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¥ (Web) information extraction

¥ Processing manually entered data (such as census forms)

¥ Data integration, data cleaning

¥ Managing scientiÞc data; sensor data

¥ Risk management / predictions  

¥ ...

Uncertain Data is Commonplace

2

Probabilities are a way to deal with uncertain data
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Dealing with Probabilistic Data

3

¥ Traditional DBMSs: not meant to deal with probabilistic data

¥ Ad hoc approaches: not very satisfactory 

¥ Recent years: advances in developing

¥ representation systems for incomplete/probabilistic data

¥ uncertainty-aware query languages

¥ ...

¥ Probabilistic relational DBMSs:
MayBMS, MystiQ,  PrDB, Trio, ...

/31



4

Probabilistic XML Today: PrXML Model
[Kimelfeld&al:2007] [Abiteboul&al:2009]

¥  f - event:  ÒfreshÓ
   Pr(f) = 0.4

¥ MUX - distributional node,
              mutually exclusive 
              options 
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Probabilistic XML Today: PrXML Model
[Kimelfeld&al:2007] [Abiteboul&al:2009]

¥  f - event:  ÒfreshÓ
   Pr(f) = 0.4

¥ MUX - distributional node,
              mutually exclusive 
              options 

Probabilistic XML documents (compactly) represent  
probability spaces of ordinary XML documents
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3 4 ¥ Semantics: set of possible 
   worlds.

¥ Example world:
¥ f = true (the data is outdated), probability of this choice: 0.4
¥ MUX: 4, probability of this choice: 0.1

¥ probability of this world is 0.4 x 0.1
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Probabilistic XML Today

6

¥ Trees enhanced with distributional nodes and event formulas that deÞne 
the probabilistic process that generates random trees

¥ Proposed PrXML representation systems mirror  the relational case

[Kimelfeld&alÕ09]

[Cohen&alÕ09]

[Abiteboul&alÕ10]

[Cohen&alÕ09]

[Abiteboul&alÕ10]

[Kharlamov&alÕ10]

¥ Widely studied in recent years:

¥ Query answering

¥ Aggregating

¥ Constraints

¥ Continuous models

¥ Typing

¥ Updates
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Properties of PrXML Model

7

¥ Trees represented by PrXML document T have bounded height & width:

¥ height: at most the height of T

¥ width: at most the width of T

¥ Number of represented 
XML documents is bounded:

¥ at most exp. many in |T|
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¥ Try to make a probabilistic model of a mailbox with PrXML:

¥ Unbounded # of threads /messages ~ unbounded width / height of docs

¥ The deeper the thread, the lower its probability

Properties of PrXML Model
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¥ Trees represented by PrXML document T have bounded height & width:

¥ height: at most the height of T

¥ width: at most the width of T

¥ Number of represented 
XML documents is bounded:

¥ at most exp. many in |T|
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No chance with PrXML <z we need models akin to probabilistic DTDs

D
R
A

F
T

Mailbox DTD

mailbox: (thread)!

thread: (message, id, subject)
message: (from, to,content,message! )

from: #PCDATA
to: #PCDATA

content: #PCDATA
subject: #PCDATA

Electricity Consumption DTD

electr-cons: (room1, room2)

room1: (measurement)!

room2: (measurement)!

measurement: (date, value)

date: #PCDATA
value: #PCDATA

Figure 3: On the left: Mailbox DTD; on the right: Electricity Consumption DTD

3 Probabilistic XML

In this section, we present more formally the syntax and semantics of the PrXML model. We first

focus on a discrete model (to represent discrete probability distributions) and then extend it to

allow continuous data values.

3.1 Discrete Probabilistic XML

We model XML documents as unranked, unordered, labeled trees. Not taking into account the

order between sibling nodes in an XML document is a common but non-crucial assumption.

The same modeling can be done for ordered trees, without much change to the theory. A Þnite
probability spaceover documents, px-spacefor short, is a pair (D ,Pr), where D is a finite set of

documents and Pr maps each document to a probability Pr(d) such that

! { Pr(d) | d " D} = 1.

p-Documents: Syntax. The PrXML model from (Kimelfeld et al., 2009; Abiteboul et al.,

2009) uses p-documentsto represent px-spaces in a compact way. As already discussed, a p-

document is similar to a document, with the difference that it has two types of nodes: ordinary and

distributional. Distributional nodes are used for defining the probabilistic process that generates

random documents but they do not actually occur in these. Ordinary nodes have labels and they

may appear in random documents. We require the leaves and the root to be ordinary nodes.

More precisely, we assume given a set X of independent Boolean random variables with

some specified probability distribution " over them. A p-document, denoted by !P , is an

unranked, unordered, labeled tree. Each node has a unique identifier u and a label µ(u) in

L # { cie(E)} E # { mux(Pr)} Pr # { det} where L are labels of ordinary nodes, and the others are

labels of distributionalnodes. We consider three kinds of the latter labels: cie(E) (for conjunction

of independent events), mux(Pr) (for mutually exclusive), and det (for deterministic). If a node u
is labeled with cie(E), then E is a function that assigns to each child of u a conjunction e1 $ ááá$ ek

of literals (x or Âx, for x " X ). If u is labeled with mux(Pr), then Pr assigns to each child of u a

probability with the sum across children equal to 1.

9
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Goal of This Work

9

¥ Identify 
limitations of existing probabilistic representation systems

¥ key limitations: expressiveness and succinctness

¥ Develop 
systems that naturally capture other formalisms
for representing classes of XML documents

¥ E.g. DTDs or XML schemas

¥ Understand 
what properties of new systems allow query tractability
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Outline
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¥ Probabilistic Data and What We Want to Study

¥ Recursive Markov Chains (RMCs)

¥ Probabilistic XML via RMCs

¥ Querying RMCs
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Recursive Markov Chains
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¥ Markov Chains 

¥ Graphs whose edges are labeled with 
probabilities

¥ DeÞne processes evolving via 
independent choices at nodes

Example: prob. DTDs via rec. Markov chains [BKOS09]

<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>

• •
• • •

D : directory

P

1

0.8

1

0.2

• • • • • •
•

P : person

N T1 1 0.5

1

0.5

• •

N : name

1 • •

T : phone

1

On such simple RMCs representing trees,MSO queries are tractable!
P. Senellart (TŽlŽcom ParisTech) Probabilistic XML 2009/01/13 34 / 37

Example: prob. DTDs via rec. Markov chains [BKOS09]
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[Etessami,YannakakisÕ09]

¥ Recursive Markov Chains

¥ Markov Chains with recursive calls

¥ RMC runs have a natural hierarchical 
structure - nested words or trees
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Recursive Markov Chains - Example
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¥ RMC with four components D, P, N, and T

¥ Each component has

¥ a label, e.g., ÒdirectoryÓ is the label of D

¥ nodes: entry, exit, call, return, others

¥ boxes to simulate calls to other components, 
e.g., box P inside D

¥ transitions (u, pu, v, v) from 
source u to destination v with probability pu, v;
For each source u: 

¥ D is the start component, 
no calls to D are allowed.

Example: prob. DTDs via rec. Markov chains [BKOS09]
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Example: prob. DTDs via rec. Markov chains [BKOS09]

<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>
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!

{ v |(u,p u,v ,v ) }

pu,v = 1
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Recursive Markov Chains - Applications
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Variants of (R)MCs are 
well-understood and researched in

¥ Machine learning 
(e.g., hidden Markov models)

¥ Computational linguistics 
(e.g., stochastic CFGs)

¥ VeriÞcation 
(e.g. probabilistic automata)

Example: prob. DTDs via rec. Markov chains [BKOS09]
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Example: prob. DTDs via rec. Markov chains [BKOS09]
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[Manning,SchuetzeÕ99]

[BishopÕ06]

[KwiatkowskaÕ03]
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Outline
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¥ Probabilistic Data and What We Want to Study

¥ Recursive Markov Chains (RMCs)

¥ Probabilistic XML via RMCs

¥ Querying RMCs

/31



¥ Entering a component labeled L
= generation of an opening tag <L>

¥ Exiting a component labeled L
= generation of a closing tag </L>

15

Example: prob. DTDs via rec. Markov chains [BKOS09]
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Recursive Markov Chains - Tree Generators
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¥ A run generates a skeleton of  a document

¥ Empty components N and D can model 
the actual data, 
i.e., names and telephone numbers of people

</directory>

</phone>
<phone>
</name>
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¥ Advantages of RMCs over PrXML

¥ More natural, e.g.,  akin to probabilistic DTDs

¥ We connect questions on prob. XML to 
tools and techniques of Markov models

</directory>

</phone>
<phone>
</name>
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¥ Probabilities of generated documents:

¥ RMC: could be irrational,  doubly exponentially small in the size of RMC 

¥ PrXML: always rational and at most exponentially small

¥ Size of generated documents:

¥ RMC: could be 

¥ Unbounded width ~ cycles inside a component 

¥ Unbounded depth ~ cycles across components

¥ PrXML:  always 
linearly bounded by size of probabilistic document

Probability Spaces of RMCs vs PrXML

18

Comes from properties of RMCs

PrXML models with distributional nodes are subsumed by RMC
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Outline
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¥ Probabilistic Data and What We Want to Study

¥ Recursive Markov Chains (RMCs)

¥ Probabilistic XML via RMCs

¥ Querying RMCs
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Given: an RMC and a property, e.g., MSO formula, Boolean XPath query 
Task: verify whether the RMC satisÞes the property

20
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Yes

Prob. space of XML docs RMC

sem antics
root

grant

FP6

name

Tones

KRDB

id
project prof

team team

name bonus

id

Diego 2

DBWeb
Â

root

team

id

prof

name bonus

4Bogdan

DBWeb

root

KRDB

id

team

No
P = 0.7P = 0.3

distribution for φdistribution for φ

Querying RMC

¥ ¥

¥ ¥ ¥

D: directory

P

1

0.8

1

0.2

¥ ¥ ¥ ¥ ¥ ¥

¥

P : person

N T
1 1 0.5

1

0.5

Figure 1: RMC Aex of Examples ??, ??, and ??

Formally, a p-document is an unranked, ordered, labeled
tree. Each node has a unique identiÞerv and a label µ(v) in
L ! { exp(Pr)} ! { mux(Pr)} ! { det} . We consider distributional
nodes that deÞne discrete probability distributions Pr over
the subsets of their children. In the case of mux nodes, we
impose that all subsets have cardinality less than or equal
to 1, that is, we select either no children at all, or a single
child. A det node deterministically chooses all its children.

The semantics of a p-document !P , denoted ! !P ", is the
px-space obtained from the following randomized three-step
process (see [?] for a more detailed presentation): (i) In-
dependently for each exp(Pr) node, we select a subset of
its children (according to the corresponding probability dis-
tribution Pr) and delete the other children and the entire
subtrees underneath. Independently for each mux(Pr) node,
we select either zero or one child (according to Pr) and delete
the other children and the entire subtrees underneath. We
do not delete any children of det nodes. The probability
of this run of the process is deÞned as the product of all
choices. (ii) We then remove each distributional node, con-
necting each ordinary node with its closest ordinary ancestor.
(iii) The resulting px-space is formed of arbitrary represen-
tatives of each isomorphism class of the documents obtained
after step (??). The probability of a document is the sum
of probabilities of every run that generated an isomorphic
image of it. Note that because we consider all possible runs,
the order of the choice made in step (??) is irrelevant.

We denote classes of p-documentsby PrXML with the al-
lowed types of distributional nodes as superscripts. We recall
the following results from [ ?]: PrXMLmux cannot represent all
Þnite distributions of documents, yet PrXMLmux ,det can, and
PrXMLmux ,det " poly PrXMLexp . Also, PrXMLexp is tractable
for MSO [?].

3. RECURSIVE MARKOV CHAINS
We now adapt recursive Markov chains from [?] to the

context of document generation, and study their relationship
with prior probabilistic XML models.

Definition 1. A recursive Markov chain A, is a tuple
A = ( A0 , á á á, Ak , µ), where µ labels eachAi with an element
from L ! { ε} and every component Ai is a graph Ai =
(Ni , N

en
i , N

ex
i , Bi , Yi , δi ) that consists of:

(i) A set Ni of nodes, a subset of entry nodesNen
i # Ni ,

and a subset of exit nodesNex
i # Ni ;

(ii) A set Bi of boxes, and a mapping Yi : Bi $ { 1, . . . , k}
that assigns to every box (the index of) one of the com-
ponents, A1 , . . . , Ak . To each box b %Bi , we associate
the sets of call ports, Call(b) = { (b, en) | en %Nen

Yi( b) }
and return ports , Return(b) = { (b, ex) | ex %Nex

Yi( b) } ,
that indicate, respectively, the entries and the exits of
the component corresponding to b;

(iii) A transition relation δi , where transitions are of the
form (u, pu,v , v) and

(a) the sourceu is either a non-exit node u %Ni \ Nex
i ,

or a return port u = ( b, ex) of a box b %Bi ,
(b) the destination v is either a non-entry node v %
Ni \ Nen

i , or a call port u = ( b, en) of a box b %Bi ,
(c) pu,v is the probability of transiting from u to v.

For each u that is neither a call port nor exit node we
have

"
{ v | ( u,p u,v ,v ) ! δi}

pu,v = 1 .

We distinguish one component in A, say A0, as the initial
component, and within that component an initial node a0 %
Nen

0 and a set of Þnal nodesF0 # Nex
0 . We also require that

no box in the RMC is mapped to A0, and that µ(A0) &= ε.
RMCs can be depicted graphically as follows: The compo-

nents are represented as rectangles containing Markov chains
with inner rectangles corresponding to boxes. The name of
the component each box is mapped to is given inside the
box. In the following Þgures, the initial component is the
one at the top-left, and it has a single initial node and a
single Þnal node. The name of a component is given above
the rectangle, along with its label.

Example 2. Figure ?? partially shows an RMC Aex with
four components D, P , N , and T . For instance, the label of
D is µ(D) = directory . D either calls P with probability
0.8 or exits with probability 0.2, and this choice can occur
again after returning from the call. The components N : name
and T : phone are not depicted; both have a single edge going
from the entrance to the exit with probability 1.

The δ-transitions for D are: (a0 , 1, u1), (u1 , 0.2, t), also
(u1 , 0.8, (P, en)) , and ((P, ex), 1, u1), where t is the exit node,
u1 is the only node pointed to by a0, (P, en) is the call port
for box P , and (P, ex) is the return port for box P .

Intuitively, a run of an RMC generates a document d in a
top-down fashion where a call of a box (corresponding to a
component) labeled l inside another box (corresponding to a
component) labeled l" generates a nodel in d that is a child
of l". If a box is labeled ε, then it generates nothing, though
calls within its component may still generate labels. We next
formalize this via an alternative description of RMCs.

A vertex of Ai is either a node in Ai , a call port, or a
return port. Let Vi denote the set of all vertices ofAi . Thus,
the transition relation δi is a set of probability-weighted
directed edges onVi . Let V =

#
i Vi , and N , B, Y , and δ be

the unions of the corresponding sets. We denote byqu, ex the
probability that starting with u one eventually reaches an
exit ex in the same component asu.

Definition 3. An RMC A deÞnes aglobal (denumerable)
Markov chain MA = ( St, ! ) as follows:

The global states St # B# ' V ' (Tag(L ) ! { ε} ) of MA are
triples of the form (β, u,α), where β is a (possibly empty)
sequence of boxes fromB that represents the stack of pending
recursive calls, u is the current vertex of A, and α is an
optional tag.

The function ! deÞnes probability-weighted directed edges
between global states ! : (St ' St) $ [0, 1]:

(i) If (u, pu,v , v) % δ, then for every sequence of boxes
β and α % Tag(L ) ! { ε} there is a ! -transition from
(β, u,α) to (β, v, ε) with probability pu,v .

(ii) If (b, en) %Call(b) and µ(AY ( b) ) = l %L , then for every
β and α there is a ! -transition from (β, (b, en),α) to
(βb, en, (l)) with probability 1.

(iii) If (b, ex) %Return(b), and µ(AY ( b) ) = l %L , then for
every β and α there is a ! -transition from (βb, ex,α)
to (β, (b, ex), (/l)) with probability 1.

• •

• • •

D: directory

P

1

0.8

1

0.2

• • • • • •

•

P : person

N T
1 1 0.5

1

0.5

Figure 1: RMC Aex of Examples ??, ??, and ??

Formally, a p-document is an unranked, ordered, labeled
tree. Each node has a unique identiÞerv and a label µ(v) in
L! {exp(Pr)}! {mux(Pr)}! {det}. We consider distributional
nodes that deÞne discrete probability distributions Pr over
the subsets of their children. In the case of mux nodes, we
impose that all subsets have cardinality less than or equal
to 1, that is, we select either no children at all, or a single
child. A det node deterministically chooses all its children.

The semantics of a p-document !P, denoted � !P�, is the
px-space obtained from the following randomized three-step
process (see [?] for a more detailed presentation): (i) In-
dependently for each exp(Pr) node, we select a subset of
its children (according to the corresponding probability dis-
tribution Pr) and delete the other children and the entire
subtrees underneath. Independently for each mux(Pr) node,
we select either zero or one child (according to Pr) and delete
the other children and the entire subtrees underneath. We
do not delete any children of det nodes. The probability
of this run of the process is deÞned as the product of all
choices. (ii) We then remove each distributional node, con-
necting each ordinary node with its closest ordinary ancestor.
(iii) The resulting px-space is formed of arbitrary represen-
tatives of each isomorphism class of the documents obtained
after step (??). The probability of a document is the sum
of probabilities of every run that generated an isomorphic
image of it. Note that because we consider all possible runs,
the order of the choice made in step (??) is irrelevant.

We denote classes of p-documentsby PrXML with the al-
lowed types of distributional nodes as superscripts. We recall
the following results from [ ?]: PrXMLmux cannot represent all
Þnite distributions of documents, yet PrXMLmux ,det can, and
PrXMLmux ,det " poly PrXMLexp . Also, PrXMLexp is tractable
for MSO [?].

3. RECURSIVE MARKOV CHAINS
We now adapt recursive Markov chains from [?] to the

context of document generation, and study their relationship
with prior probabilistic XML models.

Definition 1. A recursive Markov chain A, is a tuple
A = ( A0 , · · · , Ak , µ), where µ labels eachAi with an element
from L ! {ε} and every component Ai is a graph Ai =
(Ni , N

en
i , N

ex
i , Bi , Yi , δi ) that consists of:

(i) A set Ni of nodes, a subset of entry nodesNen
i # Ni ,

and a subset of exit nodesNex
i # Ni ;

(ii) A set Bi of boxes, and a mapping Yi : Bi $ {1, . . . , k}
that assigns to every box (the index of) one of the com-
ponents, A1 , . . . , Ak . To each box b %Bi , we associate
the sets of call ports, Call(b) = {(b, en) | en %Nen

Yi ( b) }
and return ports , Return(b) = {(b, ex) | ex %Nex

Yi ( b) },
that indicate, respectively, the entries and the exits of
the component corresponding to b;

(iii) A transition relation δi , where transitions are of the
form (u, pu,v , v) and

(a) the sourceu is either a non-exit node u %Ni \Nex
i ,

or a return port u = ( b, ex) of a box b %Bi ,
(b) the destination v is either a non-entry node v %
Ni \Nen

i , or a call port u = ( b, en) of a box b %Bi ,
(c) pu,v is the probability of transiting from u to v.

For each u that is neither a call port nor exit node we
have

"
{v |( u,p u,v ,v )∈! i }

pu,v = 1 .

We distinguish one component in A, say A0, as the initial
component, and within that component an initial node a0 %
Nen

0 and a set of Þnal nodesF0 # Nex
0 . We also require that

no box in the RMC is mapped to A0, and that µ(A0) &= ε.
RMCs can be depicted graphically as follows: The compo-

nents are represented as rectangles containing Markov chains
with inner rectangles corresponding to boxes. The name of
the component each box is mapped to is given inside the
box. In the following Þgures, the initial component is the
one at the top-left, and it has a single initial node and a
single Þnal node. The name of a component is given above
the rectangle, along with its label.

Example 2. Figure ?? partially shows an RMC Aex with
four components D, P , N , and T . For instance, the label of
D is µ(D) = directory . D either calls P with probability
0.8 or exits with probability 0.2, and this choice can occur
again after returning from the call. The components N : name
and T : phone are not depicted; both have a single edge going
from the entrance to the exit with probability 1.

The δ-transitions for D are: (a0 , 1, u1), (u1 , 0.2, t), also
(u1 , 0.8, (P, en)) , and ((P, ex), 1, u1), where t is the exit node,
u1 is the only node pointed to by a0, (P, en) is the call port
for box P , and (P, ex) is the return port for box P .

Intuitively, a run of an RMC generates a document d in a
top-down fashion where a call of a box (corresponding to a
component) labeled l inside another box (corresponding to a
component) labeled l� generates a nodel in d that is a child
of l�. If a box is labeled ε, then it generates nothing, though
calls within its component may still generate labels. We next
formalize this via an alternative description of RMCs.

A vertex of Ai is either a node in Ai , a call port, or a
return port. Let Vi denote the set of all vertices ofAi . Thus,
the transition relation δi is a set of probability-weighted
directed edges onVi . Let V =

#
i Vi , and N , B, Y , and δ be

the unions of the corresponding sets. We denote byqu, ex the
probability that starting with u one eventually reaches an
exit ex in the same component asu.

Definition 3. An RMC A deÞnes aglobal (denumerable)
Markov chain MA = ( St,∆) as follows:

The global states St # B∗ ' V ' (Tag(L) ! {ε}) of MA are
triples of the form (β, u,α), where β is a (possibly empty)
sequence of boxes fromB that represents the stack of pending
recursive calls, u is the current vertex of A, and α is an
optional tag.

The function ∆ deÞnes probability-weighted directed edges
between global states ∆ : (St ' St) $ [0, 1]:

(i) If (u, pu,v , v) % δ, then for every sequence of boxes
β and α % Tag(L) ! {ε} there is a ∆-transition from
(β, u,α) to (β, v, ε) with probability pu,v .

(ii) If (b, en) %Call(b) and µ(AY ( b) ) = l %L, then for every
β and α there is a ∆-transition from (β, (b, en),α) to
(βb, en, (l)) with probability 1.

(iii) If (b, ex) %Return(b), and µ(AY ( b) ) = l %L, then for
every β and α there is a ∆-transition from (βb, ex,α)
to (β, (b, ex), (/l)) with probability 1.

/a[c]//b /a[c]//b /a[c]//b /a[c]//b /a[c]//b

theory practice

Yes No
P = 0.7P = 0.3
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¥ Verifying MSO properties for unrestricted RMCs is

¥ in PSPACE

¥ as hard as SQRT-SUM: in PSPACE 

¥ lower bounds - long standing open problem

MSO Queries for RMCs 

¥ We focus on RMC fragments to see the tension between 

¥ tractability of query evaluation

¥ expressiveness

¥ succinctness

¥ Monadic Second Order (MSO) query language is very general

¥ Subsumes:  Tree-pattern queries, navigational XPath, ...

✔
✔
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Example: prob. DTDs via rec. Markov chains [BKOS09]

<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>

• •
• • •

D : directory

P

1

0.8

1

0.2

• • • • • •
•

P : person

N T1 1 0.5

1

0.5

• •

N : name

1 • •

T : phone

1

On such simple RMCs representing trees,MSO queries are tractable!
P. Senellart (TŽlŽcom ParisTech) Probabilistic XML 2009/01/13 34 / 37

¥ Hierarchical RMCs (HMC): 

¥ A component can not (eventually) call itself

¥ Tree-like RMCs (TLMC): 

¥ Every component can be called in one place only
but possibly many times

¥ special case of HMC

RMC Fragments
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Example: prob. DTDs via rec. Markov chains [BKOS09]

<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>
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• • •

D : directory

P
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0.8

1

0.2

• • • • • •
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P : person
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0.5

• •

N : name

1 • •

T : phone

1

On such simple RMCs representing trees,MSO queries are tractable!
P. Senellart (TŽlŽcom ParisTech) Probabilistic XML 2009/01/13 34 / 37

Example: prob. DTDs via rec. Markov chains [BKOS09]

<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>

¥ ¥

¥ ¥ ¥

D : directory

P

1

0.8

1

0.2

¥ ¥ ¥ ¥ ¥ ¥

¥

P : person

N T1 1 0.5

1

0.5

¥ ¥

N : name

1 ¥ ¥

T : phone

1

On such simple RMCs representing trees,MSO queries are tractable!
P. Senellart (TŽlŽcom ParisTech) Probabilistic XML 2009/01/13 34 / 37

Pr = 1! 0.8
Pr = 1
Pr = 1
Pr = 1! 0.5
Pr = 1
Pr = 1! 0.5
Pr = 1! 0.2

Recursive Markov Chains - Tree Generators

• Entering a component labeled L
= generation of an opening tag <L>

• Exiting a component labeled L
= generation of a closing tag </L>

<directory>

</directory>

<person>
<name>
</name>
<phone>
</phone>

</person>
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Example: prob. DTDs via rec. Markov chains [BKOS09]

<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>

• •
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D : directory
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On such simple RMCs representing trees, MSO queries are tractable!
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Example: prob. DTDs via rec. Markov chains [BKOS09]

<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>

¥ ¥

¥ ¥ ¥

D : directory

P

1

0.8
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0.2

¥ ¥ ¥ ¥ ¥ ¥

¥

P : person

N T1 1 0.5
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On such simple RMCs representing trees, MSO queries are tractable!

P. Senellart (TŽlŽcom ParisTech) Probabilistic XML 2009/01/13 34 / 37

Pr = 1! 0.8
Pr = 1
Pr = 1
Pr = 1! 0.5
Pr = 1
Pr = 1! 0.5
Pr = 1! 0.2

Recursive Markov Chains - Tree Generators

¥ Entering a component labeled L
= generation of an opening tag <L>

¥ Exiting a component labeled L
= generation of a closing tag </L>

<directory>

</directory>

<person>
<name>
</name>
<phone>
</phone>

</person>
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The directory RMC is in HMC and in TLMC 
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¥ Query evaluation algorithm :  Given TLMC  A and MSO φ

¥ Pre-process TLMC:  
A <z probabilistic push-down automaton (PPDA) B

¥ Pre-process MSO: 
φ <z  tree automaton C (det. streaming tree automaton)

¥ Compute a product PPDA automaton B!C

¥ Compute the termination probability for B!C

¥ Theorem: 
TLMC is tractable for MSO (in data complexity)

23

Computable in PTIME

Tractability of RMC Fragments: TLMC

Probability that B!C terminates = Probability that φ holds in A

Computable in PTIME

/31



¥ Theorem: 
HMC is ra-tractable for MSO (in data complexity)

¥ ra-tractability:  

¥ tractability in case of Þxed-cost rational arithmetic 

¥ all arithmetic operations over rationals take unit time, no 
matter how large the numbers

24

Tractability of RMC Fragments: HMC

/31
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Expressiveness of RMC Fragments
width

depth

sharing
wide

narrow

deepshallow

yes

no

1-TLAMC [none]

1-TLMC

1-AHMC

[none]

1-HMC

[none]

1-RMC

TLAMC [none]

TLMC

AHMC

[none]

HMC

[none]

RMC

Figure 2: Space of models considered in this paper. Considered dimensions (left), 1-exit models (middle),

multi-exit models (right). Tractability of MSO queries: MODEL: tractable, MODEL: ra-tractable, MODEL:

SQRT-SUM is reducible to query evaluation for some fixed MSO query.

Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like
if no two boxes are mapped to the same component.

It follows from the definition that there is no recursion.
This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists α ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such α’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML
representation system, and q any MSO query that does not
make use of the order predicate" . The complexity of the
quantitative evaluation problem for q and S ! S is the same
as the complexity of the quantitative evaluation problem for
q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none] , are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with ε, deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.

width
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wide

narrow

deepshallow
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no

1-TLAMC [none]

1-TLMC

1-AHMC

[none]

1-HMC

[none]
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TLAMC [none]
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[none]

HMC

[none]

RMC

Figure 2: Space of models considered in this paper. Considered dimensions (left), 1-exit models (middle),

multi-exit models (right). Tractability of MSO queries: MODEL: tractable, MODEL: ra-tractable, MODEL:

SQRT-SUM is reducible to query evaluation for some fixed MSO query.

Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like

if no two boxes are mapped to the same component.
It follows from the definition that there is no recursion.

This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux ,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists ! ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such ! ’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML

representation system, and q any MSO query that does not

make use of the order predicate " . The complexity of the

quantitative evaluation problem for q and S ! S is the same

as the complexity of the quantitative evaluation problem for

q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none], are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with " , deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.

Three dimensions of expressiveness 

¥ Width: wide vs. narrow
Wide models: random trees of any width ~ recursion inside components

¥ Depth: deep vs. shallow 
Deep models: random trees of any depth ~ recursion across components

¥ Call sharing: yes vs. no
Model with sharing: random trees with doubly exponentially many leaves
~ components can be called from multiple places

PrXML

/ DTD
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SQRT-SUM is reducible to query evaluation for some fixed MSO query.

Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like
if no two boxes are mapped to the same component.

It follows from the definition that there is no recursion.
This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists α ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such α’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML
representation system, and q any MSO query that does not
make use of the order predicate" . The complexity of the
quantitative evaluation problem for q and S ! S is the same
as the complexity of the quantitative evaluation problem for
q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none] , are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with ε, deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.
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Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like

if no two boxes are mapped to the same component.
It follows from the definition that there is no recursion.

This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux ,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists ! ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such ! ’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML

representation system, and q any MSO query that does not

make use of the order predicate " . The complexity of the

quantitative evaluation problem for q and S ! S is the same

as the complexity of the quantitative evaluation problem for

q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none], are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with " , deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.
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Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like
if no two boxes are mapped to the same component.

It follows from the definition that there is no recursion.
This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists α ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such α’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML
representation system, and q any MSO query that does not
make use of the order predicate" . The complexity of the
quantitative evaluation problem for q and S ! S is the same
as the complexity of the quantitative evaluation problem for
q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none] , are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with ε, deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.
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Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like

if no two boxes are mapped to the same component.
It follows from the definition that there is no recursion.

This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux ,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists ! ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such ! ’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML

representation system, and q any MSO query that does not

make use of the order predicate " . The complexity of the

quantitative evaluation problem for q and S ! S is the same

as the complexity of the quantitative evaluation problem for

q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none], are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with " , deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.
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Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like
if no two boxes are mapped to the same component.

It follows from the definition that there is no recursion.
This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists α ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such α’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML
representation system, and q any MSO query that does not
make use of the order predicate" . The complexity of the
quantitative evaluation problem for q and S ! S is the same
as the complexity of the quantitative evaluation problem for
q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none] , are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with ε, deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.
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Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like

if no two boxes are mapped to the same component.
It follows from the definition that there is no recursion.

This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux ,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists ! ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such ! ’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML

representation system, and q any MSO query that does not

make use of the order predicate " . The complexity of the

quantitative evaluation problem for q and S ! S is the same

as the complexity of the quantitative evaluation problem for

q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none], are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with " , deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.
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Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like
if no two boxes are mapped to the same component.

It follows from the definition that there is no recursion.
This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists α ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such α’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML
representation system, and q any MSO query that does not
make use of the order predicate" . The complexity of the
quantitative evaluation problem for q and S ! S is the same
as the complexity of the quantitative evaluation problem for
q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none] , are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with ε, deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.
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Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like

if no two boxes are mapped to the same component.
It follows from the definition that there is no recursion.

This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux ,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists ! ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such ! ’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML

representation system, and q any MSO query that does not

make use of the order predicate " . The complexity of the

quantitative evaluation problem for q and S ! S is the same

as the complexity of the quantitative evaluation problem for

q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none], are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with " , deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.
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¥ We adopted a very general RMC model for probabilistic XML. RMC

¥ Mimics DTDs with probabilities 

¥ Extends classical PrXML model with distributional nodes

¥ We studied 

¥ space of models between PrXML and RMC
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Tree-like Markov chains.How can we move from tractabil-
ity in a unit-cost arithmetic model to full tractability? For
our representation systems, this move corresponds to a tran-
sition to exponentially less succinct systems. This is the
case of HMC, which is ra-tractable, and a fully tractable yet
less succinct subclass of it called TLMC. In short, the latter
can be obtained from the former by forbidding call sharing.
Recall that the call graphs of hierarchical Markov chains are
acyclic. Call sharing means that several boxes can call (i.e.,
be mapped to) the same component.

Definition 7. A hierarchical Markov chain A is tree-like

if no two boxes are mapped to the same component.
It follows from the definition that there is no recursion.

This defines a shallow and wide probabilistic model, TLMC,
that is a restriction of HMC. The RMC depicted in Fig-
ure 1 is a tree-like RMC. Note also that the translation of
PrXMLmux ,det into RMC used in the proof of Proposition 5
(see the appendix) produces a tree-like Markov chain, whose
components are moreover acyclic. An example of RMC that
is not tree-like is given in Theorem 3.2, part (4) of [11] (see
also Figure 5 in the appendix).

The global Markov chain defined by a tree-like Markov
chain A is finite, and its size is linear in the size of A . A con-
sequence of this is that all reachability probabilities have
polynomial size and can be computed in polynomial time as
for standard Markov chains. The same automata-based algo-
rithm as in the proof of Theorem 6 reduces calculating the
probability of MSO queries over TLMC to calculating reach-
ability probabilities; by combining these two insights, we get
an algorithm for e! ciently calculating query probabilities:

Theorem 8. TLMC is tractable for MSO.

Unordered models.The existing literature on probabilistic
XML models usually assumes unordered documents. We can
see RMC, and all other models presented in this paper, as
unordered models. Specifically, let A ! RMC and L (A) be
the set of generated strings; the unordered interpretation
of A is the set of unordered documents d (with probability
Pr(d)) for which there exists ! ! L (A) a possible encoding of
d under any ordering (Pr(d) is then the sum of probabilities
of all such ! ’s). We note that the data complexity results
obtained in the ordered setting extend to the unordered one:

Proposition 9. Let S be any ordered probabilistic XML

representation system, and q any MSO query that does not

make use of the order predicate " . The complexity of the

quantitative evaluation problem for q and S ! S is the same

as the complexity of the quantitative evaluation problem for

q and the unordered interpretation of S.

5. BETWEEN P-DOCUMENTS AND RMCS
In the previous section we have shown the existence of

tractable restrictions of RMCs. We now explore the space of
models in between PrXML and RMC. RMC models extend
PrXML in expressiveness in several dimensions. Clearly RMC
is wide while PrXML is narrow, it is deep while PrXML is
shallow. In addition, it allows state to be passed upward from
child to parent, while in PrXML the processing is completely
top-down (this is analogous to the distinction in attribute
grammars between inherited attributes and synthesized at-
tributes). Finally, in RMCs a component may be called from
multiple places, while in PrXML the topology is a tree: a
node has a single parent.

Shallowness corresponds syntactically to being hierarchi-
cal. For an RMC to be narrow, it has to be acyclic, i.e.,
every component is an acyclic graph. An RMC is 1-exit if
each of its components has one exit node, and multi-exit
otherwise. The ability to pass information up corresponds to
being multi-exit. Finally, the restriction on the topology cor-
responds to being tree-like, as defined in the previous section.
We can thus talk about Tree-like Markov Chains (abbrevi-
ated TLMC), Tree-like Acyclic Markov Chains (abbreviated
TLAMC), etc. These dimensions, as well as models making
them up, are shown in Figure 2. We use the following naming
convention: If a model is acyclic or hierarchical, its name
is preceded by A or H respectively. The abbreviation SCFG
stands for Stochastic Context-Free Grammars. All these
models are analyzed in more detail later in this section. The
empty corners of the cubes, labeled [none], are unavoidable:
Deep models without sharing cannot be obtained as RMC
restrictions, and because RMC components can be labeled
with " , deep models can also generate wide documents.

The arrows in Figure 2 indicate that the pointing model is
a restriction of the pointed one. The figure also gives insights
into the trade-o" between succinctness and tractability:

(i) Tractability degrades to ra-tractability by adding shar-
ing. As seen further, this amounts to a gain in succinct-
ness by being able to represent worlds with probabilities
doubly exponentially small.

(ii) Neither the width nor the number of exits influences
tractability.

(iii) Going from shallow to deep a" ects tractability.
We now investigate in detail the relationship of these

classes with each other, and with existing PrXML models.

1-exit vs. Multi-exit Models.One question is whether
multi-exit models can be more expressive than 1-exit ones.
As we state next, this is not the case for many of our models.
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