
Provenance Applications Implementation Conclusion

Building a Provenance-Aware
Database Management System

Pierre Senellart

ÉCOL E NORMAL E
S U P É R I E U R E

Colloqium Polaris, 17 November 2022

2/56

Provenance Applications Implementation Conclusion

Provenance management
� Data management all about query evaluation

� What if we want something more than the query result?
� Where does the result come from?
� Why was this result obtained?
� How was the result produced?
� What is the probability of the result?
� How many times was the result obtained?
� How would the result change if part of the input data was

missing?
� What is the minimal security clearance I need to see the

result?
� What is the most economical way of obtaining the result?
� How can a result be explained in layman terms?

� Provenance management: along with query evaluation,
record additional bookkeeping information allowing to
answer the questions above

2/56

Provenance Applications Implementation Conclusion

Provenance management
� Data management all about query evaluation
� What if we want something more than the query result?

� Where does the result come from?
� Why was this result obtained?
� How was the result produced?
� What is the probability of the result?
� How many times was the result obtained?
� How would the result change if part of the input data was

missing?
� What is the minimal security clearance I need to see the

result?
� What is the most economical way of obtaining the result?
� How can a result be explained in layman terms?

� Provenance management: along with query evaluation,
record additional bookkeeping information allowing to
answer the questions above

2/56

Provenance Applications Implementation Conclusion

Provenance management
� Data management all about query evaluation
� What if we want something more than the query result?

� Where does the result come from?
� Why was this result obtained?
� How was the result produced?
� What is the probability of the result?
� How many times was the result obtained?
� How would the result change if part of the input data was

missing?
� What is the minimal security clearance I need to see the

result?
� What is the most economical way of obtaining the result?
� How can a result be explained in layman terms?

� Provenance management: along with query evaluation,
record additional bookkeeping information allowing to
answer the questions above

3/56

Provenance Applications Implementation Conclusion

Workflow provenance vs fine-grained provenance

3/56

Provenance Applications Implementation Conclusion

Workflow provenance vs fine-grained provenance
Workflow provenance
[Davidson et al., 2007]

� Uniquely identifies
datasets used and
produced

� Documents every
action carried out
(date, tool, version,
parameters, inputs,
outputs, etc.)

� Typically has a
simple directed
graph structure

Data (fine-grained) provenance
[Buneman et al., 2001]

� At the level of a single data
item (a record, a data value, a
node in a graph, etc.)

� Documents how this
particular data item was
produced

� Possibly a rich mathematical
structure

� Support for a limited set of
data operations

3/56

Provenance Applications Implementation Conclusion

Workflow provenance vs fine-grained provenance
Workflow provenance
[Davidson et al., 2007]

� Uniquely identifies
datasets used and
produced

� Documents every
action carried out
(date, tool, version,
parameters, inputs,
outputs, etc.)

� Typically has a
simple directed
graph structure

Data (fine-grained) provenance
[Buneman et al., 2001]

� At the level of a single data
item (a record, a data value, a
node in a graph, etc.)

� Documents how this
particular data item was
produced

� Possibly a rich mathematical
structure

� Support for a limited set of
data operations

4/56

Provenance Applications Implementation Conclusion

Outline

Provenance
Preliminaries
Boolean provenance
Semiring provenance
And beyond. . .

Applications

Implementation

Conclusion

5/56

Provenance Applications Implementation Conclusion

Data model

� Relational data model: data decomposed into relations,
with labeled attributes. . .

� . . . with an extra provenance annotation for each tuple
(think of it first as a tuple id)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

5/56

Provenance Applications Implementation Conclusion

Data model

� Relational data model: data decomposed into relations,
with labeled attributes. . .

� . . . with an extra provenance annotation for each tuple
(think of it first as a tuple id)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

5/56

Provenance Applications Implementation Conclusion

Data model

� Relational data model: data decomposed into relations,
with labeled attributes. . .

� . . . with an extra provenance annotation for each tuple
(think of it first as a tuple id)

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

6/56

Provenance Applications Implementation Conclusion

Queries

� A query is an arbitrary function that maps databases over
a fixed database schema D to relations over some relational
schema R

� The query does not consider or produce any provenance
annotations; we will give semantics for the provenance
annotations of the output, based on that of the input

� In practice, one often restricts to specific query languages:
� Monadic-Second Order logic (MSO)
� First-Order logic (FO) or the relational algebra, or

fragments thereof
� SQL with aggregate functions
� etc.

7/56

Provenance Applications Implementation Conclusion

Outline

Provenance
Preliminaries
Boolean provenance
Semiring provenance
And beyond. . .

Applications

Implementation

Conclusion

8/56

Provenance Applications Implementation Conclusion

Boolean provenance [Imieliński and Lipski, 1984]

� X = fx1; x2; : : : ; xng finite set of Boolean events
� Provenance annotation: Boolean function over X , i.e., a

function of the form: (X ! f?;>g)! f?;>g

� Interpretation: possible-world semantics
� every valuation � : X ! f?;>g denotes a possible world of

the database
� the provenance of a tuple on � evaluates to ? or >

depending whether this tuple exists in that possible world
� for example, if every tuple of a database is annotated with

the indicator function of a distinct Boolean event, the set of
possible worlds is the set of all subdatabases

9/56

Provenance Applications Implementation Conclusion

Example of possible worlds

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

�:
x1 x2 x3 x4 x5 x6 x7

> > > > > > >

9/56

Provenance Applications Implementation Conclusion

Example of possible worlds

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

�:
x1 x2 x3 x4 x5 x6 x7

> ? > ? > ? >

10/56

Provenance Applications Implementation Conclusion

Boolean provenance of query results

� �(D): the subdatabase of D where all tuples whose
provenance annotation evaluates to ? by � are removed

� The Boolean provenance provq;D(t) of tuple t 2 q(D) is the
function:

� 7!

8<
:
> if t 2 q(�(D))

? otherwise

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 _ x2
Paris x3 _ x5 _ x6
Berlin x4 _ x7

11/56

Provenance Applications Implementation Conclusion

What now?

� How to compute Boolean provenance for practical query
languages? What complexity?

� What can we do with provenance?
� How should we represent provenance annotations?
� How can we implement support for provenance

management in a relational database management system?

12/56

Provenance Applications Implementation Conclusion

Outline

Provenance
Preliminaries
Boolean provenance
Semiring provenance
And beyond. . .

Applications

Implementation

Conclusion

13/56

Provenance Applications Implementation Conclusion

Commutative semiring (K; 0; 1;�;
)
� Set K with distinguished elements 0, 1
� � associative, commutative operator, with identity 0K :

� a� (b� c) = (a� b)� c

� a� b = b� a

� a� 0 = 0� a = a

�
 associative, commutative operator, with identity 1K :
� a
 (b
 c) = (a
 b)
 c

� a
 b = b
 a

� a
 1 = 1
 a = a

�
 distributes over �:

a
 (b� c) = (a
 b)� (a
 c)

� 0 is annihilating for
:

a
 0 = 0
 a = 0

14/56

Provenance Applications Implementation Conclusion

Example semirings

� (N; 0; 1;+;�): counting semiring
� (f?;>g;?;>;_;^): Boolean semiring
� (funclassified; restricted; confidential; secret; top secretg;

top secret;unclassified;min;max): security semiring
� (N [f1g;1; 0;min;+): tropical semiring
� (fBoolean functions over Xg;?;>;_;^): semiring of

Boolean functions over X
� (N[X]; 0; 1;+;�): semiring of integer-valued polynomials

with variables in X (also called How-semiring or universal
semiring, see further)

� (P(P(X)); ;; f;g;[;d): Why-semiring over X
(A dB := fa [b j a 2 A; b 2 Bg)

15/56

Provenance Applications Implementation Conclusion

Semiring provenance [Green et al., 2007]

� We fix a semiring (K;0;1;�;
)

� We assume provenance annotations are in K

� We consider a query q from the positive relational algebra
(selection, projection, renaming, cross product, union; joins
can be simulated with renaming, cross product, selection,
projection)

� We define a semantics for the provenance of a tuple
t 2 q(D) inductively on the structure of q

16/56

Provenance Applications Implementation Conclusion

Selection, renaming
Provenance annotations of selected tuples are unchanged

Example (�name!n(�city=“New York”(R)))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

n position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

17/56

Provenance Applications Implementation Conclusion

Projection
Provenance annotations of identical, merged, tuples are �-ed

Example (�city(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 � x2

Paris x3 � x5 � x6

Berlin x4 � x7

18/56

Provenance Applications Implementation Conclusion

Union
Provenance annotations of identical, merged, tuples are �-ed

Example
�city(�ends-with(position;“agent”)(R)) [�city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 � x5

Berlin x4 � x7

19/56

Provenance Applications Implementation Conclusion

Cross product
Provenance annotations of combined tuples are
-ed

Example
�city(�ends-with(position;“agent”)(R)) on �city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3
 x5

Berlin x4
 x7

20/56

Provenance Applications Implementation Conclusion

What can we do with it?

counting semiring: count the number of times a tuple can be
derived, multiset semantics

Boolean semiring: determines if a tuple exists when a
subdatabase is selected

security semiring: determines the minimum clearance level
required to get a tuple as a result

tropical semiring: minimum-weight way of deriving a tuple
(think shortest path in a graph)

Boolean functions: Boolean provenance, as previously defined

integer polynomials: universal provenance, see further

Why-semiring: Why-provenance [Buneman et al., 2001], set of
combinations of tuples needed for a tuple to exist

21/56

Provenance Applications Implementation Conclusion

Example of security provenance

�city
�
�name<name2[�name;city(R) on �name!name2(�name;city(R))]

�

name position city prov

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

city prov

New York restricted
Paris confidential
Berlin secret

22/56

Provenance Applications Implementation Conclusion

Notes [Green et al., 2007]

� Computing provenance has a PTIME data complexity
overhead

� Semiring homomorphisms commute with provenance
computation: if there is a homomorphism from K to K 0,
then one can compute the provenance in K, apply the
homomorphism, and obtain the same result as when
computing provenance in K 0

� The integer polynomial semiring is universal: there is a
unique homomorphism to any other commutative semiring
that respects a given valuation of the variables

� This means all computations can be performed in the
universal semiring, and homomorphisms applied next

� Two equivalent queries can have two different provenance
annotations on the same database, in some semirings

23/56

Provenance Applications Implementation Conclusion

Outline

Provenance
Preliminaries
Boolean provenance
Semiring provenance
And beyond. . .

Applications

Implementation

Conclusion

24/56

Provenance Applications Implementation Conclusion

Semirings with monus [Amer, 1984, Geerts and Poggi, 2010]

� Some semirings can be equipped with a 	 verifying:
� a� (b	 a) = b� (a	 b)
� (a	 b)	 c = a	 (b+ c)
� a	 a = 0	 a = 0

� Boolean function semiring with ^:, Why-semiring with n,
counting semiring with truncated difference. . .

� Most natural semirings (but not all semirings [Amarilli and
Monet, 2016]!) can be extended into semirings with monus

� Sometimes strange things happen [Amsterdamer et al.,
2011a]: e.g,
 does not always distribute over 	

� Allows supporting full relational algebra with the n
operator, still PTIME

� Semantics for Boolean function semiring coincides with
that of Boolean provenance

25/56

Provenance Applications Implementation Conclusion

Difference
Provenance annotations of diff-ed tuples are 	-ed

Example
�city(�ends-with(position;“agent”)(R)) n �city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x5 	 x3

Berlin x4 	 x7

26/56

Provenance Applications Implementation Conclusion

Provenance for aggregates
[Amsterdamer et al., 2011b, Fink et al., 2012]

� Trickier to define provenance for queries with aggregation,
even in the Boolean case

� One can construct a K-semimodule K �M for each monoid
aggregate M over a provenance database with a semiring
in K

� Data values become elements of the semimodule

Example (count(�name(�city=“Paris”(R)))

x3 � 1 + x5 � 1 + x6 � 1

27/56

Provenance Applications Implementation Conclusion

Outline

Provenance

Applications
Probabilistic databases
Views
Explanation

Implementation

Conclusion

28/56

Provenance Applications Implementation Conclusion

Application: Probabilistic databases
[Green and Tannen, 2006, Suciu et al., 2011]

� Tuple-independent database: each tuple t in a database is
annotated with independent probability Pr(t) of existing

� Probability of a possible world D0 � D:

Pr(D0) =
Q
t2D0 Pr(t)�

Q
t2D0nD(1� Pr(t0))

� Probability of a tuple for a query q over D:

Pr(t 2 q(D)) =
P

D0�D
t2q(D0)

Pr(D0)

� If Pr(xi) := Pr(xi) where xi is the provenance annotation
of tuple xi then Pr(t 2 q(D)) = Pr(provq;D(t))

� Computing the probability of a query in probabilistic
databases thus amounts to computing Boolean provenance,
and then computing the probability of a Boolean function

� Also works for more complex probabilistic models

29/56

Provenance Applications Implementation Conclusion

Example of probability computation

name position city classification prov prob

John Director New York unclassified x1 0.5
Paul Janitor New York restricted x2 0.7
Dave Analyst Paris confidential x3 0.3
Ellen Field agent Berlin secret x4 0.2
Magdalen Double agent Paris top secret x5 1.0
Nancy HR director Paris restricted x6 0.8
Susan Analyst Berlin secret x7 0.2

city prov

New York x1 _ x2
Paris x3 _ x5 _ x6
Berlin x4 _ x7

29/56

Provenance Applications Implementation Conclusion

Example of probability computation

name position city classification prov prob

John Director New York unclassified x1 0.5
Paul Janitor New York restricted x2 0.7
Dave Analyst Paris confidential x3 0.3
Ellen Field agent Berlin secret x4 0.2
Magdalen Double agent Paris top secret x5 1.0
Nancy HR director Paris restricted x6 0.8
Susan Analyst Berlin secret x7 0.2

city prov prob

New York x1 _ x2 1� (1� 0:5)� (1� 0:7) = 0:85

Paris x3 _ x5 _ x6 1.00
Berlin x4 _ x7 1� (1� 0:2)� (1� 0:2) = 0:36

30/56

Provenance Applications Implementation Conclusion

Outline

Provenance

Applications
Probabilistic databases
Views
Explanation

Implementation

Conclusion

31/56

Provenance Applications Implementation Conclusion

Views

� Views are named queries
� They are used in the same way as tables within other

queries
� Semantics: one replaces the view by the result of the

evaluation of the corresponding query

32/56

Provenance Applications Implementation Conclusion

Virtual and materialized views

� A view may be virtual or materialized
� No semantic difference
� Operational difference, with an impact on the efficiency of

query evaluation:
virtual view: the query defining the view is evaluated each

time the view is used in a query
materialized view: the query defining the view is evaluated

when the view is created and the result is
stored in an auxiliary table; this table is
directly used each time the view is used in
another query

33/56

Provenance Applications Implementation Conclusion

Why using views?

Logical independence: an application can access views, without
the need to know how data is effectively organized
in the database (the organization can change in a
transparent manner, by just redefining the views)

Access control: different access rights can be given to base
tables and to views, so that a given user or
application only has access to a restricted subset of
the content of the database

Data integration: views can be defined to gather data from
multiple sources with different schemas

Optimization: materialized views can be defined for frequent
queries or subqueries, so that they do not need to
be evaluated each time they are used

34/56

Provenance Applications Implementation Conclusion

Views and updates

Views interact in complex ways with updates (insertions,
modifications, deletions).

View maintenance: when an update is performed on base
tables, this update should be reflected in the views
� Nothing to do for virtual views
� More complex for materialized views, that

need to be maintained in terms of the updates

View update: one wants in some settings to perform an update
directly on a view, which causes appropriate
updates on base tables

How to do it? With provenance! At least for deletions

34/56

Provenance Applications Implementation Conclusion

Views and updates

Views interact in complex ways with updates (insertions,
modifications, deletions).

View maintenance: when an update is performed on base
tables, this update should be reflected in the views
� Nothing to do for virtual views
� More complex for materialized views, that

need to be maintained in terms of the updates

View update: one wants in some settings to perform an update
directly on a view, which causes appropriate
updates on base tables

How to do it? With provenance! At least for deletions

34/56

Provenance Applications Implementation Conclusion

Views and updates

Views interact in complex ways with updates (insertions,
modifications, deletions).

View maintenance: when an update is performed on base
tables, this update should be reflected in the views
� Nothing to do for virtual views
� More complex for materialized views, that

need to be maintained in terms of the updates

View update: one wants in some settings to perform an update
directly on a view, which causes appropriate
updates on base tables

How to do it? With provenance! At least for deletions

35/56

Provenance Applications Implementation Conclusion

View maintenance for deletions

� Just use Boolean provenance!
� Remove all tuples whose provenance annotation evaluates

to ?

name position city prov

John Director New York x1

Paul Janitor New York x2

Dave Analyst Paris x3

Ellen Field agent Berlin x4

Magdalen Double agent Paris x5

Nancy HR director Paris x6

Susan Analyst Berlin x7

city prov

New York x1 ^ x2
Paris x3 ^ x5 _ x3 ^ x6 _ x5 ^ x6
Berlin x4 ^ x7

If x1 disappears, New York disappears from the result of the
view.

35/56

Provenance Applications Implementation Conclusion

View maintenance for deletions

� Just use Boolean provenance!
� Remove all tuples whose provenance annotation evaluates

to ?

name position city prov

John Director New York x1

Paul Janitor New York x2

Dave Analyst Paris x3

Ellen Field agent Berlin x4

Magdalen Double agent Paris x5

Nancy HR director Paris x6

Susan Analyst Berlin x7

city prov

New York x1 ^ x2
Paris x3 ^ x5 _ x3 ^ x6 _ x5 ^ x6
Berlin x4 ^ x7

If x1 disappears

, New York disappears from the result of the
view.

35/56

Provenance Applications Implementation Conclusion

View maintenance for deletions

� Just use Boolean provenance!
� Remove all tuples whose provenance annotation evaluates

to ?

name position city prov

John Director New York x1

Paul Janitor New York x2

Dave Analyst Paris x3

Ellen Field agent Berlin x4

Magdalen Double agent Paris x5

Nancy HR director Paris x6

Susan Analyst Berlin x7

city prov

New York x1 ^ x2
Paris x3 ^ x5 _ x3 ^ x6 _ x5 ^ x6
Berlin x4 ^ x7

If x1 disappears, New York disappears from the result of the
view.

36/56

Provenance Applications Implementation Conclusion

View update for deletions [Buneman et al., 2002]

� Use case for Why-provenance!
� To delete a tuple t in the result of a view, select a minimal

subset of tuples (in terms of size, or in terms of side effects
on other tuples of the deleted view) whose annotation
appears in every set of annotations of the Why-provenance
of t

� NP-complete in general

name position city prov

John Director New York x1

Paul Janitor New York x2

Dave Analyst Paris x3

Ellen Field agent Berlin x4

Magdalen Double agent Paris x5

Nancy HR director Paris x6

Susan Analyst Berlin x7

ville prov

New York
�
fx1; x2g

	
Paris

�
fx3; x5g; fx3; x6g; fx5; x6g

	
Berlin

�
fx4; x7g

	

To delete Paris, delete two tuples among x3, x5, x6.

36/56

Provenance Applications Implementation Conclusion

View update for deletions [Buneman et al., 2002]

� Use case for Why-provenance!
� To delete a tuple t in the result of a view, select a minimal

subset of tuples (in terms of size, or in terms of side effects
on other tuples of the deleted view) whose annotation
appears in every set of annotations of the Why-provenance
of t

� NP-complete in general

name position city prov

John Director New York x1

Paul Janitor New York x2

Dave Analyst Paris x3

Ellen Field agent Berlin x4

Magdalen Double agent Paris x5

Nancy HR director Paris x6

Susan Analyst Berlin x7

ville prov

New York
�
fx1; x2g

	
Paris

�
fx3; x5g; fx3; x6g; fx5; x6g

	
Berlin

�
fx4; x7g

	

To delete Paris

, delete two tuples among x3, x5, x6.

36/56

Provenance Applications Implementation Conclusion

View update for deletions [Buneman et al., 2002]

� Use case for Why-provenance!
� To delete a tuple t in the result of a view, select a minimal

subset of tuples (in terms of size, or in terms of side effects
on other tuples of the deleted view) whose annotation
appears in every set of annotations of the Why-provenance
of t

� NP-complete in general

name position city prov

John Director New York x1

Paul Janitor New York x2

Dave Analyst Paris x3

Ellen Field agent Berlin x4

Magdalen Double agent Paris x5

Nancy HR director Paris x6

Susan Analyst Berlin x7

ville prov

New York
�
fx1; x2g

	
Paris

�
fx3; x5g; fx3; x6g; fx5; x6g

	
Berlin

�
fx4; x7g

	

To delete Paris, delete two tuples among x3, x5, x6.

37/56

Provenance Applications Implementation Conclusion

Outline

Provenance

Applications
Probabilistic databases
Views
Explanation

Implementation

Conclusion

38/56

Provenance Applications Implementation Conclusion

Using provenance for explanation
� Semiring provenance can be used to provide a user with

explanation on the query result:
� How-provenance (provenance polynomials) explains

precisely how a result has been computed: often too
fine-grained

� Why-provenance explains why a particular result is
generated by providing combinations of tuples required for
a tuple to be produced

� Provenance often too long and complex, (imperfect)
summarization may be required [Ainy et al., 2015]

� Still far from a natural language explanation!
� Why-not provenance: why a result was not produced.

Expressible with m-semirings, but requires dedicated
techniques [Chapman and Jagadish, 2009] for compact
explanations

39/56

Provenance Applications Implementation Conclusion

Where-provenance [Buneman et al., 2001]

� Different form of provenance: captures from which
database values come which output values

� Bipartite graph of provenance: two attribute values are
connected if one can be produced from the other

� Axiomatized in [Buneman et al., 2001, Cheney et al., 2009]

� Cannot be captured by provenance semirings [Cheney et al.,
2009], because of renaming (does not keep track of relation
attributes), projection (does not remember which attribute
values still exist), join (in a join, an output value comes
from two different input values)

40/56

Provenance Applications Implementation Conclusion

Outline

Provenance

Applications

Implementation
Representation Systems for Provenance
ProvSQL

Conclusion

41/56

Provenance Applications Implementation Conclusion

Representation systems

� In the Boolean semiring, the counting semiring, the
security semiring: provenance annotations are elementary

� In the Boolean function semiring, the universal semiring,
etc., provenance annotations can become quite complex

� Needs for compact representation of provenance
annotations

� Lower the provenance computation complexity as much as
possible

42/56

Provenance Applications Implementation Conclusion

Provenance formulas

� Quite straightforward
� Formalism used in most of the provenance literature
� PTIME data complexity
� Expanding formulas (e.g., computing the monomials of a

N[X] provenance annotation) can result in an exponential
blowup

Example
Is there a city with both an analyst and an agent, and if Paris is
such a city, is there a director in the agency?

((x3
 x5)� (x4
 x7))
 ((x3
 x5)
 x1)

43/56

Provenance Applications Implementation Conclusion

Provenance circuits [Deutch et al., 2014, Amarilli et al., 2015]

� Use arithmetic circuits (Boolean circuits for Boolean
provenance) to represent provenance

� Every time an operation reuses a previously computed
result, link to the previously created circuit gate

� Allow linear-time data complexity of provenance
computation when restricted to bounded-treewidth
databases [Amarilli et al., 2015] (MSO queries for Boolean
provenance, positive relational algebra queries for arbitrary
semirings)

� Formulas can be quadratically larger than provenance
circuits for MSO formulas, (log log)-larger for positive
relational algebra queries [Wegener, 1987, Amarilli et al., 2016]

44/56

Provenance Applications Implementation Conclusion

Example provenance circuit

x3

x5 x7

x4

x1

 �

45/56

Provenance Applications Implementation Conclusion

OBDD and d-DNNF

� Various subclasses of Boolean circuits commonly used:
OBDD: Ordered Binary Decision Diagrams

d-DNNF: deterministic Decomposable Negation Normal
Form

� OBDDs can be obtained in PTIME data complexity on
bounded-treewidth databases [Amarilli et al., 2016]

� d-DNNFs can be obtained in linear-time data complexity
on bounded-treewidth databases

� Application: probabilistic query evaluation in linear-time
data complexity on bounded-treewidth databases (d-DNNF
evaluation is in linear-time)

46/56

Provenance Applications Implementation Conclusion

Outline

Provenance

Applications

Implementation
Representation Systems for Provenance
ProvSQL

Conclusion

47/56

Provenance Applications Implementation Conclusion

Desiderata for a provenance-aware DBMS

� Extends a widely used database management system
� Easy to deploy
� Easy to use, transparent for the user
� Provenance automatically maintained as the user interacts

with the database management system
� Provenance computation benefits from query optimization

within the DBMS
� Allow probability computation based on provenance
� Any form of provenance can be computed: Boolean

provenance, semiring provenance in any semiring (possibly,
with monus), aggregate provenance, where-provenance, on
demand

48/56

Provenance Applications Implementation Conclusion

ProvSQL: Provenance within PostgreSQL (1/2)
[Senellart et al., 2018]

� Lightweight extension/plugin for PostgreSQL � 9:5 (tested
against all versions – upgrade to a new version typically
takes a couple of hours)

� Provenance annotations stored as Universally Unique
Identifiers (UUIDs), in an extra attribute of each
provenance-aware relation

� UUIDs of base tuples randomly generated; UUIDs of query
results generated in a deterministic manner

� A provenance circuit relating UUIDs of elementary
provenance annotations and arithmetic gates stored in
shared memory of the DBMS (or on disk)

� All computations done in the universal semiring (more
precisely, with monus, in the free semiring with monus; for
where-provenance, in a free term algebra)

49/56

Provenance Applications Implementation Conclusion

ProvSQL: Provenance within PostgreSQL (2/2)
[Senellart et al., 2018]

� Query rewriting to automatically compute output
provenance attributes in terms of the query and input
provenance attributes:
� Duplicate elimination (DISTINCT, set union) results in

aggregation of provenance values with �
� Cross products, joins results in combination of provenance

values with

� Difference rewritten in a join, with combination of

provenance values with 	

� Additional circuit gates on projection, join for support of
where-provenance

� Probability computation from the provenance circuits, via
various methods (naive, sampling, compilation to
d-DNNFs, tree decomposition)

50/56

Provenance Applications Implementation Conclusion

Challenges
� Low-level access to PostgreSQL data structures in

extensions
� No simple query rewriting mechanism
� SQL is much less clean than the relational algebra
� Multiset semantics by default in SQL
� SQL is a very rich language, with many different ways of

expressing the same thing
� Inherent limitations: e.g., no aggregation within recursive

queries
� Implementing provenance computation should not slow

down the computation too much – but provenance
optimization loses some optimizations

� User-defined functions, updates, etc.: unclear how
provenance should work

51/56

Provenance Applications Implementation Conclusion

ProvSQL: Current status

� Supported SQL language features:
� Regular SELECT-FROM-WHERE queries (aka conjunctive

queries with multiset semantics)
� JOIN queries (regular joins and outer joins; semijoins and

antijoins are not currently supported)
� SELECT queries with nested SELECT subqueries in the

FROM clause
� GROUP BY queries
� SELECT DISTINCT queries (i.e., set semantics)
� UNION’s or UNION ALL’s of SELECT queries
� EXCEPT queries
� Aggregate queries (terminal, for simple aggregates)

� Try it (and see a demo) from
https://github.com/PierreSenellart/provsql

https://github.com/PierreSenellart/provsql

52/56

Provenance Applications Implementation Conclusion

Other databases with provenance management
� Older probabilistic database systems can compute some

forms of provenance (especially, Boolean provenance); but
tied to specific version of PostgreSQL (8.3), hard to deploy

Trio: http://infolab.stanford.edu/trio/
[Benjelloun et al., 2006]

MayBMS: http://maybms.sourceforge.net/ [Huang
et al., 2009]

� Perm https://github.com/IITDBGroup/perm [Glavic and
Alonso, 2009] now obsolete system for provenance
management; also tied to PostgreSQL 8.3

� GProM http:
//www.cs.iit.edu/~dbgroup/projects/gprom.html
[Arab et al., 2018] is similar to ProvSQL (though no
probabilistic database capabilities), with some extra
features; implemented as a middleware

http://infolab.stanford.edu/trio/
http://maybms.sourceforge.net/
https://github.com/IITDBGroup/perm
http://www.cs.iit.edu/~dbgroup/projects/gprom.html
http://www.cs.iit.edu/~dbgroup/projects/gprom.html

53/56

Provenance Applications Implementation Conclusion

Outline

Provenance

Applications

Implementation

Conclusion

54/56

Provenance Applications Implementation Conclusion

Database Provenance [Senellart, 2017]

� Quite rich foundations of provenance management:
� Different types of provenance
� Semiring formalism to unify most provenance forms
� (Partial) extensions for difference, recursive queries,

aggregation, updates [Bourhis et al., 2020]; to other data
models

� Compact provenance representation formalisms
� Complexity results, classification of queries/databases for

which probabilistic query evaluation is tractable [Dalvi and
Suciu, 2012, Amarilli et al., 2016]

� Connections with the field of knowledge compilation
[Amarilli et al., 2020]

� ProvSQL: aim at concrete, efficient, usable implementation
of all of this!

55/56

Provenance Applications Implementation Conclusion

Many things to do
Usability: Support for larger subset of SQL, utility functions,

better interface, documentation, ability to restrict
to specific semirings

Efficiency: Benchmarks, optimizations of provenance and
probability computation, scalability, manipulate
circuit both on disk and in main memory

Knowledge compilation: closer integration with knowledge
compilers

More complete probabilistic query evaluation: implementation
of safe query plans, continuous probability
distributions

Use cases: Work with users, provide semirings that
implement useful behavior (e.g., the semiring of
unions of real intervals for temporal databases)

Collaborators welcome!

ProvSQL tutorial:
https://github.com/PierreSenellart/provsql/tree/master/doc/tutorial

https://github.com/PierreSenellart/provsql/tree/master/doc/tutorial

Bibliography I

Eleanor Ainy, Pierre Bourhis, Susan B. Davidson, Daniel
Deutch, and Tova Milo. Approximated summarization of
data provenance. In CIKM, 2015.

Antoine Amarilli and Mikaël Monet. Example of a naturally
ordered semiring which is not an m-semiring.
http://math.stackexchange.com/questions/1966858,
2016.

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart.
Provenance circuits for trees and treelike instances. In Proc.
ICALP, pages 56–68, Kyoto, Japan, July 2015.

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart.
Tractable lineages on treelike instances: Limits and
extensions. In Proc. PODS, pages 355–370, San Francisco,
USA, June 2016.

http://math.stackexchange.com/questions/1966858

Bibliography II

Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre
Senellart. Connecting knowledge compilation classes and
width parameters. Theory Comput. Syst., 64(5):861–914,
2020. doi: 10.1007/s00224-019-09930-2. URL
https://doi.org/10.1007/s00224-019-09930-2.

K. Amer. Equationally complete classes of commutative
monoids with monus. Algebra Universalis, 18(1), 1984.

Yael Amsterdamer, Daniel Deutch, and Val Tannen. On the
limitations of provenance for queries with difference. In
TaPP, 2011a.

Yael Amsterdamer, Daniel Deutch, and Val Tannen.
Provenance for aggregate queries. In PODS, 2011b.

Bahareh Sadat Arab, Su Feng, Boris Glavic, Seokki Lee, Xing
Niu, and Qitian Zeng. GProM - A swiss army knife for your
provenance needs. IEEE Data Eng. Bull., 41(1):51–62, 2018.

https://doi.org/10.1007/s00224-019-09930-2

Bibliography III

Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer
Widom. ULDBs: Databases with uncertainty and lineage. In
VLDB, pages 953–964, 2006.

Pierre Bourhis, Daniel Deutch, and Yuval Moskovitch.
Equivalence-invariant algebraic provenance for hyperplane
update queries. In SIGMOD, pages 415–429. ACM, 2020.
doi: 10.1145/3318464.3380578. URL
https://doi.org/10.1145/3318464.3380578.

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why
and where: A characterization of data provenance. In
Database Theory - ICDT 2001, 8th International
Conference, London, UK, January 4-6, 2001,
Proceedings., 2001.

https://doi.org/10.1145/3318464.3380578

Bibliography IV

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. On
propagation of deletions and annotations through views. In
Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 3-5, Madison, Wisconsin, USA,
pages 150–158, 2002. doi: 10.1145/543613.543633. URL
http://doi.acm.org/10.1145/543613.543633.

Adriane Chapman and H. V. Jagadish. Why not? In
SIGMOD, 2009.

James Cheney, Laura Chiticariu, and Wang Chiew Tan.
Provenance in databases: Why, how, and where.
Foundations and Trends in Databases, 1(4), 2009.

Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic
inference for unions of conjunctive queries. J. ACM, 59(6),
2012.

http://doi.acm.org/10.1145/543613.543633

Bibliography V

Susan B. Davidson, Sarah Cohen Boulakia, Anat Eyal, Bertram
Ludäscher, Timothy M. McPhillips, Shawn Bowers,
Manish Kumar Anand, and Juliana Freire. Provenance in
scientific workflow systems. IEEE Data Eng. Bull., 30(4):
44–50, 2007. URL
http://sites.computer.org/debull/A07dec/susan.pdf.

Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen.
Circuits for Datalog provenance. In ICDT, 2014.

Robert Fink, Larisa Han, and Dan Olteanu. Aggregation in
probabilistic databases via knowledge compilation.
Proceedings of the VLDB Endowment, 5(5):490–501, 2012.

Floris Geerts and Antonella Poggi. On database query
languages for k-relations. J. Applied Logic, 8(2), 2010.

http://sites.computer.org/debull/A07dec/susan.pdf

Bibliography VI

Boris Glavic and Gustavo Alonso. Perm: Processing provenance
and data on the same data model through query rewriting.
In ICDE, pages 174–185, 2009.

Todd J. Green and Val Tannen. Models for incomplete and
probabilistic information. IEEE Data Eng. Bull., 29(1),
2006.

Todd J Green, Grigoris Karvounarakis, and Val Tannen.
Provenance semirings. In PODS, 2007.

Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan
Olteanu. MayBMS: a probabilistic database management
system. In SIGMOD, pages 1071–1074, 2009.

Tomasz Imieliński and Jr. Lipski, Witold. Incomplete
information in relational databases. J. ACM, 31(4), 1984.

Bibliography VII

Pierre Senellart. Provenance and probabilities in relational
databases: From theory to practice. SIGMOD Record, 46(4),
December 2017.

Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann
Ramusat. ProvSQL: provenance and probability management
in postgresql. In VLDB, 2018. Demonstration.

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch.
Probabilistic Databases. Morgan & Claypool, 2011.

Ingo Wegener. The Complexity of Boolean Functions. Wiley,
1987.

	Provenance
	Preliminaries
	Boolean provenance
	Semiring provenance
	And beyond…

	Applications
	Probabilistic databases
	Views
	Explanation

	Implementation
	Representation Systems for Provenance
	ProvSQL

	Conclusion
	

	Appendix
	
	References

