
A Probabilistic XML Merging Tool
∗

Talel Abdessalem
Institut Télécom

Télécom ParisTech; CNRS LTCI
Paris, France

talel.abdessalem@telecom-
paristech.fr

M. Lamine Ba
Université Cheikh Anta DIOP

DMI; FST
Dakar, Sénégal

mouhamadou84.ba@
ucad.edu.sn

Pierre Senellart
Institut Télécom

Télécom ParisTech; CNRS LTCI
Paris, France

pierre.senellart@telecom-
paristech.fr

ABSTRACT

This demonstration paper presents a probabilistic XML data
merging tool, that represents the outcome of semi-structured
document integration as a probabilistic tree. The system is
fully automated and integrates methods to evaluate the un-
certainty (modeled as probability values) of the result of
the merge. It is based on the two-way tree-merge tech-
nique and an uncertain data model defined using probabilis-
tic event variables. The resulting probabilistic repository
can be queried using a subset of the XPath query language.
The demonstration application is based on revisions of the
Wikipedia encyclopedia: a Wikipedia article is no longer
considered as the latest valid revision but as the merge of
all possible revisions, some of which are uncertain.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications

General Terms

Algorithms

Keywords

Probabilistic XML, XML merge, tree merge

1. INTRODUCTION
Data management in collaborative online platforms (wikis)

is limited to the use of revision control to manage changes
on documents. The revision control system maintains the
current revision of each document and generates a new revi-
sion after every editing operation. This simple system works
well but requires user intervention when conflicts or uncer-
tain data are detected and does not include any mechanisms
for controlling information reliability.

∗This work has been supported by the DataRing and LPOD
projects of the French ANR.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

Efficient evaluation of the uncertainty in merged data and
automatic resolution of conflicts are the challenging points
for building a fully automated data integration system. Eval-
uation of uncertainty is needed in collaborative web plat-
forms because a document can result from contributions of
different persons, who may have different levels of reliabil-
ity. This reliability can be estimated in various ways, such
as an indicator of the overall reputation of an author (possi-
bly automatically derived from the content of contributions,
cf. [2]) or the subjective trust a given reader has in the con-
tributor. For popular collaborative platforms, an automatic
management of conflicts is necessary because the number of
contributors can be very large. This is especially true for
documents related to hot topics, where the number of con-
flicts and vandalism acts can evolve rapidly and compromise
the integrity of the documents.

In the case of the online encyclopedia Wikipedia, very
popular and with no write access limitations for most doc-
uments, a system able to estimate the level of reliability of
information and to automatically manage conflicts would be
very helpful. In a sense, a Wikipedia page may be regarded
as a representation of all possible worlds modeled by the
integration of generated revisions. A Wikipedia article can
thus be seen as the merge of all its (uncertain) revisions. The
overall uncertainty on a given part of the article is derived
from the uncertainty of revisions having affected it.

In this demonstration paper, we describe a probabilistic
semi-structured data merging tool, which is fully automated
and provides facilities for automatically resolving conflicts
and assessing uncertainty about the merged data. The sys-
tem is based on a two-way probabilistic XML merging al-
gorithm that computes a probabilistic XML document from
the successive input revisions of a given document. The re-
sult document represents several possible views of the real
world and enables estimating the reliability of the informa-
tion it contains. Moreover, our system enables viewing the
state of a document at a given revision, removing the effect
of a given revision or a given contributor, or focusing only on
the effect of some chosen revisions or some reliable contribu-
tors. We use a specific model for probabilistic XML, from [1,
4], based on the use of probabilistic event variables. A prob-
abilistic document (p-document) is defined as a tree with
ordinary nodes and distributional nodes, the latter specify-
ing a probability distribution of children of a given node.

We start by presenting the probabilistic XML model of
p-documents. Then, in Section 3, we describe our merging
algorithm, and in Section 4 we describe the implemented
system and the demonstration scenario.

2. PROBABILISTIC XML
A probabilistic XML document is a representation of a

probability distribution over a space of ordinary XML doc-
uments. We follow the framework of a general probabilistic
XML model, from [1], in which this distribution is modeled
in terms of a probabilistic process that generates an ordi-
nary random XML document (seen here as an unranked, la-
beled, and ordered trees). Note that [1] assumes unordered
trees, but the same theory can be extended to ordered trees
(as in [3]), that are better adapted to our application to
Wikipedia revisions.

Probabilistic Documents. A p-document is a tree with
two types of nodes. We have the ordinary nodes, the regular
XML nodes which may appear in random documents, and
the distributional nodes. The latter are only used for defin-
ing the probabilistic process that generates random docu-
ments (but they do not occur in those documents) by speci-
fying how the children of a given node are randomly selected.
Several families of probabilistic documents, characterized by
different types of distributional nodes, have been proposed
in the literature [1]. A general distinction is made between
local distributional nodes (where the probabilistic choice is
made at each node independently of all other choices) and
global ones. The former tend to be more tractable query-
wise, whereas the latter express more compactly the de-
pendencies resulting from update operations [4]. Since the
tree merging operations we use for obtaining a probabilis-
tic document can be seen as a succession of updates, we
focus here on global distributional nodes, and, more specif-
ically, on the very general fie nodes [4] (standing for for-

mula of independent events) where each distributional node
is annotated with an arbitrary propositional formula over
Boolean random variables. All update operations can be
made in polynomial-time data complexity, with the down-
side that all non-trivial queries are #P-hard to evaluate in
this model. This probabilistic XML representation system
is denoted PrXML

fie .
Formally, a p-document P̂ ∈ PrXML

fie is an unranked, la-
beled, ordered, tree with ordinary and distributional nodes
(the root and the leaves are assumed to be ordinary), along
with a set of probabilistic events {e1 . . . en} (Boolean random
variables), with probabilities Pr(ei) . . .Pr(en) of being true.
The assumption is that these events are all probabilistically
independent, i.e., Pr(ei ∧ ej) = Pr(ei)×Pr(ej) for all i 6= j.

Each distributional node n of P̂ is associated with a proposi-
tional formula φ(n) over e1 . . . en. The probabilistic process

that generates a random document P from a P̂ is as follows:
(i) choose a valuation for all event variables, setting ei to
true with probability Pr(ei) for each 1 ≤ i ≤ n; (ii) remove
all distributional nodes n whose formula φ(n) evaluates to
false for this valuation; descendants of removed nodes are
removed as well; (iii) remove all remaining distributional
nodes (whose formula was evaluated to true) and connect
their ordinary children to their closest ordinary ancestors.

An example PrXML
fie p-document, along with its three

possible documents and their probabilities, is depicted in
Figure 1. For concision of representation, fie distributional
nodes are simply represented as annotations on the edges
connecting their two closest ordinary ancestor and descen-
dant. Following this convention, we will refer in the following
to formulas attached to a node for the formula of a virtual

a) section

p1

e1 ∨ e2

t1

p2

¬e2

t2

b) section

p1

t1

p2

t2

section

p1

t1

section

p2

t2

Pr(e1) = 0.7 0.28 0.6 0.12
Pr(e2) = 0.6

Figure 1: a) PrXML
fie p-document; b) its three corre-

sponding possible documents and their probabilities

a) section

p1

t1

b) section

p1

t1

p2

t2

c) section

p1

t1

Figure 2: a) base revision; b) node p2 is added ; c)
node p2 is then removed

distributional node in between the node and its father.

P-Documents and Data Integration. A probabilistic doc-
ument can be considered as the result from a number of data
integration operations, as in [8, 4]. P-documents provide a
concise representation of imprecision and give the possibility
to keep lineage (or provenance) information about the data:
probabilistic events can represent the source of each opera-
tion, and the probability in these events the confidence one
has that the source is certain.

In our context of revisions in collaborative platforms, sev-
eral natural semantics can be associated to the event vari-
ables. One possibility is to see each successive revision as
an independent event and represent the uncertainty in this
revision as the probability of this independent event. More
realistically, one can use probabilistic events ei to denote the
author of a given revision and their probability Pr(ei) the
trust or reputation attached to this particular contributor.
Finally, it is possible to combine the two approaches and
assign to each revision a more complex event formula de-
pending on multiple events identifying different components
of the lineage of the formula.

In the management of Wikipedia revisions, a new revision
of a document is generated from the current revision when
a set of operations of updates is executed. Figure 2 shows a
simplified example of an update operation on a Wikipedia
revision where a single node is added and then removed. To
integrate these revisions, which is the purpose of this work,
we encode these update operations with event formulas of a
global p-document, which represents the entire set of revi-
sions.

3. MERGINGPROBABILISTIC XMLDATA
Our system realizes the integration of probabilistic XML

documents based on probabilistic events with a two-way tree

merging technique. The merge of two successive revisions is
done in two steps. Firstly, the merge algorithm finds shared,
added, and deleted nodes in two successive revisions, in the
same spirit as [6, 7]. Secondly, this information is merged
into the global p-document that is incrementally built out
of all revisions. We detail these two steps further.

For our application case, the merge of Wikipedia revisions,
we implemented a search interface that allows retrieving a
list of revisions of a given page from either a sample in a
local database or from the online Wikipedia platform on
demand. The Wiki-formatted revisions are then converted
to XML by following the structure (sections, subsections,
paragraphs, etc.) of the article. In Section 4, we give more
details on the functionalities included in the system.

We consider the following example of a Wikipedia article
with four successive revisions:

1. An introduction paragraph is added to the initially
empty document.

2. A section is added after the introduction, containing
some initial text.

3. This section is removed.
4. The section added in revision 2 and deleted in revi-

sion 3 is restored.
This sequence of revisions is typical, for instance, of a van-
dalism act that is subsequently corrected (but the vandal
may either be the one that adds an irrelevant section and
then restores it back after deletion, or the one that removes
a valid section).

Let r1 . . . rn be the n successive revisions of a given article
(i.e., n ordinary XML documents). By convention, we as-
sume that r0 is a root-only document. We build iteratively,

for each 1 ≤ k ≤ n, a p-document P̂ corresponding to the

merge of the first k revisions. In addition to building P̂, our
algorithm maintains a function α that serves to remember
the mapping between nodes of revisions x and nodes of the

p-document α(x). Initially, P̂ = r0 and α maps the root

of r0 to that of P̂ . We iteratively match rk−1 with rk and

report the result of the match into P̂ .

Matching of Revisions. Consider two two revisions rk−1

and rk to be matched. Let fk be the event formula as-
sociated to revision k (fk describes the provenance of this
revision, we explain in Section 4 how we choose it in our ap-
plication). The semantics of that formula is that it evaluates
to true if the revision is considered to be valid.

The matching of XML trees consists in determining a node
correspondence between the two trees. We assume that only
nodes at the same depth level in the trees match (i.e., for
any node n ∈ rk−1 and m ∈ rk that match, the children
of n may only match children of m and vice versa). The
matching algorithm gives as result three sets:

• A set D of deleted nodes: if x ∈ A then x ∈ rk−1 and
x has no match in rk.

• A set A of added nodes: if x ∈ A then x ∈ rk and x
has no match in rk−1.

• A set M of matched couples: if (x, y) ∈ M then x ∈
rk−1 and y ∈ rk match.

The algorithm finds the shared nodes in the two trees by
matching text content of leaf nodes, and children element
sequences of internal nodes; more details can be found in [6].
Then, the deleted nodes in the first document and the added
ones in the second one are discovered separately as those

article

p

e1

text1

section

(e2 ∧ ¬e3) ∨ e4

p

text2

Figure 3: Example merge result p-document result-
ing from the merging process

with no match.

MergingMatches. In this step, we update the p-document
with nodes and event formulas describing the match between
the two successive revisions. Let fie

old
(x) and fie

new
(x) be

the event formula attached to a node x ∈ P̂ respectively
before and after this merge.

We proceed as follows:

• For deleted nodes x ∈ S, we set

fie
new

(α(x)) = fie
old

(α(x)) ∧ (¬fk).

• For (xk−1, xk) ∈ M , we set α(xk) = α(xk−1) and

fie
new

(α(xk)) = fie
old

(α(xk)).

• For added nodes x ∈ A, we look for the lowest ancestor
ak of xk such that (ak−1, ak) ∈ M for some ak−1. We
compare the subtree Tk rooted at a child of ak that
contains xk with each of the subtrees rooted at children
of α(ak−1). There are two possible situations:

– We do not find a match: then we add a new node
x to P̂ , with fie

new
(x) = fk.

– We find a match ck−1: then we set

fie
new

(α(ck−1)) = fie
old

(α(ck−1)) ∨ fk.

In both cases, we set α(Tk) correspondingly.

Obvious simplifications of these formulas are made, so
that, for instance, true ∨ φ is replaced with φ, or e ∨ ¬e
is replaced with true. We also not repeat on a node the
conditions of its ancestors.

The output of the whole process on the four-revision ar-
ticle evoked earlier on is depicted in Figure 3, when fk is
simply an independent event variable ek for all k.

4. DESCRIPTION OF THE SYSTEM

Semantics and Use Case. In our demonstration applica-
tion (Wikipedia), we associate each revision ri of a given
document with a unique event ei, as well as with an event e′j
identifying its author. The event formula coming with the
revision is fi = ei∧e

′

j . Pr(e
′

j) can be interpreted as the value
of trust or reputation of the contributor, and Pr(ei) as the
probability this particular revision is correct conditioned by
the fact that the author is reliable. The distribution of the
Pr(ei)’s and the Pr(e′j)’s is user-defined in our application,
or determined using a preset probability distribution.

The probabilistic document corresponding to a Wikipedia
article can be used for a number of use cases, for instance:

• by setting the events e1 . . . ei to true for revisions r1 to
ri and all other ek’s to false, as well as all e′j ’s to true,
one can retrieve the sole content of the ri revision;

• by setting ei to false, one can obtain the state of the
article as if the revision ri never happened;

• by setting e′j to false, one can remove all the revisions
of the contributor associated with e′j .

Besides these basic use cases, our technique can also be used
to automatically deduct the parts of revisions or contribu-
tions whose corresponding probability value is above a fixed
minimum confidence value.

More generally, given a distribution of probability on the
ei’s and e′j ’s, our application allows estimating the proba-
bility of parts of the article. These parts are selected with
a subset of the XPath query language. For example, the
execution of the XPath query //p on the p-document of
Figure 3 gives as result the introductory paragraph, with
probability P (e1) and the second paragraph, with proba-
bility P ((e2 ∧ ¬e3) ∨ e4). Additionally, the result of a given
query can be refined according to a probability value thresh-
old, e.g, when we want to find all parts having probability
greater than 0.9. Though the problem of computing the
probability of a query is in general#P-hard in PrXML

fie , the
limited amount of correlations in merged documents makes
the probability computation easier in practice, especially for
single-path queries [4]. As a last resort, it is possible to use
exhaustive enumeration of possible worlds to compute prob-
ability values. We refer to [5] for more details about query
evaluation on probabilistic XML.

Implementation. Our system is implemented in the Java
programming language and with the Jython API that allows
to call Python functions from a Java program. The Python
scripts are especially dedicated to text processing and XML
document manipulation with the PyXML module. In the
proposed tool the format of Wikipedia revisions is converted
to an XML structure according to the format of sections and
paragraphs used in this platform. As an example, a section
always begins with a sequence of the special character “=”
and all its successive paragraphs are separated by a blank
line. An overall view of the different modules composing our
system is sketched in Figure 4.

Figure 4: Architecture of the system

Demonstration Scenario. The user chooses a Wikipedia
page either among those stored in a local database, or from

the live Web site of Wikipedia, using keyword search. In
the latter case, the revisions of the page are downloaded
and stored locally for further processing. After choosing a
page, the user can select all or part of its revisions (see the
lower part of the screenshot). Some filtering options enable
the user to select the revisions according to the contribu-
tor who is responsible for them or according to their dates.
The contributors are listed with their preset trust (or repu-
tation) values. These values can be modified online by the
user. Then, the merge can be processed on the selected re-
visions and the name of the obtained p-document appears
on the screen (see the upper-right part of the screenshot).
After this, the user can select a p-document and display its
content. He or she can manipulate two display options: a
tree view or a text view. In both cases, when a document
is displayed the probabilities associated to each part of it
are indicated. The use cases listed previously (displaying
a specific revision, removing it, merging different combina-
tions of revisions, etc.) can be tested. Finally, the user can
query the p-document using a fragment of the XPath query
language and view the obtained result and its corresponding
probability.

5. CONCLUSION
We have presented a tool for representing the merge of

various revisions of a given XML document as a probabilis-
tic XML document, which can then be queried to retrive the
probabilities of some specific parts of the document. This is
one of the first actual applications of the existing literature
on probabilistic XML [1, 5]. The system also allows hypo-
thetical reasoning, to see the state of an article as it were
if some given revisions did not happen. Combined with a
way of estimating the reputation [2] or trust in the contrib-
utors of the Wikipedia, it can be a useful and novel way to
visualize an article of the online encyclopedia.

6. REFERENCES
[1] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart.

On the expressiveness of probabilistic XML models.
VLDB Journal, 18(5):1041–1064, 2009.

[2] B. T. Adler and L. de Alfaro. A content-driven
reputation system for the wikipedia. In Proc. WWW,
Banff, Canada, May 2007.

[3] M. Benedikt, E. Kharlamov, D. Olteanu, and
P. Senellart. Probabilistic XML via Markov chains.
Proceedings of the VLDB Endowment, 3(1), Aug. 2010.
Presented at the VLDB 2010 conference, Singapore.

[4] E. Kharlamov, W. Nutt, and P. Senellart. Updating
probabilistic XML. In Proc. Updates in XML,
Lausanne, Switzerland, Mar. 2010.

[5] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query
evaluation over probabilistic XML. VLDB Journal,
18(5):1117–1140, 2009.

[6] R. La Fontaine. Merging XML files: A new approach
providing intelligent merge of XML data sets. In Proc.

XML Europe, Barcelona, Spain, May 2002.

[7] T. Lindholm. A three-way merge for XML documents.
In Proc. DocEng, Milwaukee, WI, USA, Oct. 2004.

[8] M. van Keulen, A. de Keijzer, and W. Alink. A
probabilistic XML approach to data integration. In
Proc. ICDE, Tokyo, Japan, Apr. 2005.

