
DEUTSCH-FRANZÖSISCHE SOMMERUNIVERSITÄT

FÜR NACHWUCHSWISSENSCHAFTLER 2011

UNIVERSITÉ D’ÉTÉ FRANCO-ALLEMANDE

 POUR JEUNES CHERCHEURS 2011

CLOUD COMPUTING :

DÉFIS ET OPPORTUNITÉS
CLOUD COMPUTING :

HERAUSFORDERUNGEN UND MÖGLICHKEITEN

17.7. – 22.7. 2011

Distributed Storage
Wolf-Tilo Balke & Pierre Senellart

IFIS, Technische Universität Braunschweig

IC2, Telecom ParisTech

Basics in Distributed Storage

Context, Motivation & Applications

The world of DHTs

Dynamo & BigTable

2

Introduction

• Traditional databases are usually all-purpose
systems

– e.g. DB2, Oracle, MySQL, …

– Theoretically, general purpose DB provide all features
to develop any data driven application

– Powerful query languages

• SQL, can be used to update and query data; even very
complex analytical queries possible

– Expressive data model

• Most data modeling needs can be served
by the relational model

3

Special Purpose Databases

– Full transaction support

• Transactions are guaranteed to be “safe”

– i.e. ACID transaction properties

– System durability and security

• Database servers are resilient to failures

– Log files are continuously written

» Transactions running during a failure can recovered

– Most databases have support for constant backup

» Even severe failures can be recovered from backups

– Most databases support “hot-standby”

» 2nd database system running simultaneously which can take over in
case of severe failure of the primary system

• Most databases offer basic access control

– i.e. authentication and authorization

 4

Special Purpose Databases

• In short, databases could be used as storage

solutions in all kinds of applications

• Furthermore, we have shown distributed

databases which also support all features

known from classical all-purpose databases

– In order to be distributed, additional mechanisms

were needed

• partitioning, fragmentation, allocation, distributed

transactions, distributed query processor,….

5

Special Purpose Databases

• However, classical all-purpose databases may lead
to problems in extreme conditions
– Problems when being faced with massively high query

loads
• i.e. millions of transactions per second

• Load to high for a single machine or even a traditional distrusted
database
– Limited scaling

– Problems with fully global applications
• Transactions originate from all over the globe

• Latency matters!
– Data should be geographically close to users

• Claims:
– Amazon: increasing the latency by 10% will decrease the sales by 1%

– Google: increasing the latency by 500ms will decrease traffic by 20%

6

Special Purpose Databases

– Problems with extremely high availability constraints

• Traditionally, databases can be recovered using logs or

backups

• Hot-Standbys may help during repair time

• But for some applications, this is not enough:

Extreme Availability (Amazon)

– “… must be available even if disks are failing, network routes are

flapping, and several data centers are destroyed by massive

tornados”

– Additional availability and durability

concepts needed!

7

Special Purpose Databases

• In extreme cases, specialized database-like

systems may be beneficial

– Specialize on certain query types

– Focus on a certain characteristic

• i.e. availability, scalability, expressiveness, etc…

– Allow weaknesses and limited features for other

characteristics

8

Special Purpose Databases

• Typically, two types of queries can
be identified in global businesses

• OLTP queries
– OnLine Transaction Processing

– Typical business backend-data storage
• i.e. order processing, e-commerce, electronic banking, etc.

– Focuses on data entry and retrieval

– Usually, possible transactions are previously known and are
only parameterized during runtime

– The transaction load is very high
• Represents daily business

– Each transaction is usually very simple and local
• Only few records are accessed in each transaction

• Usually, only basic operations are performed

9

Special Purpose Databases

• OLAP queries

– OnLine Analytical Processing

– Business Intelligence Queries

• i.e. complex and often multi-dimensional queries

– Usually, only few OLAP queries are issued by business

analysts

• Not part of daily core business

– Individual queries may need to access large amounts

of data and uses complex aggregators and filters

• Runtime of a query may be very high

10

Special Purpose Databases

• In the recent years, discussing “NoSQL”

databases have become very popular

– Careful: big misnomer!

• Does not necessarily mean that no SQL is used

– There are SQL-supporting NoSQL systems…

• NoSQL usually refers to “non-standard” architectures for

database or database-like systems

– i.e. system not implemented as shown in RDB2

• Not formally defined, more used as a “hype” word

– Popular base dogma: Keep It Stupid Simple!

11

Special Purpose Databases

• The NoSQL movement popularized the development

of special purpose databases

– In contrast to general purpose systems like e.g. DB2

• NoSQL usually means one or more of the following

– Being massively scalable

• Usually, the goal is unlimited scalability

– Being massively distributed

– Being highly available

– Showing extremely high OLTP performance

• Usually, not suited for OLAP queries

12

Special Purpose Databases

– Not being “all-purpose”

• Application-specific storage solutions showing some database
characteristics

– Not using the relational model

• Usually, much simpler data models are used

– Not using strict ACID transactions
• No transactions at all or weaker transaction models

– Not using SQL

• But using simpler query paradigms

– Especially, not supporting “typical” query interfaces

• i.e. JDBC

• Offering direct access from application to storage system

13

Special Purpose Databases

• In short:

– Most NoSQL focuses on

building specialized

high-performance data

storage systems!

14

Special Purpose Databases

• NoSQL and special databases have been popularized
by different communities and a driven by different
design motivations

• Base motivations

– Extreme Requirements
• Extremely high availability, extremely high performance,

guaranteed low latency, etc.

– Alternative data models

• Less complex data model suffices

• Non-relational data model necessary

– Alternative database implementation techniques

• Try to maintain most database features but lessen the drawbacks

15

Special Purpose Databases

• Motivation: Extreme Requirements
– Extreme Availability

• No disaster or failure should ever block the availability of the database

• Usually achieved by strong global replication
– i.e. data is available in multiple sites with completely different location and

connections

– Guaranteed low latency
• Distances from users to data matters in term of latency

– e.g. crossing the Pacific from east-coast USA to Asia easily amounts for 500ms
latency

• Data should be close to users
– e.g. global allocation considering the network layer‟s performance

– Extremely high throughput
• Some systems need to handle extremely high loads

– e.g. Amazon‟s four million checkouts during holidays

» Each checkout was preceded by hundreds of queries

16

Special Purpose Databases

• Community: Alternative Data Models
– This is where the NoSQL originally came from

– Base idea:
• Use a very simple data model to improve performance

• No complex queries supported

– e.g. Document stores
• Data consist of key-value pairs and

additional document payload
– e.g. payload represents text, video, music, etc.

• Often supports IR-like queries on
documents
– e.g. ranked full text searches

• Examples
– CouchDB, MongoDB

 17

Special Purpose Databases

– Key-Value stores
• Each record consist of just a key-value pair

• Very simple data and query capabilities
– Put and Get

• Usually implemented on top of a Distributed Hash Table

• Example:
– MemcacheDB and Amazon Dynamo

– Both document and key-value stores offer low-level,
one-record-at-a-time data interfaces

– XML stores, RDF stores, Object-Oriented Databases,
etc.
• Not important in current context as most implementations have

neither high performance nor are scalable
– Those use the opposite philosophy of “classic” NoSQL: do it more

complex!

18

Special Purpose Databases

• Community: Alternative Database

Implementation

• OLTP Overhead Reduction

– Base observation: most time in traditional OLTP

processing is spent in overhead tasks

• Four major overhead sources equally attribute to most of

the used time

– Base idea

• Avoid overhead all those

sources of unnecessary overhead

19

Special Purpose Databases

– Logging

• “Traditional” databases write everything twice

– Once to tables, once to log

– Log is also forced to disk ⇒ performance issues

– Locking

• For ensuring transactional consistency, usually locks are used

• Locks force other transaction to wait for lock-release

• Strongly decreases maximum number of transactions!

– Latching

• Updates to shared data structures (e.g. B-tree indexes) are
difficult for multiple threads

• Latches are used (a kind of short-term lock for shared data
structures)

 20

Special Purpose Databases

– Buffer Management

• Disk-based systems have problems randomly accessing small

bits of data

• Buffer management locates the required data on disk and

caches the whole block in memory

• While increasing the performance

of disk based systems, it still is a

considerable overhead by itself

21

Special Purpose Databases

• Current trend for overhead avoidance

– Distributed single-thread minimum-overhead
shared-nothing parallel main-memory databases
(OLTP)

• e.g. VoltDB (Stonebraker et al.),

– Sharded row stores (mostly OLAP)

• e.g. Greenplum, MySQL Cluster, Vertica, etc.

– This kind of systems will be covered in one of the
next weeks

22

Special Purpose Databases

• In the following, we will examine some trade-

offs involved when designing high performance

distributed and replicated databases

– CAP Theorem

• “You can‟t have a highly available partition-tolerant and

consistent system”

– BASE Transactions

• Weaker than ACID transaction

 model following from the CAP theorem

23

Trade-Offs

• The CAP theorem was made popular by Eric

Brewer at the ACM Symposium of Distributed

Computing (PODC)

– Started as a conjecture, was later proven by Gilbert

and Lynch
• Seth Gilbert, Nancy Lynch. “Brewer's conjecture and the feasibility of

consistent, available, partition-tolerant web services”. ACM SIGACT News,

2002

– CAP theorem limits the design space

for highly-available distributed systems

24

CAP-Theorem

• Assumption:
– High-performance distributed storage system with

replicated data fragments

• CAP: Consistency, Availability, Partition Tolerance

• Consistency
– Not to be confused with ACID consistency

• CAP is not about transactions, but about the design space of
highly available data storage

– Consistent means that all replicas of a fragment are always
equal
• Thus, CAP consistency is similar to ACID atomicity: an update to

the system atomically updates all replicas

– At a given time, all nodes see the same data

25

CAP-Theorem

• Availability

– The data service is available and fully operational

– Any node failure will allow the survivors to continue

operation without any restrictions

– Common problem with availability:

Availability most often fails when you need it most

• i.e. failures during busy periods because the system is busy

26

CAP-Theorem

• Partition Tolerance

– No set of network failures less than total network crash
is allowed to cause the system to respond incorrectly

– Partition

• Set of nodes which can communicate with each other

• The whole node set should always be one big partition

– However, often multiple partitions may form

• Assumption: short-term network partitions form very frequently

• Thus, not all nodes can communicate with each other

• Partition tolerant system must either

– prevent this case of ever happening

– or tolerate forming and merging of
partitions without producing failures

27

CAP-Theorem

• Finally: The CAP theorem

– “Any highly-scalable distributed storage system

using replication can only achieve a maximum of

two properties out of consistency, availability and

partition tolerance”

• Thus, only compromises are possible

– In most cases, consistency is sacrificed

• Availability and partition tolerance keeps your business (and

money) running

• Many application can life with minor inconsistencies

28

CAP-Theorem

• “Proof” of CAP Theorem

• Assume

– Two nodes 𝑁1 and 𝑁2

– Both share a piece of data 𝑉 with value 𝑉0

– Both nodes run some algorithm 𝐴 or 𝐵 which are

safe, bug free, predictable and reliable

• In this scenario:

– 𝐴 writes new values of 𝑉

– 𝐵 reads values of 𝑉

29

CAP-Theorem

• “Good” case:

– 𝐴 writes new value 𝑉1 of 𝑉

– An update message 𝑚 is sent to 𝑁2

– 𝑉 is updated on 𝑁2

– 𝐵 reads correct value 𝑉1 from 𝑉

30

CAP-Theorem

• Assume that the network partitions

– No messages between 𝑁1 and 𝑁2 possible anymore

– 𝑉 on 𝑁2 is not updated, 𝐵 reads stale value 𝑉0 from 𝑉

• Consistency violated

31

CAP-Theorem

• How to deal with the situation?

• Ensure consistency, drop availability
– Use synchronous messages to update all replicas

• Treat updating all replicas as an transaction

• e.g. as soon as 𝑉 is updated, send update messages to all replicas
– Wait for confirmation; lock 𝑉 at all nodes until all replicas have confirmed

– What if no confirmation is received? Short time partitioning event and wait?
Node failure and waiting is futile?

– This approach does definitely not scale

– During synchronization, 𝑉 is not available
• Clients have to wait

• Network partitions even increase synchronization
time and thus decrease availability further

– Example
• Most traditional distributed databases

32

CAP-Theorem

• Ensure consistency, drop availability
(alternative)
– Just use one single master copy of the value 𝑉

• Naturally consistent, no locking needed

– But: No high availability
• As soon as the node storing 𝑉 fails or

cannot be reached, it is unavailable

– Additionally:
• Possibly bad scalability, possibly bad latency

– Examples
• Non-replicating distributed database

• Traditional Client-Server database
– Is additionally partition tolerant as there is just one node

33

CAP-Theorem

• Drop consistency, keep partition tolerance and availability
– Base idea for partition tolerance

• Each likely partition should have an own copy of any needed value

– Base idea for availability
• Partitions or failing nodes should not stop availability of the service

– Ensure “always write, always read”

– No locking!

• Use asynchronous update messages to synchronize replicas

• So-called “eventual consistency”
– After a while, all replicas will be consistent; until then stale reads are possible and

must be accepted

– No real consistency

– Deal with versioning conflicts! (Compensation? Merge Versions? Ignore?)

– Examples
• Most storage backend services in internet-scale business

– e.g. Amazon (Dynamo), Google (BigTable), Yahoo (PNUTS), Facebook (Cassandra),
etc.

34

CAP-Theorem

• Accepting eventual consistency leads to new
application and transaction paradigms

• BASE transactions
– Directly follows from the CAP

theorem

– Basic Availability
• Focus on availability – even if data is

outdated, it should be available

– Soft-State
• Allow inconsistent states

– Eventual Consistent
• Sooner or later, all data will be consistent and in-sync

• In the meantime, data is stale and queries return just
approximate answers

35

CAP-Theorem

• “Buy-A-Book” transaction

– Assume a store like Amazon

– Availability counter for every book in store

– User puts book with availability ≥1 into the shopping cart
• Decrease availability by one

– Continue shopping

– Two options

• User finally buys

– Write invoice and get user‟s money

– Commit

• User does not buy

– Rollback (reset availability)

36

BASE Transactions

• Obviously, this transaction won‟t work in Amazon

when locks are used

– But even smaller transactions will unavoidably lead to

problems assuming million concurrent users

– Lock contention thrashing

37

BASE Transactions

• Consideration:
Maybe full ACID properties are not always
necessary?

– Allow the availability counter to be out-of sync?

• Use a cached availability which is updated eventually

– Allow rare cases where a user buys a book while
unfortunately the last copy was already sold?

• Cancel the user and say you are very sorry…

• These consideration lead to the BASE transaction
model!

– Sacrifice transactional consistency for scalability and
features!

38

BASE Transactions

• The transition between ACID and BASE is a

continuum

– You may place your application wherever you need it

to between ACID and BASE

39

BASE Transactions

ACID BASE

+ Guaranteed Transactional Consistency
- Severe Scalability issues

 + High scalability and performance
- Eventually consistent, approximate answers

You?

The P2P Paradigm
Client-Server Peer-to-Peer

1. Server is the central

entity and only provider

of service and content.

 Network managed by

the Server

2. Server as the higher

performance system.

3. Clients as the lower

performance system

Example: WWW

1. Resources are shared between the peers

2. Resources can be accessed directly from other peers

3. Peer is provider and requestor (Servent concept)

Unstructured P2P Structured P2P

Centralized P2P Pure P2P Hybrid P2P Pure P2P (DHT Based)

1. All features of Peer-to-

Peer included

2. Central entity is necessary

to provide the service

3. Central entity is some kind

of index/group database

Example: Napster

1. All features of Peer-to-Peer

included

2. Any terminal entity can be

removed without loss of

functionality

3.  No central entities

Examples: Gnutella 0.4, Freenet

1. All features of Peer-to-Peer

included

2. Any terminal entity can be

removed without loss of

functionality

3.  dynamic central entities

Example: Gnutella 0.6, JXTA

1. All features of Peer-to-Peer

included

2. Any terminal entity can be removed

without loss of functionality

3.  No central entities

4. Connections in the overlay are

“fixed”

Examples: Chord, CAN

1st Gen. 2nd Gen.

• In centralized P2P systems, a central server is used to index all
available data
– During bootstrap, peers provide a content list to the server

– Any search request is resolved by the server

• Advantages
– Search complexity of O(1) – “just ask the server”

– Complex and fuzzy queries are possible

– Simple and fast

• Problems
– Bad Scalability

• O(N) node state in server
– Information that must be stored at server grows linearly with number of peers N

• O(N) network and system load of server
– Query and network load of server also grows linearly with number of peers

– Single point of failure or attack (also for law suites ;-)

• But overall, …
– Best principle for small and simple applications

41

Unstructured P2P

• Pure P2P networks counter
the problems of centralized P2P

– All peers are equal

– Content is not indexed

• Queries are flooded along the nodes

• Node state complexity (storage complexity) O(1)

– No central point of failure

– Theoretically, high scalability possible

• In practice, scalability is limited by possibly degenerated
network topologies, high message traffic, and low bandwidth
nodes

42

Unstructured P2P

• Hybrid P2P adds hierarchy layers to P2P
– High-performance nodes → super peers

• All others are leaf nodes

– All super peers form a pure P2P

– Leaf nodes connect to a super peer
• Super peers index their leaf node‟s content

– Routing tables; similar to centralized server indexing

• Node state is also in O(1)
– Leaf nodes store no index information

– Maximum load of super peers is capped

» More peers → more super peers

• Queries are flooded within the super peer network

– Resulting networks usually have a lower diameter and
routing bottlenecks are less likely

43

Unstructured P2P

• Both pure and hybrid unstructured P2P rely on
query flooding

– Query is forwarded to all neighbors which also
forward the query

• TTL (time-to-life) limits the maximum distance a query can
travel

– Flooding result to

• High message and network load
– Communication overhead is in O(N)

• Possibility of false negatives
– Node providing the required data may simply be missed due too

short TTL

44

Unstructured P2P

• Communication overhead vs. node state

45

Unstructured P2P
C

o
m

m
u

n
ic

a
ti

o
n

O
v
e
rh

e
a
d

Node State

Pure P2P

Hybrid P2P

Central

Server

O(N)

O(N) O(1)

O(1)

O(log N)

O(log N)

Disadvantage

•Communication

Overhead

•False negatives

Disadvantage

•Memory, CPU, Network

•Availability

•Single-Point-Of-Failure

Scalable solution

between both extremes?

• Idea: use a Distributed Hash Table (DHT) to
index all data in a P2P network

– Perform routing and resource discovery in DHT

• Claims of DHTs

– DHT can perform search and routing in O(log N)

– Required storage per node is low in O(log N)

– DHT can provide correct query results

• No false negatives

– P2P systems based on DHTs are resilient to failures,
attacks, and weak or short-time users

46

Distributed Hash Tables

• DHTs are based on hash tables

– Hash tables are data structures which may provide an
idealized lookup complexity close to O(1)

– Usually, data consists of key-value pairs

• Lookup a key, return the according value

• Hash tables consist of two major components

– Bucket array

• Usually a fixed-size array

• Each array cell is called a bucket

– Hash function

• A hash function maps a key
to a bucket of the array

 47

Hash Tables

• Hash functions may collide, i.e. two different keys

may result in the same hash

– In many implementations, buckets are designed as a

pointer to a list holding multiple items

– Insert: hash the key and add the data to the

respective bucket

– Lookup: hash the key and scan the respective bucket

• Lookup best case: bucket contains just one item: O(1)

• Lookup worst case: bucket contains multiple items: O(n)

– Rare case, even if it happens list should be small such that average

complexity is still ~O(1)

 48

Hash Tables

• Example:

49

Hash Tables

Iron Man

Professor X

Silver Surfer

hash(Ironman) = 3

hash(Professor X) = 7

hash(Silver Surfer) = 1

0

1

2

3

4

5

6

7

Wolverine hash(Wolverine) = 1

Iron Man,
Super Intelligence

Silver Surfer,
Cosmic Manipulation

Wolverine,
Regeneration

Professor X,
Telepathy

Bucket Array (8 buckets)

• At the core of hash tables are hash functions

– Hash functions maps any key to a bucket of the array

• 𝑘𝑒𝑦𝑠𝑝𝑎𝑐𝑒
ℎ𝑎𝑠ℎ

,0, ℎ𝑎𝑠ℎ𝑟𝑎𝑛𝑔𝑒 − 1-

• ℎ𝑎𝑠ℎ𝑟𝑎𝑛𝑔𝑒 is the number of buckets in the array

• Hash funtions should show some important
properties

– Low Cost

– Determinism

– Uniformity

– Range Variability

– Either Avalanche or Continuity properties

50

Hash Functions

• Low Cost

– Hashing should have higher average performance than

rivaling approaches

• Hash function thus should have low costs!

• Determinism

– Hashing the same key or object must always result in

the same hash

• If not, no lookups are possible!

 51

Hash Functions

• Uniformity

– A good hash function should map the keys as evenly

as possible over the whole output range

• i.e. every hash value should be generated

with the same probability

– Hash values thus should be generated

following an uniform distribution

– Uniform hash codes will reduce the number of hash

collisions to a statistical minimum

• Collisions will severely degenerate the performance of

the hash table

52

Hash Functions

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9

• Continuity or Avalanche property

– Depending on the actual usage of the hash function,
different properties may be needed with respect to
small key changes

– Avalanche property

• Changing one bit in the key should change at least 50% of
the hash bits

• Very important property when dealing with cryptographic
applications or distributing content in robust fashion

• MD5 hash examples
– P2P is cool! = 788d2e2aaf0e286b37b4e5c1d7a14943

– P2P is cool” = 8a86f958183b7afa26e15fa83f41de7e

53

Hash Functions

– Continuity property

• Small changes in keys should only result in small

changes in hashes

• Useful when implementing similarity searches with hash

functions

– Simply, hash a search string and inspect surrounding buckets

• Adler32 hash examples

– P2P is cool! = 175003bd

– P2P is cool” = 175103be

54

Hash Functions

• Some hash functions
– Simple modulo hash

• ℎ𝑎𝑠ℎ = 𝑘𝑒𝑦 𝑚𝑜𝑑 ℎ𝑎𝑠ℎ𝑟𝑎𝑛𝑔𝑒

• Easy and cheap

• Works only if keys are uniformly distributed!

– Cryptographic hash functions
• Very expensive hash functions guaranteeing cryptographic

properties
– Variable Input Size

– Constructing the key from the hash is impossible

– Extremely low collision probability

– Avalanche properties

– No hash clones constructable

» e.g. given a hash, it is impossible to construct an object which
results in the same hash

55

Hash Functions

– Most popular cryptographic examples

• MD-5 (128 Bit)

– Practically proven to be prone to clone attacks

• SHA-1 (160 Bit)

– Fork of MD-4

– Previous recommendation of NSA

– Theoretically proven to be prone to clone attacks

• SHA-2 (224, 256, 384, 512 Bit)

– Fork of SHA-1

– Current NSA recommendation

– No weakness known yet (but it is assumed that there should be
weaknesses similar to SHA-1)

• SHA-3

– Completely new algorithm

– Currently in competition phase until 2010

56

Hash Functions

• In distributed hash tables (DHT), the bucket

array is distributed across all participating nodes

• Base idea

– Use a large fixed hash range

– Each node is responsible for a

certain section of the whole hash range

• Responsible node stores the payload of all data with hash

keys in its range

– Put and get requests are routed along the hash range

to the responsible nodes

57

Distributed Hash Tables

• Generic interface of distributed hash tables
– Provisioning of information

• Put(key, value)

– Requesting of information (search for content)
• Get(key)

– Reply
• value

• DHT implementations are interchangeable (with respect to
interface)

58

Distributed Hash Tables

Put(Key,Value) Get(Key)
Value

Distributed Application

Node 1 Node N Node 2 Node 3

Distributed Hash Table
(CAN, Chord, Pastry, Tapestry, …)

• Important design decisions

– How to hash objects?
• What to hash? How does hash space look like?

– Where to store objects?

• Direct? Indirect?

– How are responsibilities assigned to nodes?

• Random? By also hashing nodes? Evolving responsibilities?
Respect load balancing and resilience issues?

– How is routing of queries be performed?

• Are routing tables needed? What should be stored in routing
tables? Which topology to use for the network?

– How to deal with failures?

59

Distributed Hash Tables

• What are good keys? What to use as values?
– Answer is very application dependent…

• Commons keys
– Filenames or filepath

• Used in early DHT based networks for direct search by filename

– Keywords
• Hash an object multiple times using its meta data keywords

• As used in late DHT based Gnutella networks for search

– Info Digests
• Information on files names, file length, sharing settings, …

• Used in tracker-less BitTorrent

– Peer Identifications
• The id of the peer itself can be treated as a key

– e.g. IP-address, MAC address, unique user ID, etc.

• Used to hash nodes into the same address space than content
– The later slides on node responsibility assignments

 60

Distributed Hash Tables

• What to use as values?
– Direct Storage

• Node stores the content of the object as value

• When storing an object, hash its key and then ship the object to the
responsible node and store it there

• Inflexible for larger content objects
– High network traffic

– Loss of ownership of content

– Problems in volatile P2P networks

» Join, leave, and repair operations may become expensive

– OK for small data objects (e.g. <1KB)

• Can be used for storage space load balancing in stable P2P
networks

61

Distributed Hash Tables

Get(92432)
hash(“Katzenklo.mp3”)

= 92432

Katzenklo.mp3
Query Node Node responsible for 92432

– Indirect Storage

• Node stores a link to the object

• Content remains with the initial content provider

• DHT is used to announce the availability of a given object

• Value of the hash key-value pair usually contains physical
address of the content provider

• More flexible with large content objects
– Easy joining and leaving of nodes

– Minimal communication overhead

62

Distributed Hash Tables

Get(92432)
hash(“Katzenklo.mp3”)

= 92432

Query Node Node responsible for 92432
134.169.32.171:9999

• Specific examples of Distributed Hash Tables
– Chord (UC Berkeley, MIT, 2001)

• We will cover Chord in this lecture as our showcase system

– Pastry (Microsoft Research, Rice University), CAN (UC
Berkeley, ICSI), Tapestry (MIT)
• With Chord, these are the big 4 academic pioneer systems 2001

• Foundations of nearly all later DHT implementations

• We will just briefly summarize these three

– Kademlia (New York University)
• DHT implementation used in eMule, eDonkey, LimeWire, late

Gnutella, and also in some versions of BitTorrent

• Will be briefly discussed in lecture 8

– … and many more: P-Grid, Symphony, Viceroy, …

63

Distributed Hash Tables

• Properties of DHTs
– Use of routing information for efficient search for

content

– Keys are evenly distributed across nodes of DHT
• No bottlenecks

• A continuous increase in number of stored keys is admissible

• Failure of nodes can be tolerated

• Survival of attacks possible

– Self-organizing system

– Simple and efficient realization

– Supporting a wide spectrum of applications
• Flat (hash) key without semantic meaning

• Value depends on application

64

Distributed Hash Tables

• Usual assumptions and design decisions

– Hash range is in 0, 2𝑚 − 1 ≫ #𝑠𝑡𝑜𝑟𝑒𝑑𝑂𝑏𝑗𝑒𝑐𝑡𝑠

– Hash space is often treated as a ring (e.g. Chord)

• Other architectures are also possible

– Nodes take responsibility of a specific arc of the ring

• Usually, this is determined by hashing the ID of the node

– e.g. the IP address, the MAC address, etc.

– Often, node takes responsibility of the arc ending at the hash code of
its ID and beginning at the hash code of the previous node

• i.e. nodes and data is hashed in the same hash space!

– Each node knows at least its predecessor and
successor

65

Distributed Hash Tables

• Example (7 nodes, range 0..4095, m=12)

66

Distributed Hash Tables

3485 -
610

1622 -
2010

611 -
709

2011 -
2206

2207-
2905

(3485 -
610)

2906 -
3484

1008 -
1621

g f b c d e a

hash(Node g)=3485

g

f

2m-1 0

Data item “D”:

hash(“D”)=3107 hash(Node f)=2906

a b
c

d

e

D

Responsibility of g

• Node responsibilities are usually agnostic of the
undelaying network topology
– Additional heuristics can be used during responsibility

assignment
• Redundancy (multi assignments, overlapping arcs, ..)

– Assignments must be dynamic
• Nodes may join and leave the ring

67

Distributed Hash Tables

Logical view of the
Distributed Hash Table

Mapping on the
real topology

2207

2906 3485

2011 1622 1008
709

611

• How can data be accessed in a DHT?

– Start the query at any DHT node

– Key of the required data is hashed

• Queries use only keys, no fuzzy queries naively possible

– Route the query to the node

responsible for the data key hash

• So called key-based routing

– Transfer data from responsible

peer to query peer

68

Distributed Hash Tables

– Direct Routing
• Central server knows the responsibility assignments

– Also: fully meshed ring (i.e. each node knows each other node)

• Shares the common disadvantages of centralized solutions
– Single point of failure, scalability issues, etc.

– BAD IDEA!

• O(1) routing complexity, O(N) node state complexity

69

Distributed Hash Tables

(3107 → (ip, port))

Node 3485 manages
keys 2907-3485,

hash(„my data“)

= 3107
2207

2906

3485

2011
1622

1008

709

611

3107 ?

3107 !

Address of responsible node 3485

– Linear Routing

• Start query at some node of the DHT

• Route the query along the ring from successor to successor
until responsible node is found

• O(N) Routing complexity, O(1) node state complexity
– Also bad idea

70

Distributed Hash Tables

Initial node
(arbitrary)

hash(„my data“)
= 3107

2207

2906

3485

2011
1622

1008

709

611

– Routing using finger tables

• Nodes know additional nodes besides their direct ring neighbors

– Stored in so called finger tables or routing tables

• Routing tables can be used to reach responsible node faster

– See later: Chord

• O(log n) routing complexity, O(log n) node state complexity

71

Distributed Hash Tables

Initial node
(arbitrary)

hash(„my data“)
= 3107

2207

2906

3485

2011
1622

1008

709

611

• Chord is one of the academic pioneer
implementations of DHTs
– I. Stoica, R. Morris, D.Karger, M. F. Kaashoek, H. Balakrishnan. Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications. ACM SIGCOMM,
San Diego, USA, 2001.

– Uses a partially meshed ring infrastructure

– Main focus
• O(log n) key-based routing

– Flat logical 160-Bit address space hashing both content and peers

• Self-organization and basic robustness
– Node arrivals and departures, node failures

– Inspired many later DHT implementations and
improvements
• Better routing, alternative topologies, load balancing, replication,

etc.

72

Chord

• Generic DHT interface implementation
– Put(key, value) to insert data into Chord ring

– Value = get(key) to retrieve data from Chord

• Identifier generation
– Uses a fixed-size hash space of length 2𝑚 − 1

• Limits the maximum number of peers and storable content

• Most Chord systems use the cryptographic SHA-1 hash function
– SHA 1 has 160 bit; 0 ≤ 𝑖𝑑 < 2160 ≈ 1.46 ∗ 1048

– 1048 is roughly the estimated number of atoms of the Earth…

• Data ids are usually generated from data itself or by an explicit data
identifier

• e.g. 𝑜𝑏𝑗𝑒𝑐𝑡𝐼𝑑 = 𝑠ℎ𝑎1(𝑜𝑏𝑗𝑒𝑐𝑡), 𝑜𝑏𝑗𝑒𝑐𝑡𝐼𝑑 = 𝑠ℎ𝑎1(𝑜𝑏𝑗𝑒𝑐𝑡𝑁𝑎𝑚𝑒)

– Also, nodes are hashed by their IP address and port running
the Chord application
• e.g. 𝑛𝑜𝑑𝑒𝐼𝑑 = 𝑠ℎ𝑎1((𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑝𝑜𝑟𝑡))

73

Chord

• Nodes are on a modulo ring representing the full
key space

– Data is managed by clockwise next node wrt. to id

– Each node stores its sucessor node

74

Chord

5

0

4

2 6

5

1

3

7

Chord
Ring

Identifier

Node

X Data Item w. id

successor(1) = 6

successor(6) = 7

successor(7) = 1

Example key space: 0…7

• The Chord routing trick

– Do not only store just successor link, but also
store additional nodes in a finger table
• Each finger table has 𝑚 entries (keyspace size: 2𝑚 − 1)

– i.e. for Chord, using SHA-1, 160 entries per finger table are needed

– Distance to finger nodes increases exponentially
• Distance is measured in the key space, starting from the ID of the

current node

• Distance ranges from 20, 21, ... , 2𝑚−1

• The farthest finger target will cover half of the key space distance

– Each finger table entry stores the distance, the hash ID of
the target, and the node responsible for that ID

– Additionally, a neighborhood table is needed for ring
maintenance

75

Chord Fingers

• Chord finger table example

– Assume a key space size of 26 = 64

• Finger table of each node has 6 entries

• Finger entries with logarithmic distance 𝑖 ∈ *0, … , 5+

– Build a finger table for node with current ID = 52

• Compute the finger„s target ID

– 𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝑑 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑑 + 2𝑖 𝑚𝑜𝑑 2𝑚

– Find the responsible node later

76

Chord Fingers

i log

distance

2i

distance

Target

ID

Node

ID

0 1 53

1 2 54

2 4 56

3 8 60

4 16 4

5 32 20

• Query the the successor node for the

resposible nodes of all finger targets

– Differnt finger targets may have the same responsible

node

77

Chord Fingers

4

7

13

14

16

19

23

26
30 33

37
39

45

49

52

54
56

60 63

42

i log

distance

2i

distance

Target

ID

Node

ID

0 1 53 54

1 2 54 54

2 4 56 56

3 8 60 60

4 16 4 4

5 32 20 23

• Querying the DHT

– „Which node is responsible for data with hash key x?“

– Idea

• Route query to finger node with
highest ID which is at most x

• That node reroutes the query in a recursive fashion until
responsible target node is found

– Routing complexity is in average O(log N)

• Compare to binary search!

• For each routing step, there is a valid finger which covers at
least half the distance to the target ID!

• Worst case is O(m)

– Equals O(log N) for max-sized rings

 78

Chord Fingers

• Example (keyspace 26, 20 nodes)

– Query for an object with hash ID 44 from node with ID 52

– Which node is responsible?
• Guarantee: find responsible node in at most 5 hops (log2 20 ≈ 4.32)

79

Chord Routing

get(44)

4

7

13

14

16

19

23

26
30 33

37
39

45

49

52

54
56

60 63

42

44

• Example

– Start routing; examine finger table

80

Chord Routing

4

7

13

14

16

19

23

26
30 33

37
39

45

49

52

54
56

60 63

42

44

i log

distance

2i

distance

Target

ID

Node

ID

0 1 53 54

1 2 54 54

2 4 56 56

3 8 60 60

4 16 4 4

5 32 20 23

• Example

– Route to most distant known node which is below

lookup ID 44

81

Chord Routing

4

7

13

14

16

19

23

26
30 33

37
39

45

49

52

54
56

60 63

42

44

i log

distance

2i

distance

Target

ID

Node

ID

0 1 53 54

1 2 54 54

2 4 56 56

3 8 60 60

4 16 4 4

5 32 20 23

• Example

– Continue routing, select most distant known node
which is below lookup ID 44

Distributed Data Management – Wolf-Tilo Balke – Christoph Lofi – IfIS – TU Braunschweig 82

Chord Routing

4

7

13

14

16

19

23

26
30 33

37
39

45

49

52

54
56

60 63

42

44

i log

distance

2i

distance

Target

ID

Node

ID

0 1 24 26

1 2 25 26

2 4 27 30

3 8 31 33

4 16 39 39

5 32 55 56

• Example

– Continue routing, select most distant known node
which is below lookup ID 44

83

Chord Routing

4

7

13

14

16

19

23

26
30 33

37
39

45

49

52

54
56

60 63

42
44

i log

distance

2i

distance

Target

ID

Node

ID

0 1 40 42

1 2 41 42

2 4 43 45

3 8 47 49

4 16 55 56

5 32 7 7

• Example

– Continue routing to target node

– Routing finished in 4 hops

84

Chord Routing

4

7

13

14

16

19

23

26
30 33

37
39

45

49

52

54
56

60 63

42
44

i log

distance

2i

distance

Target

ID

Node

ID

0 1 43 45

1 2 44 45

2 4 46 49

3 8 50 52

4 16 58 60

5 32 10 13

• Chord is fully self-organized
– Management of new node arrival

– Management of node departure

– Management of node or network failures

• Goal:
– Routing abilities must be maintained

• If target node is available, it should also be reachable by routing
– Potential routing problems can occur when nodes stored in finger

tables cannot be reached

– Stored data should be resilient to failure
• This properties is usually ensured by the application using the

Chord DHT and is not a property of the DHT itself

• Also, additional data properties like consistency, fairness,
replication, or load balancing is handled by application

85

Chord Organizing

• Joining in a new node

– New node hashes itself to obtain new ID

– Contact any DHT node via bootstrap discovery

– Contact node responsible for new node ID

• Via normal query routing

– Split arc responsibility

• Move respective key-value pairs from old node to new node

– New node constructs its finger table and

neighborhood table

86

Chord Organizing

• What is the neighborhood table?

– Contains the k-next successor and predecessor

nodes on the ring

– Different of finger table

which is constructed by

hash range distances!

87

Chord Organizing

Responsible arc of 7

7

2

16

1

18

8

9

11

15

Fingers of 7
all pointing to 16

2-predecessors of 7

2-sucessors of 7
Data

• Joining a node (Example)
– New node 5 arrives

– Takes some responsibility of node 7
• Hash responsibility 3-5

• Copy data items in that range

– Construct neighborhood table
• Successor is node 7 which was initially contacted

• Query node 7 for its successor and predecessor list
to construct own list

• Update node 7 predecessor list

– Construct finger tables using normal queries

– All other nodes do nothing
• Their respective neighborhood and finger tables

are now outdated!

88

Chord Organizing

7

2

16

1

18

8

9

11

15

5

new node

• Stabilize function
– Each node regularly contacts its

direct successor stabilize query
• “Successor: is your predecessor me?”

– i.e. pred(succ(x)) == x

– If not, a new node was inserted and
the current neighborhood and finger
table are outdated
• Repair tables with help of direct successor

– If direct successor cannot be contacted, it
failed
• Repair tables by contacting 2nd next successor

• Tell 2nd next successor to take over responsibility
for the failed node

– e.g. take over the hash arc

• Protocol fails if no successor can be contacted
– Next time, increase size of neighborhood table

89

Chord Organizing

7

2

16

1

18

8

9

11

15

5

new node

pred(16)=11

pred(7)=16

• Removing nodes

– For the sake of simplicity, assume that departing nodes

just disappear

• Departure == Failure

– Any node failures will be detected by stabilize

function

• Nodes repair their routing tables during

stabilize

• Send stabilize to next node

– If next node does not answer, contact 2nd node

– Use 2nd node as next node if available

 90

Chord Organizing

• Additionally, the stabilize function can be used

to check and repair the finger table

– Randomly select a finger (less often than

normal stabilize)

• Conatct finger target

– If target does not answer, contact the sucessor node

• Successor contacts finger with same distance

• That finger target has usually already repaired ist

neighborhood table and knows the correct target for the

broken finger

91

Chord Organizing

• Stabilizing fingers
– Contact red finger node → Broken

– Ask successor to contact same distantance-finger„s
• Either that target or predecessor becomes new finger target

92

Chord Organizing

4

7

13

14

16

19

23

26
30 33

37
39

45

49

52

54
56

42

60 63
4

7

13

14

16

19

23

26
30 33

37
39

45

49

52

54
56

42

60 63

sucessor

• Maintaining routing capabilities

– Routing may break if finger tables are outdated

– Finger tables can either be maintained
actively or passively

– Active maintenance

• Periodically contact all finger nodes to
check correctness of table information

• In case of failure, query ring for correct information

• Drawback

– Maintenance traffic

– Routing information in finger table may be outdated for short time
intervals

• Stabilize function!

93

Chord Organizing

– Passive maintenance

• A query cannot be forwarded to the finger

• Forward query to previous finger instead

• Trigger repair mechanism

94

Chord Organizing

4

7

13

14

16

19

23

26
30 33 37

39

45

49

52

54
56

60 63

42

• Data persistence

– Data persistence in case of node failure

is the responsibility of the application

• Simple Chord implementations use no replication

• Data in nodes is lost when node disconnects

– Scenario

• Robust indirect storage

• Goal: as long as the data provider is available, the data

should be accessible

– i.e. query to the DHT should return the correct physical link to the

data provider

95

Chord Organizing

– Fault tolerant data persistency
can be archived by using soft states

– Idea

• Each key-value pair stored in the DHT has a decay timer

• After the decay timer is up, the key-value pair is deleted

– Content not accessible anymore

• Content providers (i.e. the application) periodically re-publish all
their content

– Re-publishing either creates new key-value pairs or resets the
decay timer of old pairs

• If a node managing a key fails, a new node will be responsible
for the key after the next re-publish interval

• If a content provider fails, any links pointing to it will decay
soon

96

Chord Organizing

• Example System: Amazon Dynamo
• G. DeCandia, D.Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels

“Dynamo: amazon's highly available key-value

store”, ACM SIGOPS, Stevenson, USA, 2007.

– Amazon is one of the specialized storage solutions

used at Amazon

• Among S3, SimpleDB, Elastic Block Storage, and others

• In contrast to the other service,

it is only used internally

97

Dynamo

• Amazon infrastructure

– Amazon uses a fully service oriented architecture

• Each function used in any Amazon system is encapsulated in

a service

– i.e. shopping cart service, session management service, render

service, catalog service, etc.

• Each service is described by a service level agreement

– Describes exactly what the service does

– Describes what input is needed

– Gives quality guarantees

98

Dynamo

• Services usually use other services
– e.g. the page render service rendering the Amazon personalized

start accesses roughly 150 simpler services

– Services may be stateful or
stateless
• Stateless: Transformation,

Aggregation, etc.

• Stateful: Shopping cart,
session management, etc.

– Dynamo is a data storage service
which mainly drives stateful
services
• Notably: shopping cart and

session management

• There are also other storage services

99

Dynamo

• Service Level Agreements (SLA)
are very important for Amazon

– Most important: latency requirements

– Goal: 99.9% of all users must have an internal page render
response times below 300ms

• Not average response times, but guaranteed maximum latency for
nearly all customers!

• It should not matter what the user does, how complex his
history is, what time of day it is, etc.

– Most lower-tier services have very strict SLA
requirements

• Final response is generated by aggregating all service responses

– e.g. often, response times below 1ms for deep core services

100

Dynamo

• Furthermore, Amazon is a very big company

– Up to 6 million sales per day

• For each sale, there are hundreds of page

renders, data accesses, etc.

• Even more customers who just browse without buying!

– Globally accessible and operating

• Customers are from all over the world

– Highly scalable and distributed systems necessary

• Amazon uses several 10,000s servers

– Amazon services must always be available

101

Dynamo

• Hard learned lessons in early 2000:

RDBMS are not up for the job

– Most features not needed

– Bad scalability

– Can‟t guarantee extremely low latency under load

– High costs

– Availability problems

102

Dynamo

• Dynamo is a low-level distributed storage
system in the Amazon service infrastructure

• Requirements:

– Very strict 99.9th percentile latency

• No query should ever need longer than guaranteed in the SLA

– Must be “always writable”

• At no point in time, write access to the system is to be denied

– Should support user-perceived consistency

• i.e. technically allows for inconsistencies, but will eventually lead
to an consistent state again

– User should in most cases not notice that the system was in an
inconsistent state

103

Dynamo

– Low cost of ownership

• Best run on commodity hardware

– Incremental scalability

• It should be easy to incrementally add nodes to the system

to increase performance

– Tunable

• During operation, trade-offs between costs, durability,

latency, or consistency should be tunable

104

Dynamo

• Observation

– Most services can efficiently be

implemented only using key-value stores

• e.g. shopping cart

– key: session ID; value: blob containing cart contents

• e.g. session management

– key: session ID; value: meta-data context

– No complex data model or queries needed!

105

Dynamo - Design

• Further assumptions

– All nodes in a Dynamo cluster are non-malicious

• No fraud detection or malicious node removal necessary

– Each service can set up its own dynamo cluster

• Scalability necessary, but cluster don‟t need to scale infinitely

106

Dynamo - Design

• Dynamo Implementation Basics

– Build a distributed storage system on top of a DHT

• Just provide 𝒑𝒖𝒕() and 𝒈𝒆𝒕() interfaces

– Hashes nodes and data onto a 128-Bit address

space ring using MD5

• Consistent hashing similar to Chord

• Nodes take responsibility of their respective anti-clockwise

arc

107

Dynamo - Design

– Assumption: usually, nodes don‟t leave or join

• Only in case of hardware extension or node failure

– Assumption: ring will stay manageable in size

• e.g. 10,000 nodes, not millions or billions

– Requirement: each query must be answered as fast
as possible (low latency)

– Conclusion: For routing, each node uses a full
finger table

• Ring is fully connected
– Maintenance overhead low due to ring‟s stability

• Each request can be routed within one single hop
– No varying response time as in multi-hop systems like Chord!

108

Dynamo - Design

– For load-balancing, each node may create additional virtual
server instances
• Virtual servers may be created, merged, and transferred among nodes

– Virtual servers are transferred using a large file binary transfer

» Transfer not on record level

• Multiple central controllers manage virtual server creation and
transfers

– For durability, replicas are maintained for each key-value
entry
• Replicas are stored at the clockwise successor nodes

• Each node maintains a so-called preference list of nodes which may
store replicas

– More or less a renamed successor list

– Preference list is usually longer than number of desired replicas

– Both techniques combined allow for flexible,
balanced, and durable storage of data

109

Dynamo - Design

• Eventual Consistency

– After a 𝑝𝑢𝑡() operation, updates are propagated
asynchronously

• Eventually, all replicas will be consistent

• Under normal operation, there is a hard upper bound until
constancy is reached

– However, certain failure scenarios may lead to
extended periods of inconsistency

• e.g. network partitions, severe server outages, etc.

– To track inconsistencies, each data entry is tagged
with a version number

110

Dynamo - Consistency

• Clients can send any 𝑝𝑢𝑡() or 𝑔𝑒𝑡() request to any
Dynamo node

– Typically, each client chooses a Dynamo node which is
used for the whole user session

– Responsible node is determined by either

• Routing requests through a set of generic load balancers,
which reroute it to a Dynamo node to balance the load

– Very simple for clients, additional latency overhead due to additional
intermediate routing steps

• Or the client uses a partition-aware client library

– i.e. Client determines independently which node to contact by e.g.
hashing

– Less communication overhead and lower latency; programming clients
is more complex

111

Dynamo – Requests

• Request Execution

– Read / Write request on a key

• Arrives at a node (coordinator)
– Ideally the node responsible for the particular key

– Else forwards request to the node responsible for that key and that
node will become the coordinator

• The first 𝑁 healthy and distinct nodes following the key
position are considered for the request
– Nodes selected from preference lists of coordinating node

• Quorums are used to find correct versions
– 𝑅: Read Quorum

– 𝑊: Write Quorum

– 𝑅 + 𝑊 > 𝑁

112

Dynamo – Requests

– Writes
• Requires generation of a new data entry

version by coordinator

• Coordinator writes locally

• Forwards to 𝑁 healthy nodes, if 𝑊 − 1 respond then the write was
successful

– Called sloppy quorum as only healthy nodes are considered, failed nodes are
skipped

– Not all contacted nodes must confirm

• Writes may be buffered in memory and later written to disk
– Additional risks for durability and consistency in favor for performance

– Reads
• Forwards to 𝑁 healthy nodes, as soon as 𝑅 − 1 nodes responded,

results are forwarded to user
– Only unique responses are forwarded

• Client handles merging if multiple versions are returned
– Client notifies Dynamo later of the merge, old versions are freed for later

Garbage Collection

113

Dynamo – Requests

• Tuning dynamo

– Dynamo can be tuned using three major parameters

• 𝑁: Number of contacted nodes per request

• 𝑅: Number of Read quorums

• 𝑊: Number of Write quorums

114

Dynamo - Requests

𝑁 𝑅 𝑊 Application

3 2 2 Consistent durable, interactive user state
(typical)

n 1 n High performance read engine

1 1 1 Distributed web cache (not durable, not
consistent, very high performance)

• Theoretically, the same data can reside in

multiple versions within the system

– Multiple causes

• No failure, asynchronous update in progress

– Replicas will be eventual consistent

– In rare case, branches may evolve

• Failure: ring partitioned or massive node failure

– Branches will likely evolve

– In any case, a client just continues operation as usual

• As soon as the system detects conflicting version from

different branches, conflict resolution kicks in

115

Dynamo - Consistency

• Version Conflict Resolution

– Multiple possibilities

• Depends on application! Each instance of Dynamo may use

a different resolution strategy

– Last-write-wins

• The newest version will always be dominant

• Changes to older branches are discarded

– Merging

• Changes of conflicting branches are optimistically merged

116

Dynamo - Consistency

• Example Merging

– User browses Amazon‟s web catalog

and adds a book to the shopping cart

• Page renderer service stores new cart to Dynamo

– Current session has a preferred Dynamo node

• Shopping cart is replicated in the cart-service Dynamo

instance

– Dynamo partitions due to large-scale network

outages

– User adds CD to his cart

• New cart is replicated within the current partition

117

Dynamo - Consistency

– Page renderer service looses connection to the whole
partition containing preferred Dynamo node
• Switches to another node from the other partition

– That partition contains only stale replicas of the cart, missing the CD

– User adds a watering can to his cart

• Dynamo is “always write”

• Watering can is just added to an old copy of the cart

– Partitioning event ends

• Both partitions can contact each other again

• Conflict detected

• Both carts are simply merged

• In the best case, the user did not even
notice that something was wrong

118

Dynamo - Consistency

• Version numbers are stored using vector clocks

– Vector clocks are used to generate partially

ordered labels for events in distributed systems

• Designed to detect causality violations (e.g. conflicting

branches)

• Developed in 1988 independently by Colin Fridge and

Friedmann Mattern

119

Dynamo – Vector Clocks

• Base idea vector clocks

– Each node / process maintains

an individual logical clock

• Initially, all clocks are 0

• A global clock can be constructed by

concatinating all logical clocks in an array

– Every node stores a local “smallest possible

values” copy of the global clock

• Contains the last-known logical clock values of all related

other nodes

120

Dynamo – Vector Clocks

– Every time a node raises an event, it increases its
own logical clock by one within the vector

– Each time a message is to be sent, a nodes
increases its own clock in the vector and attaches the
whole vector to the message

– Each time a node receives a message, it increments
its own logical clock in the vector

• Additionally, each element of the own vector is updated
with the maximum of the own vector and the received
vector

• Conflicts can be detected if messages are received with
clocks which are not in total order in each component

 121

Dynamo – Vector Clocks

• Vector clock

122

Dynamo – Vector Clocks

• Problem to be solved
– Alice, Ben, Cathy, and Dave are planning to meet next week for

dinner

– The planning starts with Alice suggesting they meet on Wednesday

– Later, Dave discuss alternatives with Cathy, and they decide on
Thursday instead

– Dave also exchanges email with Ben, and they decide on Tuesday.

– When Alice pings everyone again to find out whether they still
agree with her Wednesday suggestion, she gets mixed messages
• Cathy claims to have settled on Thursday with Dave

• Ben claims to have settled on Tuesday with Dave

• Dave can't be reached - no one is able to determine the order in which
these communications happened

– Neither Alice, Ben, nor Cathy know
whether Tuesday or Thursday is the
correct choice

123

Dynamo – Vector Clocks

• Problem can be solved by
tagging each choice with a vector clock

– Alice says, "Let's meet Wednesday,"

• Message 1: date = Wednesday; vclock = 𝐴: 1

– Now Dave and Ben start talking. Ben suggests Tuesday

• Message 2: date = Tuesday; vclock = 𝐴: 1, 𝐵: 1

– Dave replies, confirming Tuesday

• Message 3: date = Tuesday; vclock = 𝐴: 1, 𝐵: 1, 𝐷: 1

– Now Cathy gets into the act, suggesting Thursday
(independently of Ben or Dave, in response to initial
message)

• Message 4: date = Thursday; vclock = 𝐴: 1, 𝐶: 1

124

Dynamo – Vector Clocks

– Dave now received two conflicting messages
• Message 3: date = Tuesday; vclock = 𝐴: 1, 𝐵: 1, 𝐷: 1

• Message 4: date = Thursday; vclock = 𝐴: 1, 𝐶: 1

• Dave should resolve this conflict somehow

• Dave agrees with Thursday and confirms only to Cathy
– Message 5: date = Thursday; vclock = 𝐴: 1, 𝐵: 1, 𝐶: 1, 𝐷: 2

– Alice asks all her friends for their latest decision and
receives
• Ben: date = Tuesday; vclock = 𝐴: 1, 𝐵: 1, 𝐷: 1

• Cathy: date = Thursday; vclock = 𝐴: 1, 𝐵: 1, 𝐶: 1, 𝐷: 2

• No response from Dave

• But still, Alice knows by using the vector clocks that Dave
intended to overrule Ben
– She also knows that Dave is a moron and did not inform Ben of this

decision

125

Dynamo – Vector Clocks

• Dynamo (continued)
– Eventual Consistency through asynchronous replica

updates

– To detect diverging branches and inconsistencies, vector
clocks are used
• Each data entry is tagged with a minimal vector clock

– i.e. array has length one if only one node performs updates

– For each additional node performing updates, the length of the vector
increases

• After a vector grows larger than 10 entries, the oldest ones are
removed
– Keeps the vector clock size capped

– Some inconsistencies cannot be detected anymore

– Has usually no practical impact as very strange (and unlikely) network
failures are needed to generate vector clocks of size ≥ 10

126

Dynamo – Consistency

– Version branches may evolve (due to partitioning)

• Version graph is only partially ordered in the worst case

– As soon as conflicting versions are detected (usually

during replication update or client read),

a reconciliation process is started

• e.g. merge, discard old ones, etc.

127

Dynamo – Consistency

Data tagged

with vector clock

Different nodes may

handle writes

• Test results for response requirement is 300ms

for any request (read or write)

128

Dynamo - Evaluation

• Load distribution

129

Dynamo - Evaluation

• Consistency vs. Availability
– 99.94% one version

– 0.00057% two versions

– 0.00047% three versions

– 0.00009% four versions

• Server-driven or Client-driven coordination
– Server-driven

• uses load balancers

• forwards requests to desired set of nodes

– Client-driven 50% faster
• requires the polling of Dynamo membership updates

• the client is responsible for determining the appropriate nodes to send the
request to

• Successful responses (without time-out) 99.9995%
– Configurable (𝑁, 𝑅, 𝑊)

 130

Dynamo - Evaluation

• Dynamo is not the Holy Grail of Data Storage

• Strength
– Highly available

– Guaranteed low latencies

– Incrementally scalable

– Trade-offs between properties can
be tuned dynamically

• Limitations
– No infinite scaling

• Due to fully meshed routing and heavy load on new node arrival (virtual
server transfer)

– Does not support real OLTP queries

– Each application using dynamo must provide conflict
resolution strategies

131

Dynamo - Summary

• Google was founded in 1998 by the Stanford

Ph.D. candidates Larry Page and Sergey Brin

– Headquarter in Mountain View, CA, USA

– Named after the number Googol

– More than 20 000 employees

132

Google

• Privately held until 2004

– Now NASDAQ: GOOG

– Market capitalization of over 140 billion USD

– 2009 revenue of 23.7 billion USD (6.5 billion profit)

133

Google

• Initial mission

– “to organize the world's information and
make it universally accessible and useful”

• and “Don‟t be evil”

• Originally, Google became famous
for their search engine

– Initial Idea: Google PageRank

• Not all web pages are equally important

• Link structure can be used to determine site‟s importance

• Resulting search engine showed much higher result quality than
established products (e.g. Yahoo, Altavista, etc.)

– Rise of Google as one of the big internet pioneers starts

134

Google

• Currently, Google offers a multitude of services

– Google Search

– Google Mail

– Google Maps

– Google Earth

– Google Documents

– Picasa Web Album

– etc.

• Thus, Google hosts and actively uses several
Petabytes of data!

135

Google

• Google needs to store and access lots of

(semi-)structured data

– URLs and their contents

• Content, meta data, links, anchors,

 pageranks, etc.

– User data

• User preferences, query history, search results

– Geographic information

• Physical entities (shops, restaurants, etc),

roads, annotations, POIs, satellite

images, etc.

136

Google Challenges

• Bigtable
• F. Chang et al, “Bigtable: A Distributed Storage System

for Structured Data”, ACM Transactions on Computer

Systems (TOCS), Vol 26, Iss 2, June 2008

– Bigtable is a high-performance proprietary database

system used by multiple Google services

• e.g. used in Google Maps, Google Books, Google Earth,

Gmail, Google Code, etc.

• Uses an abstracted and very flexibly row and column

storage model

• Is based on versioning for updates

137

Bigtable

• Originally designed for storing Google‟s Web index

• Special requirements

– Processes continuously and asynchronously update

different pieces of data

• i.e. continuous Web crawling

• Store version, usually access just newest one

• Multiple version can be used to examine change of data in time

– Very high read / write rates necessary

• Millions per seconds

– Support efficient scanning of interesting data subsets

138

Bigtable Requirements

• Additional requirements as usual for web-scale
applications

– Fault tolerant, persistent

– Use cheap hardware

– Scale to huge sized infrastructures

• Support incremental scaling

• Thousands of servers

– Terabytes of in-memory data

– Petabytes of disk-based data

– Self-managing

• Servers auto-load balance

• Servers can be dynamically added and removed

139

Bigtable Requirements

• Each distributed Bigtable cluster is responsible for

the data of one or multiple applications

– Called a “cell”

• Several hundred cells are deployed

• Cell size range from 10-20 up to thousands machines

• In 2006, the largest cell was 0.5 PB

– Now it is probably much larger…

140

Bigtable Cells

• Bigtable heavily relies on additional systems and concepts
– Google File System (GFS)

• A distributed and fail-safe file system

• Physically stores Bigtable data on disks
– S. Ghemawat, H. Gobioff, S.T. Leung. “The Google File System”, ACM Symp.

Operating Systems Principles, Lake George, USA, 2003

– Google Chubby
• A distributed lock manager, also responsible for bootstrapping

– M. Burrows. “The Chubby Lock Service for Loosely-Coupled
Distributed Systems”, Symp. Operating System Design and Implementation,
Seattle, USA, 2006

– Google MapReduce
• Programming model for distributing computation jobs on parallel

machines
– J. Dean, S. Ghemawat. “MapReduce: Simplified Data

Processing on Large Clusters”, Symp. Operating System Design and
Implementation, San Francisco, USA, 2004

141

Bigtable Environment

• Bigtable is a “database” especially

designed to run ontop of GFS

– Bigtable data model also focuses on appends

• Assumption: rows are frequently added, but rarely updated

• Row “updates” will just result in new rows with a different

timestamp

– GFS takes care of replication and load-balancing issues

• To accommodate for Google's applications,

Bigtable uses a very flexible data model

142

Bigtable Implementation

• Don‟t think of Bigtables as spreadsheet or
traditional DB table

– Unfitting name….

– e.g. not each row has a fixed size of attributes

• Not: Each column has a data type

• Not: Missing values denoted as null

143

Bigtable: Data Model

colA colB colC colD

rowA NULL?

rowB NULL?

rowC NULL?

rowD

Table as NOT used by Bigtable

• Instead, Bigtable implements a multi-dimensional
sparse map
– Think of columns just as available tags

• “Cells” are referenced by (𝑟𝑜𝑤_𝑛𝑎𝑚𝑒, 𝑐𝑜𝑙_𝑛𝑎𝑚𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

– Each row can use just some columns and story any value
• Columns are just roughly typed, i.e. binary, string, numeric, …

144

Bigtable: Data Model

colA → value colB → value2

colC → really long value

colB → value3 colD → huge blob

rowA

rowB

rowC

“Table” as used by Bigtable

colC → really long value
colC → really long value

time: 100
time: 70

colB → value2

time: 40
time: 60

time: 100

time: 110
colA → value time: 120

• Rows

– Each row has a unique name

• Name is just an arbitrary string

– e.g. “www.ifis.cs.tu-bs.de”

– Each access to a row is atomic

• Load and store whole rows

– Rows are ordered lexicographically

• Idea: after partitioning the table, lexicographically similar

rows are within the same or a nearby fragment

– e.g. “www.ifis.cs.tu-bs.de” is close to “www.ifis.cs.tu-bs.de/staff”

– Rows will never be split during partitioning

145

Bigtable: Data Model

• Columns
– Each column has a two-level name structure

• Family name and qualifier name
– e.g. <family:qualifier>

– All column families must be created explicitly
 as part of schema creation
• Columns within a family have usually a similar type

• Data of a row within a family are often stored and compressed together

– Individual columns can be used by application freely and
flexibly
• Individual columns are not part of schema creation

– Flexible data model

– Aims
• Have a few (max. 100 (!)) column families which rarely change

• Let application create columns as needed

146

Bigtable: Data Model

• Timestamps

– Of each cell, different versions are
maintained with their respective timestamps

• 64 Bit integers

– Updates to a cell usually create a new version with the
current system time as timestamp

• But timestamp can also be set explicitly by application

– During column family creation, versioning options are
provided
• Either “keep n copies” or “keep versions up to the age of n

seconds”

– Typical queries ask for timestamp ranges

147

Bigtable: Data Model

• The base unit of load balancing and partitioning are
called tablets

– i.e. tables are split in multiple tablets

– Tablets hold a contiguous range of rows

• Hopefully, row ordering will result in locality

– Tablets are disjoint

• No overlapping value ranges

– Tablets are rather large (1GB by default) and are later
stored in GFS
• i.e. tablets will usually have multiple GFS chunks

• Tablets need to contain full rows

– A single row should not exceed several hundred MB such that it will fit
into a tablet…

148

Bigtable: Data Model

• Bigtable provides only very simple native API
interfaces to applications

• e.g. in C++ or Python

– No complex query language like SQL

– API can
• Create and delete tables and column families

• Modify cluster, table, and column family metadata such as access
control rights,

• Write or delete directly addressed values in Bigtable
– Supports just single row transactions (i.e. read-modify-write)

– No multi-row transactions

• Look up values from individual rows

• Iterate over a subset of the data in a table,
– Can be restricted to certain column families or timestamps

– Relies on regular expressions on row and columns names

149

Bigtable - API

• Recap
– Semi-flexible schemas are supported

– A table consist of named rows and columns
• All data cells are versioned with timestamps

• Columns are grouped in column families which are defined in
the schema
– Families are usually stable during application life

• Columns can be dynamically used and added by
applications as they seem fit

• As a result, table is very sparse
– i.e. it resembles a multi-dimensional map

– Tables are broken down into tablets
• Tables hold a continuous and ordered non-overlapping row

name range

• Horizontal fragmentation

150

Bigtable - API

• Application 1: Google Analytics
– Enables webmasters to analyze traffic pattern at their web

sites.

– Provides statistics such as:
• Number of unique visitors per day and the page views per URL

per day

• Percentage of users that made a purchase given that they earlier
viewed a specific page

– How is it done?
• A small JavaScript program that the webmaster embeds in their

web pages

• Every time the page is visited, the program is executed

• Program records the following information about each request
– User identifier

– The page being fetched

151

Bigtable

• Application 2: Google Earth & Maps

– Functionality: Storage and display of satellite imagery

at different resolution levels

– One Bigtable stores raw imagery (~ 70 TB):

• Row name is a geographic segments

– Names are chosen to ensure adjacent geographic segments are

clustered together

• Column family maintains sources of data for each segment.

– There are different sets of tables for serving client

data, e.g., index table

152

Bigtable

• Application 3: Personalized Search

– Records user queries and clicks across Google properties

– Users browse their search histories and request for
personalized search results based on their historical usage
patterns

– One Bigtable

• Row name is userid

• A column family is reserved for each action type, e.g., web
queries, clicks

• User profiles are generated using MapReduce.

– These profiles personalize live search results

• Replicated geographically to reduce latency and increase
availability

153

Bigtable

• Implementing Bigtable

– Bigtable runs on standard Google server nodes

– Each server node usually runs multiple services

• Some application server instances

– e.g. a web renderer, a crawler, etc.

• A map-reduce worker

– Can accept any map-reduce

request by a scheduler when idling

• A GFS chunk server instance

• A Bigtable server

154

Bigtable: Implementation

map-reduce

application 1

GFS server

Bigtable server

application 2

Cluster Management Layer

Linux

Standard Google Server

• Usually, a Bigtable cluster consists of multiple
tablet servers and a single master server

– Master controls and maintains tablet servers

• Assigns and migrates tablets

• Controls garbage collection and
load balancing

• Maintains schema

• Clients usually never contact master

– Tablet servers are responsible for tablets

• Can be dynamically added and removed

• Master controls tablet migrations

• Clients know the tablet server responsible for their data

155

Bigtable: Implementation

• Typical Bigtable cell

156

Bigtable: Implementation

GFS server

Bigtable server

Cluster Mngt. Layer

Linux

GFS server

Bigtable server

Cluster Mngt. Layer

Linux

application 1

Map-Reduce

GFS server

Bigtable Master

Cluster Mngt. Layer

Linux

…

Cluster Mngt. Server Chubby Lock Manager GFS Master

• Each tablet server node is responsible for around 10 to
1000 randomly scattered tables

– Much more tablets than nodes!
• Each tablet is assigned to just one node

– Easy recovery
• After a Bigtable node fails, 10 to 1000 machines need to pick up just one

tablet

– Good initial load balancing
• Remember: rows within tablets are continuous for locality

• Node holds very different tablets

– Some may be hot and some may be cold

– Very easy runtime load balancing
• Overloaded node simply migrates a tablet to a under-utilized node

• Bigtable master decides on load-balancing migration

157

Bigtable: Managing Tablets

• Tablets can be split and migrated if they grow

to big

158

Bigtable: Managing Tablets

• Split tablets

159

Bigtable: Managing Tablets

• Clients which try to work on certain data must first

locate the responsible tablet

– Tablets may freely move across the servers

• Two options

A) Just ask master server which must then keep a directory

B) Store tablet location in a index within Bigtable itself

• Option B is implemented

– Tablets are organized in a 3-tier hierarchy which serves

as a distributed index

• Think of a B-Tree…

160

Bigtable: Managing Tablets

• Entry point is always a Chubby file

– Chubby: distributed lock manager
• In short: can store a tiny file in a distributed, persistent and

indestructible fashion

• May hand out exclusive locks on the files

• Root tablet serves as entry point and is never split

– Just points forward to metadata tablets

• Metadata tablets represent an index table

– For each actual data tablet, the row name range (start
and end) and the responsible tablet server are stored

– Root tablet stores row name range (start and end) of
the responsible metadata tablet

161

Bigtable: Managing Tablets

– Chubby file points to the tablet server holding the

root tablet

– Root tablet links to meta-data tablets

– Meta-data tablets link to actual data tablets

162

Bigtable: Managing Tablets

• Each tablet is assigned to one tablet server

• Each tablet is stored as a GFS file

– Thus, tablets are durable and distributed

– Usually, the GFS primary replica and the GFS lease

of a tablet file are held by the same machine as the

tablet server

• Remember: each Bigtable server also runs a GFS server

• Read and writes are thus performed on local disk

– If a tablet server is assigned a new tablet, it is usually a good idea to

request the background transfer of all GFS chunks related to that

tablet to the new server

163

Bigtable: Managing Tablets

• Master keeps track of available tablet servers and

all tablets not assigned to any server

– Master can use metadata tables for this

• Metadata list all tablets

• Orphaned tablets can be assigned by Master

– A tablet server opens all tablets it is assigned to

• e.g. load indexes into main memory

164

Bigtable: Managing Tablets

• A new tablet server joins

– Tablet server registers itself with the lock-manager

(Chubby) by creating an ID file in a special directory

and obtaining a time-decaying lock for it

• Tablet server periodically re-acquires lock

– Bigtable master monitors directory and contacts

new servers

• A tablet server leaves or fails

– Server lock expires

• Bigtable master notices when a lock is lost

165

Bigtable: Managing Tablets

• Detecting lost tablet servers

– Master server periodically tries to obtain locks on the

ID files of all known tablet servers

• If everything is OK, request is denied

• If lock is granted, the respective server is dead

– All its tablets are reassigned (tablets themselves are stored on GFS

and are not affected by tablet server loss)

– Delete the servers ID file

166

Bigtable: Managing Tablets

• If Chubby session holding the server ID file
expires or has a time out, masters kills itself

• A new master starts

– A unique Chubby lock is acquired to ensure that there
is just one master

• Lock also identifies master

• Lock may decay and must be renewed
– If lock is lost, the master failed and a new master must be elected

– Load current tablet assignments from root tablets

• Root tablet location is also in Chubby

• Contact all tablets servers to check if they are OK

167

Bigtable: Managing Tablets

• Recap
– A big table cell consist of multiple tablet servers and a single

master server
• Distributed lock services is used to check for node failures

• Bigtable server also run a GFS server

– Master server distributed tablets to tablet servers
• Responsible for maintenance

• Load balancing, failure recovery, etc.

– Specialized root tablets and metadata tablets are used as
an index to look up responsible tablet servers for a given data
range
• Clients don‟t communicate with master server

• Usually, they work only with one or very few tablet servers on small
data ranges

– Bigtable can become very complicated to use if clients don‟t work on limited
ranges!

168

Bigtable: Managing Tablets

• Each tablet directly interacts with several components
– Tablet data is stored in several immutable SSTables

• SSTable are stored in GFS

– An additional memtable holds data not yet stored in a
SSTable
• Stored in main memory

• All writes are preformed on memtable first

– A persistent append-only log for all write operations
• Log is shared with all tablets of the tablet server in is also stored in GFS

169

Bigtable: Implementation

T
a
b

le
t

SSTable1 SSTable2 SSTablen …

Log memtable

Metadata: start row, end row

• SSTables are immutable ordered maps holding
key-value pairs
– Each entry represents a cells

• Key are triples of <row, column, timestamp>

• Value is the actual cell value

– SSTables can very easily be traversed
as they are ordered
• Each SSTable has a clearly defined start key and end key

– However, ranges of SSTables may overlap!

– Immutability eliminates consistency problems
• A SSTable can never be changed (only completely deleted

compaction)

• No locks necessary for reads and writes
– Parallel read are always possible without danger of interference

170

Bigtable: Implementation

• Internally, SSTables consist of multiple 64KB
blocks of data

– Again, each block is an ordered map

– Each SSTable has a special index block mapping key
ranges to their responsible block number

– Every time a tablet is opened, all SSTable index blocks
are loaded to the tablet server main memory

171

Bigtable: Implementation

64k

block

64k

block

64k

block

Index

block
…

Metadata: start key, end key

S
S

T
a
b

le

• Write operations must ensure atomicity and also store the
data within the SSTables

• Write operation arrives at a tablet server
– Server checks if the client has sufficient privileges for the write

operation (Chubby)

– A log record is generated to the commit log file

– Once the write commits, its contents are inserted into the
memtable
• Copy-on-write on row basis to maintain row consistency

– e.g. a write request is completed at a temporary location and then atomically copied
into the memtable

• Memtable is also sorted by keys similar to SSTables

• Nothing stored in SSTables yet!

172

Bigtable: Write and Read

Tablet

Log memtable

Metadata: start row, end row write
temp

• Memtable size increases with number of write

operations

– After a threshold is reached, the current memtable is

frozen and a new one is created

– Frozen memtable is serialized to disk

• Called minor compaction

• Note: with a quite high probability, SSTables will now have

overlapping ranges!

• Also committed to log after operation was successful

– Data is now persistent and does probably not need recovery from

log files

173

Bigtable: Write and Read

• Read operation for a certain range / key arrives at a
tablet server
– Server ensures client has sufficient privileges for the read

operation (Chubby)

– Tablet server uses index blocks of all SSTables and the
memtable to find all blocks with matching range
• All related blocks and the memtable are merged into a sorted,

unified view
– Merge can be performed very efficiently as all components are pre-sorted (e.g.

like merge-sort)

• Binary search is possible on the merged view

174

Bigtable: Write and Read

T
a
b

le
t

SSTable1 SSTable2 SSTablen
…

memtable

SSTable3

read
⋃

• If keys are to be deleted, they are written with a
special delete flag as value

• In periodic intervals, major compactions are
performed

– Background maintenance operation, normal read and
writes can still continue

– Several overlapping SSTables and/or the memtable are
compacted into a set of non-overlapping SSTables

• Increases read performance (less overlapping SSTable → less
merging)

• Deleted records may now be removed

– Possibly, also all its old versions (sensible data must be guaranteed to be
deleted)

175

Bigtable: Write and Read

• If a tablet server crashes, tablets are reassigned

by the Bigtable master to a new tablet server

– All SSTable files are persistently stored in GFS and are

not affected by the server failure

– Memtable is lost

• Memtable can be reconstructed by replaying the crashed

servers log files starting from last minor compaction

checkpoint

• Server log file was also stored in GFS!

176

Bigtable: Write and Read

• Further Bigtable optimizations

• Locality Groups

– Group columns frequently accessed together such

that their values will be in the same or a close SSTable

• Creates semantic locality

• Locality group provided manually by developers

• Access to SSTables minimized for certain applications

– e.g. webcraweler: keywords, name, pagerank in one

locality group, content in another

177

Bigtable: Write and Read

• Compression

– Most data in Google can be easily

compresses (HTML files, keywords, etc.)

– SSTable blocks are compressed individually

• Takes advantage of locality groups: data within a block

should be similar

– E.g. two pages of the same website sharing most navigation

components

• Simple two-pass frequent term compression

– Due to locality very good reduction rates of 10-to-1

178

Bigtable: Write and Read

• Recap

– Tablets are persistently stored in multiple SSTables in GFS

– SSTable are immutable ordered key-value maps

• Contains table cells

• No locking problems for SSTable access

– All write operations are performed in RAM memtable

• After memtable is big enough, it is serialized into a new, full and
immutable SSTable

– Read operations dynamically merge all responsible
SSTables (from index) and the memtable

– SSTable need to be compacted from time to time

• If not, too many SSTable are responsible for the same ranges

179

Bigtable: Write and Read

• Google Bigtable is a NoSQL database

– No complex query language supported

• Mainly based on scans and direct key accesses

– Single table data model

• No joins

• No foreign keys

• No integrity constraints

– Flexible schemas

• Column may be added dynamically

– Usually, Bigtable is not a direct replacement for a
distributed database

180

Bigtable

• Hbase is an open-source clone of Bigtable

– http://hbase.apache.org/

– Created originally at Powerset in 2007

• Hbase is a Apache Hadoop subproject

– Hadoop is strongly supported by Microsoft and Yahoo

– http://hadoop.apache.org/

– Hadoop reimplements multiple Google-inspired
infrastructure services

• MapReduce ←Google Map And Reduce

• Hbase ← Bigtable

• HDFS ← GFS

• ZooKeeper ← Chubby

181

HBase

http://hbase.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/

