Probabilistic XML via Markov Chains

Evgeny Kharlamov

Free University of Bozen-Bolzano; INRIA Saclay – Île-de-France

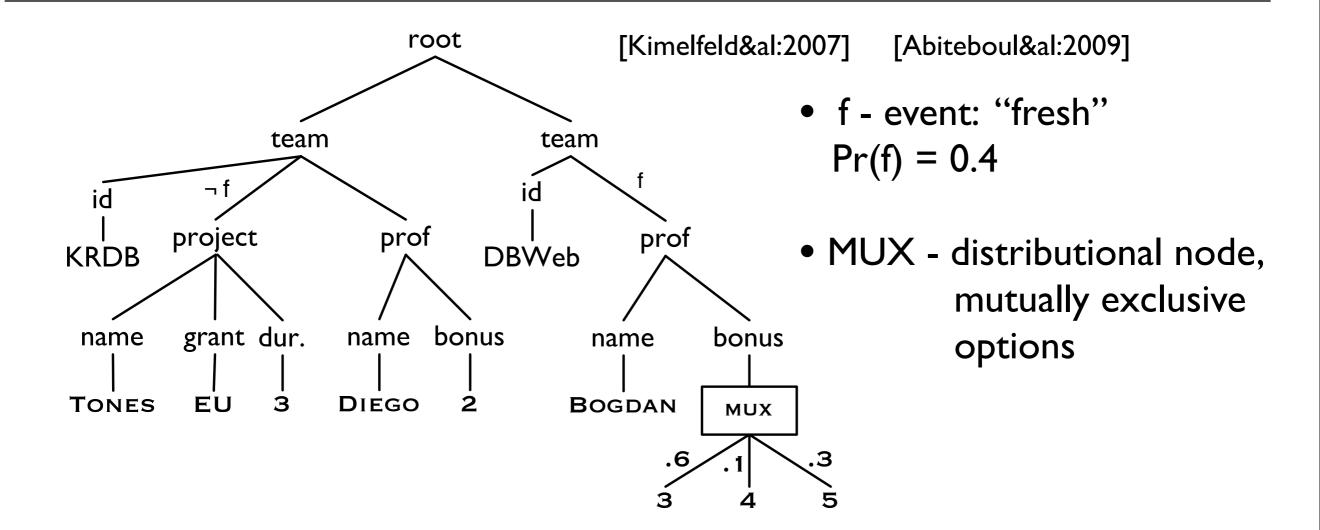
Joint work with

Michael Benedikt Oxford University

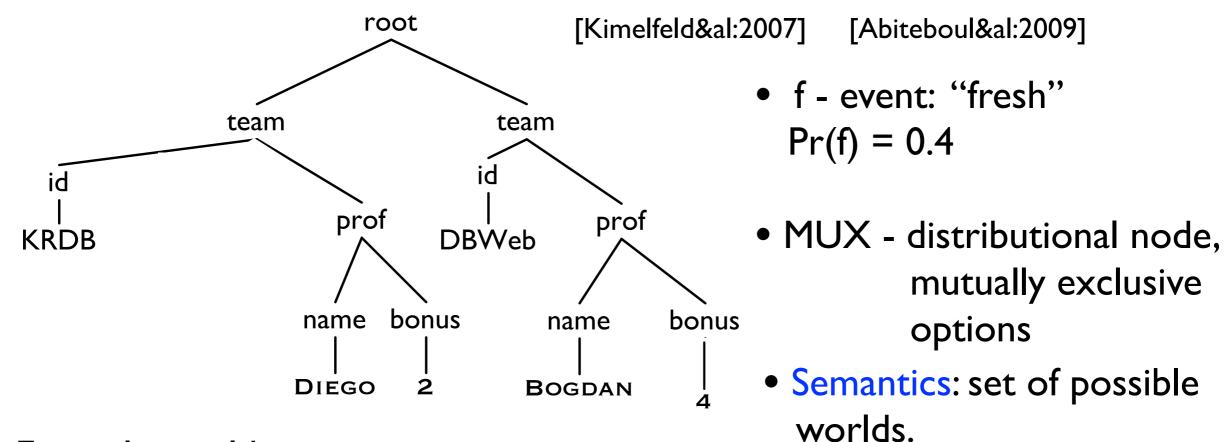
Dan Olteanu Oxford University **Pierre Senellart** *Télécom ParisTech*

VLDB. Singapore. Sept. 2010

Uncertain Data is Commonplace


- (Web) information extraction
- Processing manually entered data (such as census forms)
- Data integration, data cleaning
- Managing scientific data; sensor data
- Risk management / predictions

Probabilities are a way to deal with uncertain data


Dealing with Probabilistic Data

- Traditional DBMSs: not meant to deal with probabilistic data
- Ad hoc approaches: not very satisfactory
- Recent years: advances in developing
 - representation systems for incomplete/probabilistic data
 - uncertainty-aware query languages
- Probabilistic relational DBMSs: MayBMS, MystiQ, PrDB, Trio, ...

Probabilistic XML Today: PrXML Model

Probabilistic XML Today: PrXML Model

- Example world:
 - f = true (the data is outdated), probability of this choice: 0.4
 - MUX: 4, probability of this choice: 0.1
- probability of this world is 0.4×0.1

Probabilistic XML documents (compactly) represent probability spaces of ordinary XML documents

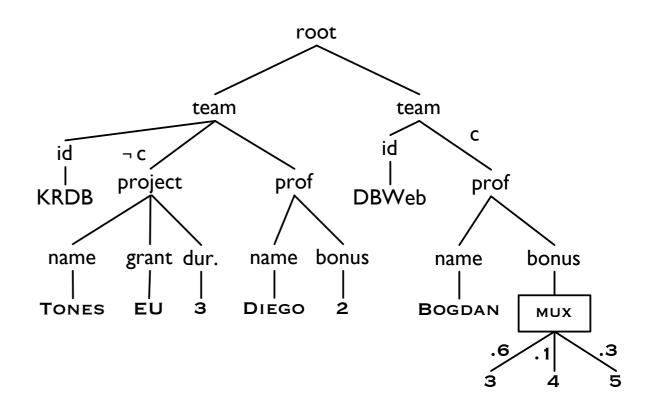
Probabilistic XML Today

- Trees enhanced with distributional nodes and event formulas that define the probabilistic process that generates random trees
- Proposed PrXML representation systems mirror the relational case
- Widely studied in recent years:
 - Query answering
 - Aggregating
 - Constraints
 - Continuous models
 - Typing
 - Updates

[Kimelfeld&al'09]

[Abiteboul&al'10]

[Cohen&al'09]


[Abiteboul&al'10]

[Cohen&al'09]

[Kharlamov&al'10]

Properties of PrXML Model

- Trees represented by PrXML document T have bounded height & width:
 - height: at most the height of T
 - width: at most the width of T
- Number of represented XML documents is bounded:
 - at most exp. many in |T|

Properties of PrXML Model

- Trees represented by PrXML document T have bounded height & width:
 - height: at most the height of T
 - width: at most the width of T
- Number of represented XML documents is bounded:
 - at most exp. many in |T|

Mailbox DTD		
mailbox:	$(thread)^*$	
thread:	(message, id, subject)	
message:	$(from, to, content, message^*)$	
from:	#PCDATA	
to:	#PCDATA	
content:	#PCDATA	
subject:	#PCDATA	

- Try to make a probabilistic model of a mailbox with PrXML:
 - Unbounded # of threads /messages ~ unbounded width / height of docs
 - The deeper the thread, the lower its probability

No chance with $PrXML \Rightarrow$ we need models akin to probabilistic DTDs

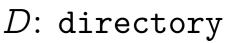
Goal of This Work

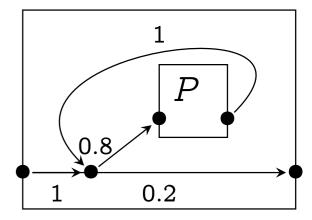
• Identify

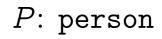
limitations of existing probabilistic representation systems

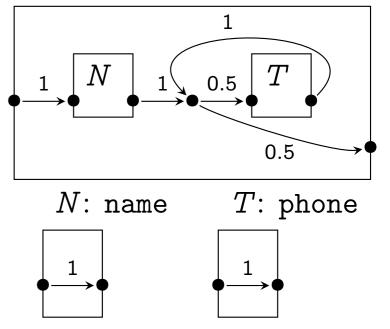
- key limitations: expressiveness and succinctness
- Develop systems that naturally capture other formalisms for representing classes of XML documents
 - E.g. DTDs or XML schemas
- Understand

what properties of new systems allow query tractability

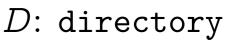

Outline

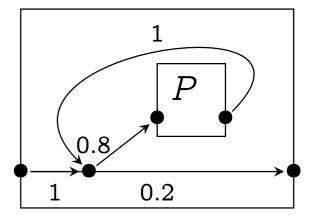

- Probabilistic Data and What We Want to Study
- Recursive Markov Chains (RMCs)
- Probabilistic XML via RMCs
- Querying RMCs

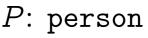

[Etessami, Yannakakis'09]

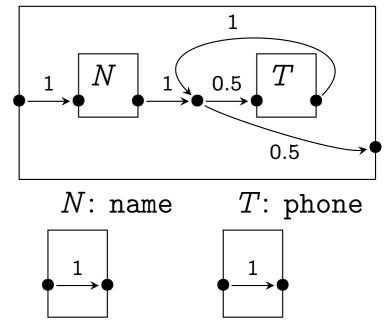

Recursive Markov Chains

- Markov Chains
 - Graphs whose edges are labeled with probabilities
 - Define processes evolving via independent choices at nodes
- Recursive Markov Chains
 - Markov Chains with recursive calls
 - RMC runs have a natural hierarchical structure nested words or trees

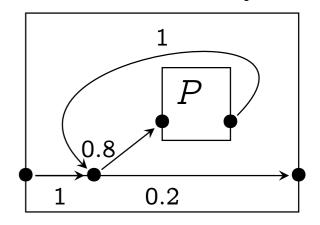



Recursive Markov Chains - Example

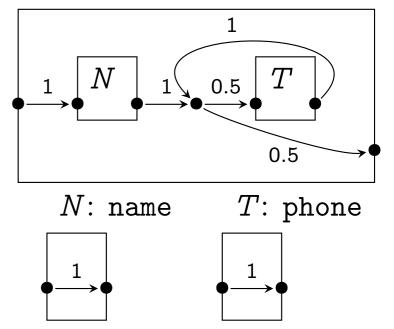

- RMC with four components D, P, N, and T
- Each component has
 - a label, e.g., "directory" is the label of D
 - nodes: entry, exit, call, return, others
 - boxes to simulate calls to other components, e.g., box P inside D
 - transitions (u, $p_{u,v}$, v) from source u to destination v with probability $p_{u,v}$; For each source u: $\sum p_{u,v} = 1$


$$\{v|(u,p_{u,v},v)\}$$

 D is the start component, no calls to D are allowed.


Recursive Markov Chains - Applications

Variants of (R)MCs are well-understood and researched in


- Machine learning (e.g., hidden Markov models) [Bishop'06]
- Computational linguistics (e.g., stochastic CFGs) [Manning,Schuetze'99]
- Verification

 (e.g. probabilistic automata)
 [Kwiatkowska'03]

D: directory

P: person

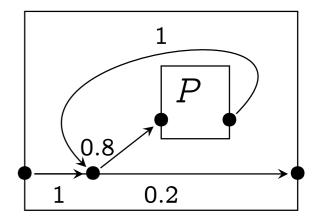
Outline

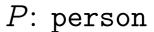
- Probabilistic Data and What We Want to Study
- Recursive Markov Chains (RMCs)
- Probabilistic XML via RMCs
- Querying RMCs

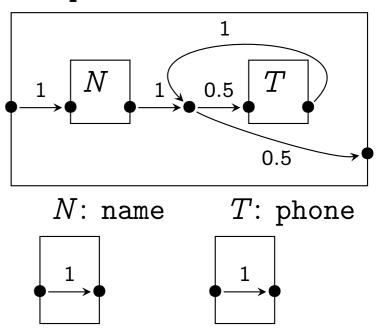
Recursive Markov Chains - Tree Generators

<directory>

<person></person>	$Pr = 1 \cdot 0.8$
<name></name>	Pr = I
	Pr = I
<phone></phone>	$Pr = 1 \cdot 0.5$
	Pr = I
	$Pr = 1 \cdot 0.5$
	$Pr = 1 \cdot 0.2$

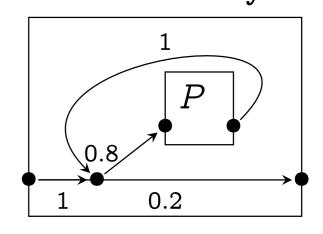

Document d

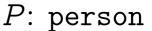

 $Pr(d) = 0.8 \cdot 0.5 \cdot 0.5 \cdot 0.2$

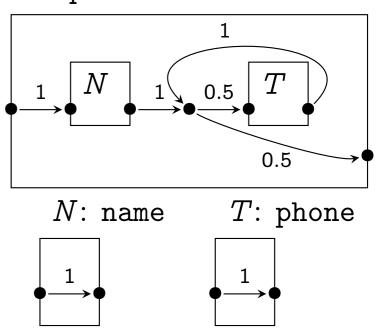

- Entering a component labeled L
 = generation of an opening tag <L>
- Exiting a component labeled L
 = generation of a closing tag </L>

<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>

D: directory






Recursive Markov Chains - Tree Generators

<directory></directory>	ELEMI</th
<person></person>	$Pr = 1 \cdot 0.8$ ELEME</td
- <name></name>	Pr = I
	Pr = I
<phone></phone>	$Pr = 1 \cdot 0.5$
	Pr = 1
	$Pr = 1 \cdot 0.5$
	$Pr = 1 \cdot 0.2$
Document d	$Pr(d) = 0.8 \cdot 0.5 \cdot 0.5 \cdot 0.2$

<!ELEMENT directory (person*)> <!ELEMENT person (name,phone*)> D: directory

- A run generates a skeleton of a document
- Empty components N and D can model the actual data, i.e., names and telephone numbers of people

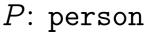
Recursive Markov Chains - Tree Generators

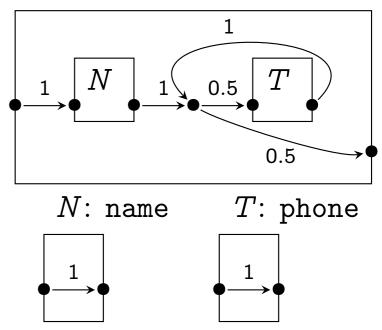
<directory>

<person></person>	$Pr = 1 \cdot 0.8$
<name></name>	Pr = I
	Pr = I
<phone></phone>	$Pr = 1 \cdot 0.5$
	Pr = I
	$Pr = 1 \cdot 0.5$
	$Pr = 1 \cdot 0.2$

Document d

 $Pr(d) = 0.8 \cdot 0.5 \cdot 0.5 \cdot 0.2$


Advantages of RMCs over PrXML


- More natural, e.g., akin to probabilistic DTDs
- We connect questions on prob. XML to tools and techniques of Markov models

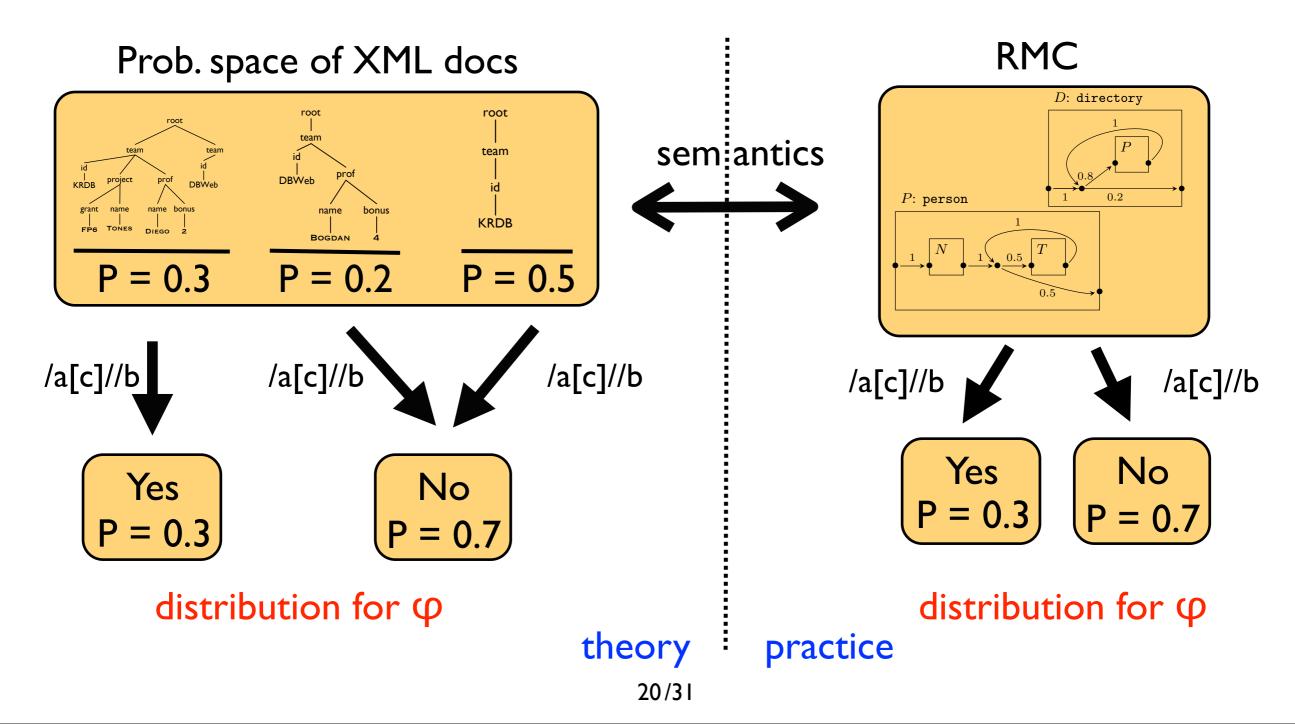
<!ELEMENT directory (person*)> <!ELEMENT person (name,phone*)>

D: directory

Probability Spaces of RMCs vs PrXML

- Size of generated documents:
 - RMC: could be
 - Unbounded width ~ cycles inside a component
 - Unbounded depth ~ cycles across components
 - PrXML: always linearly bounded by size of probabilistic document
- Probabilities of generated documents: Comes from properties of RMCs
 - RMC: could be irrational, doubly exponentially small in the size of RMC
 - PrXML: always rational and at most exponentially small

PrXML models with distributional nodes are subsumed by RMC

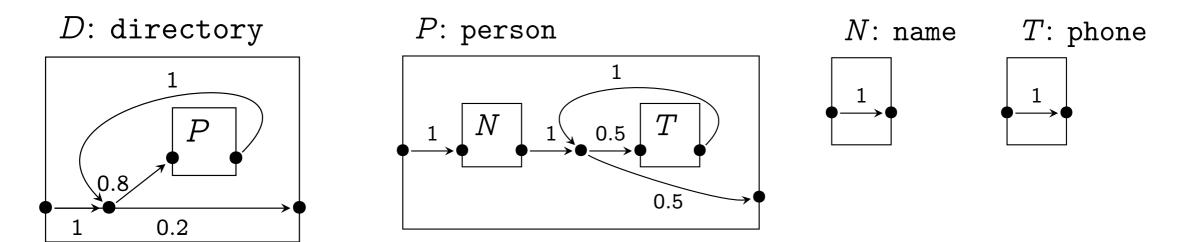

D: directory 0.8 0.2

Outline

- Probabilistic Data and What We Want to Study
- Recursive Markov Chains (RMCs)
- Probabilistic XML via RMCs
- Querying RMCs

Querying RMC

Given: an RMC and a property, e.g., MSO formula, Boolean XPath query Task: verify whether the RMC satisfies the property



MSO Queries for RMCs

- Monadic Second Order (MSO) query language is very general
 - Subsumes: Tree-pattern queries, navigational XPath, ...
- Verifying MSO properties for unrestricted RMCs is
 - in PSPACE
 - as hard as SQRT-SUM: in PSPACE
 - lower bounds long standing open problem
- We focus on RMC fragments to see the tension between
 - tractability of query evaluation
 - expressiveness
 - succinctness

RMC Fragments

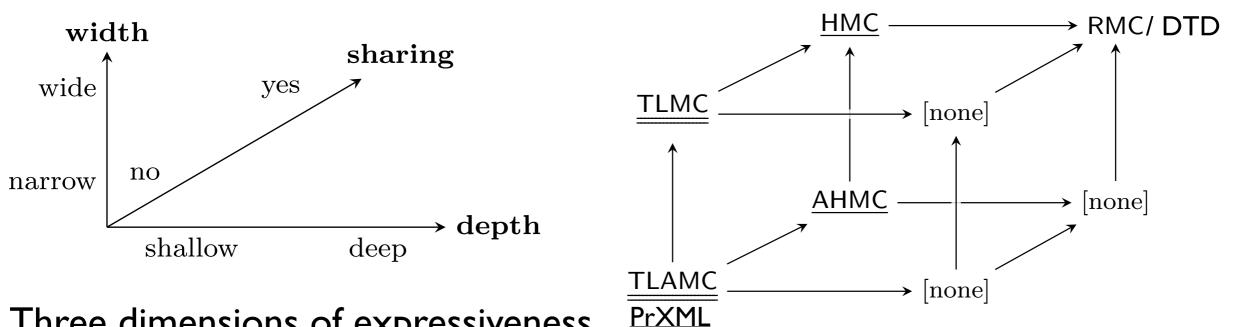
- Hierarchical RMCs (HMC):
 - A component can not (eventually) call itself
- Tree-like RMCs (TLMC):
 - Every component can be called in one place only but possibly many times
 - special case of HMC

The directory RMC is in HMC and in TLMC

Tractability of RMC Fragments: TLMC

- Theorem: TLMC is tractable for MSO (in data complexity)
- Query evaluation algorithm : Given TLMC A and MSO ϕ
 - Pre-process TLMC:
 A ⇒ probabilistic push-down automaton (PPDA) B
 - Pre-process MSO: $\phi \Rightarrow$ tree automaton C (det. streaming tree automaton)
 - Compute a product PPDA automaton B×C
 - Compute the termination probability for $B \times C$

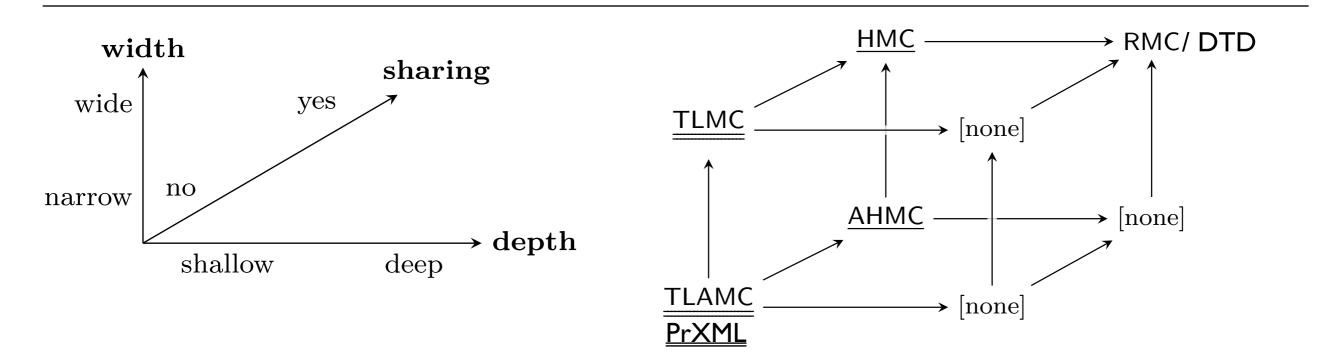
Probability that B×C terminates = Probability that ϕ holds in A


Computable in PTIME

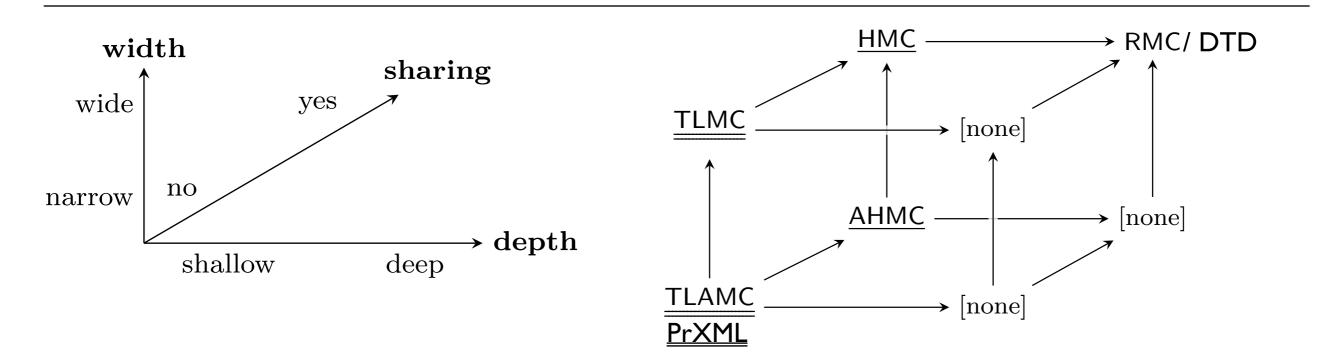
Computable in PTIME

Tractability of RMC Fragments: HMC

- Theorem: HMC is ra-tractable for MSO (in data complexity)
- ra-tractability:
 - tractability in case of fixed-cost rational arithmetic
 - all arithmetic operations over rationals take unit time, no matter how large the numbers

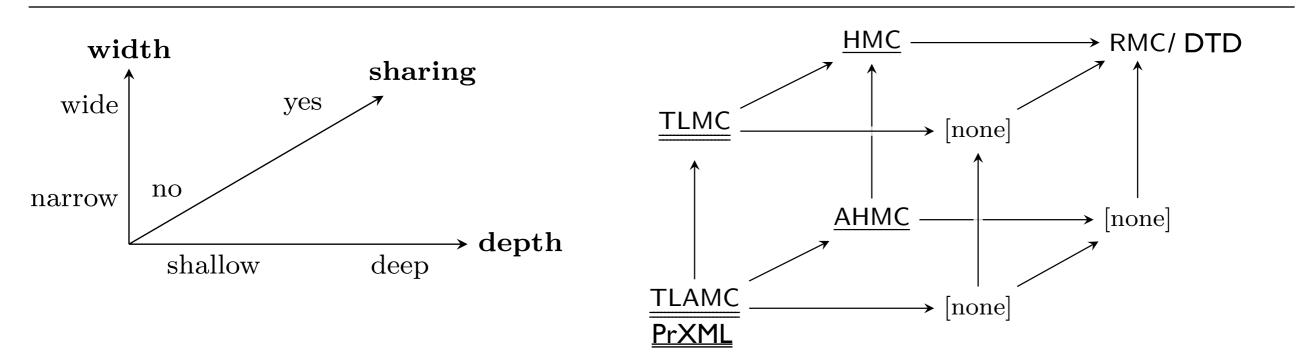

Expressiveness of RMC Fragments

Three dimensions of expressiveness


- Width: wide vs. narrow Wide models: random trees of any width \sim recursion inside components
- **Depth**: deep vs. shallow Deep models: random trees of any depth \sim recursion across components
- Call sharing: yes vs. no Model with sharing: random trees with doubly exponentially many leaves \sim components can be called from multiple places

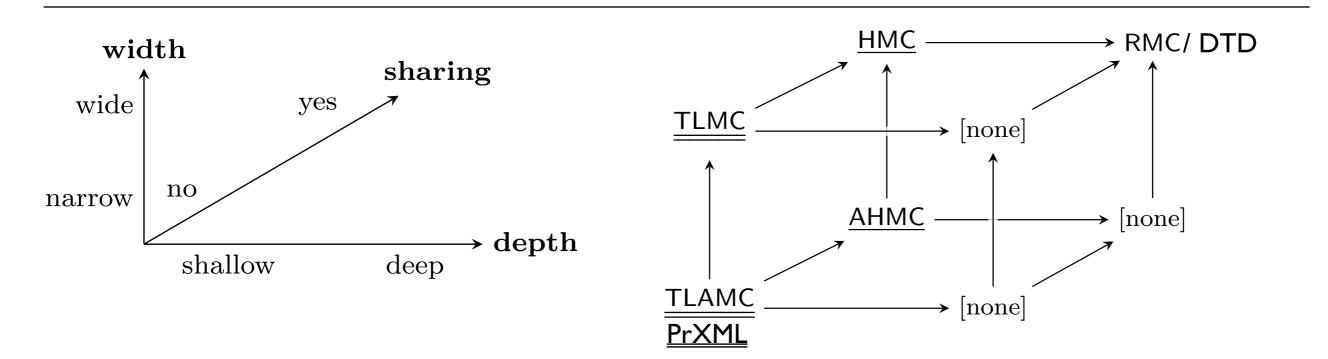
Expressiveness of RMC Fragments

- [none] no reasonable syntactic restriction for this class
- "A" = Acyclic.
 Each component is an acyclic graph


Expressiveness of RMC Fragments

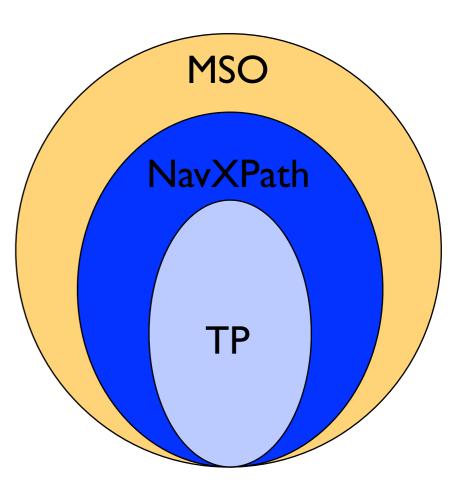
Existing PrXML models with distributional nodes:

- shallow, narrow, no sharing
- represent finite probability spaces only
- subsumed by TLAMC

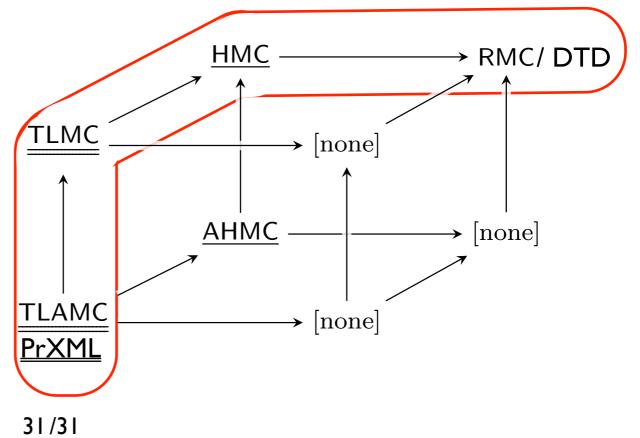

Expressiveness vs Tractability

Tractability for MSO:

- **double underlining** ~ MSO evaluation is tractable
 - single underlining ~ MSO evaluation is
- tractable under unit cost arithmetic
- no underlining ~ MSO evaluation is SQRT-SUM hard


Expressiveness vs Tractability

- Gain in width no influence on tractability
- Gain in depth loss in tractability
- Allowing sharing
 - tractability degrades to unit-cost arithmetics tractability


Combined Complexity of MSO Evaluation

- Tree-patterns over PrXML with distributional nodes: FP^{#P}-complete
- Navigational XPath over AHMC: in PSACE
- MSO over
 - PrXML with distributional nodes and TLAMC: PSPACE-complete
 - AHMC: #EXP-hard and in EXPSPACE
 - Wide models, e.g., TLMC: even deciding whether an MSO query has a probability > 0 is not elementary

Conclusion

- We adopted a very general RMC model for probabilistic XML. RMC
 - Mimics DTDs with probabilities
 - Extends classical PrXML model with distributional nodes
- We studied
 - space of models between PrXML and RMC
 - complexity of MSO query answering

DataRing Project:

P2P Data Sharing for Online Communities http://www.lina.univ-nantes.fr/projets/DataRing/

FOX Project: Foundations of XML FP7-ICT-233599 http://fox7.eu/

Ontologiesmeet Business Rules

ONTORULE: ONTOlogies meet business RULes FP7-ICT-231875 http://ontorule-project.eu/

Webdam Project: Foundations of Data Management ERC-FP7-226513 http://webdam.inria.fr

British EPSRC grant EP/G004021/1

Thank you

References

- [Abiteboul&al'10] -S.Abiteboul, T-H. H. Chan, E. Kharlamov, W. Nutt, and P. Senellart, Aggregate Queries for Discrete and Continuous Probabilistic XML.
 ICDT 2010
- [Abiteboul&al'09] Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, Pierre Senellart: On the expressiveness of probabilistic XML models.VLDB J. 18(5): 1041-1064 (2009)
- [Antova&al'07] Lyublena Antova, Christoph Koch, Dan Olteanu: 10106 Worlds and Beyond: Efficient Representation and Processing of Incomplete Information. ICDE 2007: 606-615
- [Bishop'06] C. M. Bishop (2006), Pattern Recognition and Machine Learning.
- [Cohen&al'09] -Sara Cohen, Benny Kimelfeld, Yehoshua Sagiv: Running tree automata on probabilistic XML. PODS 2009: 227-236
- [Cohen&al'09] S. Cohen, B, Kimelfeld, Y. Sagiv: Incorporating constraints in probabilistic XML.ACM Trans. Database Syst. 34(3): (2009)

References

- [Etessami&Yannakakis'05] K. Etessami, M.Yannakakis: Recursive Markov Chains, Stochastic Grammars, and Monotone Systems of Nonlinear Equations. STACS 2005
- [Etessami'06] Slides of talks at Dagstuhl.Available at http:// homepages.inf.ed.ac.uk/kousha/etessami_wamt_tutorial.pdf
- [Kimelfeld&al'09] Benny Kimelfeld, Yuri Kosharovsky, Yehoshua Sagiv: Query evaluation over probabilistic XML.VLDB J. 18(5): 1117-1140 (2009)
- [Kharlamov&al'10] Evgeny Kharlamov, Werner Nutt, Pierre Senellart: Updating probabilistic XML. EDBT/ICDT Workshops 2010
- [Kwiatkowska'03]- M. Z. Kwiatkowska: Model checking for probability and time: from theory to practice. LICS 2003
- [Manning,Schuetze'99] Christopher D. Manning and Hinrich Schütze.
 Foundations of Statistical Natural Language Processing. MIT Press, 1999.
- [Senellart&al'07] P. Senellart, S. Abiteboul: On the complexity of managing

References

 [Senellart&al'07] - P. Senellart, S. Abiteboul: On the complexity of managing probabilistic XML data. PODS 2007