Web Search, Renmin University of China

Lab 1: programmers

Pierre Senellart (pierre@senellart.com)

8 July 2011

Labs can be made individually or by groups of two. Make sure to send by email to pierre@senellart. com,
either at the end of the lab session or at the latest at midnight of the same day, an informal report about
what you did in the lab, and the results you obtained. You do not have to finish all exercises, if you advance
reasonably during the lab session but do not go to the end of the assignment, you will still get a passing grade.

The purpose of this lab session is to build an inverted index out of a collection of text documents, so that
keyword queries (both conjunctive and disjunctive) can be processed over the corpus.

Dataset

The dataset we use for these labs is the content of the Simple English Wikipedia (http://simple.wikipedia.
org/ (a simpler and smaller encyclopedia than the regular English Wikipedia). The whole content of the
encyclopedia can be downloaded from |http://dumps.wikimedia.org/, but we provide here for these labs a
preprocessed version of the content, that you can find on the course website. There is the full version as well as
a smaller set of articles. We recommend starting with the small set to test your program and moving to the full
version once your program processes satisfactorily the small one. The format of these files is as follows: The
first line is the title of the first article, while the following lines (up to the first blank line) form the content
of this article, in plain text format. The second article comes after the next blank line, and so on. There are
50,441 articles in total in the full version, 476 in the small one.

1 Inverted Index

1. Create a class InvertedIndex that will be used to store an in-memory version of an inverted index (that
is, for each token occurring in the collection, this token and the set of all documents that contain this
token, along with the weight of the token in this document, ordered by decreasing weight). You can use
the collections from the Java API, especially java.util.TreeMap and java.util.TreeSet. To define a
TreeSet<A> or a TreeMap<A, B>, class A must implements the Comparable interface.

2. Add a constructor to this class that takes for argument a filename (containing the collection, in the
format described above) and a list of stop words (one per line) and creates the in-memory index from
the collection. The following rules can be used to preprocess the text:

* Tokens are defined as succession of either alphabetical characters or digits (e.g., “Hello”, “1237,

«

a22”; “vice-versa” or "its” are decomposed into two tokens). One can use the following line to
compile a java.util.regex.Pattern that will match these tokens:

Pattern alphaDigit = Pattern.compile("[\\p{L}\\p{N}1+");

All tokens should be made lower case.


http://simple.wikipedia.org/
http://simple.wikipedia.org/
http://dumps.wikimedia.org/

* 'The Porter stemming can be used. An implementation of the Porter stemmer in various pro-
gramming languages is available at |http://tartarus.org/~martin/PorterStemmer/. The Java
implementation is used as follows:

Stemmer stemmer=new Stemmer();
stemmer.add(word.toCharArray(),word.length());
stemmer.stem();

String token=stemmer.toString();

* Stop words will be removed from the index if they are contained in the provided file (found on the

Web site).

A file can be read line by line in Java using a java.io.BufferedReader constructed as follows:
BufferedReader r=new BufferedReader(new FileReader(filename));

Use standard tf-idf weighting.

3. Test your index construction. Use debugging facilities or logging to have a look at the tokens stored in
your inverted index and check if everything goes right.

4. Add a method disjunctiveQuery that takes as argument an array of String representing a disjunctive
query, and run this query with the help of the inverted index to get the list of all matching results, along
with their weight. Addition can be used to combine weights. disjunctiveQuery returns the whole set
of results (ordered by decreasing total weight), so it is not necessary to use advanced top-# evaluation
methods.

5. Same with conjunctiveQuery.

6. Test these methods. You can use for instance the query “president france 2007”. Are the results relevant?

2 To go further

1. Use Java serialization facilities to store a copy of the inverted index on file, and reload it directly without
having to construct it.

2. Build the input file yourself from the XML dump of the Simple English Wikipedia that can be down-
loaded from http://download.wikimedia.org/.


http://tartarus.org/~martin/PorterStemmer/
http://download.wikimedia.org/

	Inverted Index
	To go further

