

5. ACKNOWLEDGMENTS
Benedikt is supported in part by EP/G004021/1 and

EP/H017690/1 of the Engineering and Physical Sciences
Research Council UK and in part by EC FP7-ICT-233599
(FoX ). Furche is supported by ERC grant agreement 246858
DIADEM, while Senellart is supported by ERC grant agree-
ment 226513 Webdam.

6. REFERENCES
[1] L. Barbosa and J. Freire. An adaptive crawler for

locating hidden web entry points. In WWW, 2007.

[2] M. K. Bergman. The deep web: Surfacing hidden value.
J. Electronic Publishing, 7, 2001.

[3] B. He, K. C.-C. Chang, and J. Han. Discovering complex
matchings across web query interfaces: a correlation
mining approach. In KDD, 2004.

[4] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang.
Accessing the deep web: A survey. CACM, 50(2):94–101,
2007.

[5] X. Jin, N. Zhang, and G. Das. Attribute domain
discovery for hidden web databases. In SIGMOD, 2011.

[6] G. Richards, C. Hammer, B. Burg, and J. Vitek. The
eval that men do – a large-scale study of the use of eval
in JavaScript applications. In ECOOP, 2011.

[7] J. Wang and F. H. Lochovsky. Data extraction and label
assignment for web databases. In WWW, 2003.

[8] W. Wu, C. T. Yu, A. Doan, and W. Meng. An
interactive clustering-based approach to integrating
source query interfaces on the deep web. In SIGMOD,
2004.

http://diadem.cs.ox.ac.uk/profound
http://diadem.cs.ox.ac.uk/profound

	Introduction
	System description
	Evaluation
	Demonstration Details
	Acknowledgments
	References

