Building a Provenance-Aware
 Database Management System

Pierre Senellart

Colloqium Polaris, 17 November 2022

Provenance management

- Data management all about query evaluation

Provenance management

- Data management all about query evaluation
- What if we want something more than the query result?
- Where does the result come from?
- Why was this result obtained?
- How was the result produced?
- What is the probability of the result?
- How many times was the result obtained?
- How would the result change if part of the input data was missing?
- What is the minimal security clearance I need to see the result?
- What is the most economical way of obtaining the result?
- How can a result be explained in layman terms?

Provenance management

- Data management all about query evaluation
- What if we want something more than the query result?
- Where does the result come from?
- Why was this result obtained?
- How was the result produced?
- What is the probability of the result?
- How many times was the result obtained?
- How would the result change if part of the input data was missing?
- What is the minimal security clearance I need to see the result?
- What is the most economical way of obtaining the result?
- How can a result be explained in layman terms?
- Provenance management: along with query evaluation, record additional bookkeeping information allowing to answer the questions above

Workflow provenance vs fine-grained provenance dime2ven
 File: 16-ancom-subject.qzv
 Visualization
 Details
 Provenance

Action Details

- execution:
uuid: "ecd33371-3fef-4a8e-b462-9ef2ab7294be"
v runtime:
start: 2021-04-21T17:31:07.414Z
end: 2021-04-21T17:32:22.665Z
duration: "1 minute, 15 seconds, and 250599 microseconds"
v action:
type: "method"
plugin: "environment:plugins:rescript"
action: "dereplicate"
\checkmark inputs:
v 0:
sequences: "b00dd907-5ae2-4e86-ab91-e8911889ac06"
v 1:
taxa: "6d0c1726-2a4c-4bdc-a23d-9334f813bbtd"
- parameters:
- 0 :
mode: "uniq"
v 1:
perc_identity: 1
v 2:
threads: 1
v 3:
rank_handles: "greengenes"
- 4:
derep_prefix: false
output-name: "dereplicated_sequences"
v citations:
0: "action|rescript:2021.4.0.dev0+6.g073ccf0|method:dereplic ate |0"

Workflow provenance vs fine-grained provenance

Workflow provenance
[Davidson et al., 2007]

- Uniquely identifies datasets used and produced
- Documents every action carried out (date, tool, version, parameters, inputs, outputs, etc.)
- Typically has a simple directed graph structure

Workflow provenance vs fine-grained provenance

Workflow provenance
[Davidson et al., 2007]

- Uniquely identifies datasets used and produced
- Documents every action carried out (date, tool, version, parameters, inputs, outputs, etc.)
- Typically has a simple directed graph structure

Data (fine-grained) provenance [Buneman et al., 2001]

- At the level of a single data item (a record, a data value, a node in a graph, etc.)
- Documents how this particular data item was produced
- Possibly a rich mathematical structure
- Support for a limited set of data operations

Outline

Provenance
Preliminaries
Boolean provenanceSemiring provenanceAnd beyond...
Applications
Implementation

Data model

- Relational data model: data decomposed into relations, with labeled attributes...

Data model

- Relational data model: data decomposed into relations, with labeled attributes...

name	position	city	classification
John	Director	New York	unclassified
Paul	Janitor	New York	restricted
Dave	Analyst	Paris	confidential
Ellen	Field agent	Berlin	secret
Magdalen	Double agent	Paris	top secret
Nancy	HR director	Paris	restricted
Susan	Analyst	Berlin	secret

Data model

- Relational data model: data decomposed into relations, with labeled attributes...
- ... with an extra provenance annotation for each tuple (think of it first as a tuple id)

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

Queries

- A query is an arbitrary function that maps databases over a fixed database schema \mathcal{D} to relations over some relational schema \mathcal{R}
- The query does not consider or produce any provenance annotations; we will give semantics for the provenance annotations of the output, based on that of the input
- In practice, one often restricts to specific query languages:
- Monadic-Second Order logic (MSO)
- First-Order logic (FO) or the relational algebra, or fragments thereof
- SQL with aggregate functions
- etc.

Outline

Provenance
 Preliminaries
 Boolean provenance
 Semiring provenance And beyond...

Applications

Implementation

Boolean provenance [Imieliński and Lipski, 1984]

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ finite set of Boolean events
- Provenance annotation: Boolean function over \mathcal{X}, i.e., a function of the form: $(\mathcal{X} \rightarrow\{\perp, \top\}) \rightarrow\{\perp, \top\}$
- Interpretation: possible-world semantics
- every valuation $\nu: \mathcal{X} \rightarrow\{\perp, \top\}$ denotes a possible world of the database
- the provenance of a tuple on ν evaluates to \perp or T depending whether this tuple exists in that possible world
- for example, if every tuple of a database is annotated with the indicator function of a distinct Boolean event, the set of possible worlds is the set of all subdatabases

Example of possible worlds

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

$$
\begin{array}{cccccccc}
& x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
\top & \top & \top & \top & \top & \top & \top
\end{array}
$$

Example of possible worlds

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Dave	Analyst	Paris	confidential	x_{3}
Magdalen	Double agent	Paris	top secret	x_{5}
Susan	Analyst	Berlin	secret	x_{7}

$$
\begin{array}{cccccccc}
\nu: & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
\top & \perp & \top & \perp & \top & \perp & \top
\end{array}
$$

Boolean provenance of query results

- $\nu(D)$: the subdatabase of D where all tuples whose provenance annotation evaluates to \perp by ν are removed
- The Boolean provenance $\operatorname{prov}_{q, D}(t)$ of tuple $t \in q(D)$ is the function:

$$
\nu \mapsto\left\{\begin{array}{l}
\top \text { if } t \in q(\nu(D)) \\
\perp \text { otherwise }
\end{array}\right.
$$

Example (What cities are in the table?)

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
New York	$x_{1} \vee x_{2}$
Paris	$x_{3} \vee x_{5} \vee x_{6}$
Berlin	$x_{4} \vee x_{7}$

What now?

- How to compute Boolean provenance for practical query languages? What complexity?
- What can we do with provenance?
- How should we represent provenance annotations?
- How can we implement support for provenance management in a relational database management system?

Outline

Provenance
Preliminaries
Boolean provenance

Semiring provenance

And beyond.

Applications

Implementation

Commutative semiring $(K, \mathbb{O}, \mathbb{1}, \oplus, \otimes)$

- Set K with distinguished elements $\mathbb{O}, \mathbb{1}$
- \oplus associative, commutative operator, with identity $\mathbb{0}_{K}$:
- $a \oplus(b \oplus c)=(a \oplus b) \oplus c$
- $a \oplus b=b \oplus a$
- $a \oplus \mathbb{O}=\mathbb{0} \oplus a=a$
- \otimes associative, commutative operator, with identity $\mathbb{1}_{K}$:
- $a \otimes(b \otimes c)=(a \otimes b) \otimes c$
- $a \otimes b=b \otimes a$
- $a \otimes \mathbb{1}=\mathbb{1} \otimes a=a$
- \otimes distributes over \oplus :

$$
a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)
$$

- \mathbb{O} is annihilating for \otimes :

$$
a \otimes \mathbb{O}=\mathbb{O} \otimes a=\mathbb{O}
$$

Example semirings

- ($\mathbb{N}, 0,1,+, \times$): counting semiring
- $(\{\perp, \top\}, \perp, \top, \vee, \wedge)$: Boolean semiring
- (\{unclassified, restricted, confidential, secret, top secret\}, top secret, unclassified, min, max): security semiring
- ($\mathbb{N} \cup\{\infty\}, \infty, 0, \min ,+)$: tropical semiring
- ($\{$ Boolean functions over $\mathcal{X}\}, \perp, \top, \vee, \wedge$): semiring of Boolean functions over \mathcal{X}
- $(\mathbb{N}[\mathcal{X}], 0,1,+, \times)$: semiring of integer-valued polynomials with variables in \mathcal{X} (also called How-semiring or universal semiring, see further)
- $(\mathcal{P}(\mathcal{P}(\mathcal{X})), \emptyset,\{\emptyset\}, \cup, \amalg)$: Why-semiring over \mathcal{X} $(A \uplus B:=\{a \cup b \mid a \in A, b \in B\})$

Semiring provenance [Green et al., 2007]

- We fix a semiring ($K, \mathbb{0}, \mathbb{1}, \oplus, \otimes$)
- We assume provenance annotations are in K
- We consider a query q from the positive relational algebra (selection, projection, renaming, cross product, union; joins can be simulated with renaming, cross product, selection, projection)
- We define a semantics for the provenance of a tuple $t \in q(D)$ inductively on the structure of q

Selection, renaming

Provenance annotations of selected tuples are unchanged
Example $\left(\rho_{\text {name } \rightarrow \mathrm{n}}\left(\sigma_{\text {city="New }}\right.\right.$ York" $\left.\left.(R)\right)\right)$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

n	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}

Projection

Provenance annotations of identical, merged, tuples are \oplus-ed Example $\left(\pi_{\text {city }}(R)\right)$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
New York	$x_{1} \oplus x_{2}$
Paris	$x_{3} \oplus x_{5} \oplus x_{6}$
Berlin	$x_{4} \oplus x_{7}$

Union

Provenance annotations of identical, merged, tuples are \oplus-ed Example
$\pi_{\text {city }}\left(\sigma_{\text {ends-with(position,"agent") }}(R)\right) \cup \pi_{\text {city }}\left(\sigma_{\text {position="Analyst" }}(R)\right)$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
Paris	$x_{3} \oplus x_{5}$
Berlin	$x_{4} \oplus x_{7}$

Cross product

Provenance annotations of combined tuples are \otimes-ed

Example

$\pi_{\text {city }}\left(\sigma_{\text {ends-with(position,"agent") }}(R)\right) \bowtie \pi_{\text {city }}\left(\sigma_{\text {position="Analyst" }}(R)\right)$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
Paris	$x_{3} \otimes x_{5}$
Berlin	$x_{4} \otimes x_{7}$

What can we do with it?

counting semiring: count the number of times a tuple can be derived, multiset semantics
Boolean semiring: determines if a tuple exists when a subdatabase is selected
security semiring: determines the minimum clearance level required to get a tuple as a result
tropical semiring: minimum-weight way of deriving a tuple (think shortest path in a graph)
Boolean functions: Boolean provenance, as previously defined integer polynomials: universal provenance, see further

Why-semiring: Why-provenance [Buneman et al., 2001], set of combinations of tuples needed for a tuple to exist

Example of security provenance

$$
\pi_{\text {city }}\left[\sigma_{\text {name }<\text { name2 }}\left[\pi_{\text {name }, \text { city }}(R) \bowtie \rho_{\text {name } \rightarrow \text { name } 2}\left(\pi_{\text {name }, \text { city }}(R)\right)\right]\right]
$$

name	position	city	prov
John	Director	New York	unclassified
Paul	Janitor	New York	restricted
Dave	Analyst	Paris	confidential
Ellen	Field agent	Berlin	secret
Magdalen	Double agent	Paris	top secret
Nancy	HR director	Paris	restricted
Susan	Analyst	Berlin	secret

city	prov
New York	restricted
Paris	confidential
Berlin	secret

Notes [Green et al., 2007]

- Computing provenance has a PTIME data complexity overhead
- Semiring homomorphisms commute with provenance computation: if there is a homomorphism from K to K^{\prime}, then one can compute the provenance in K, apply the homomorphism, and obtain the same result as when computing provenance in K^{\prime}
- The integer polynomial semiring is universal: there is a unique homomorphism to any other commutative semiring that respects a given valuation of the variables
- This means all computations can be performed in the universal semiring, and homomorphisms applied next
- Two equivalent queries can have two different provenance annotations on the same database, in some semirings

Outline

Provenance

Preliminaries
Boolean provenance Semiring provenance

And beyond...

Applications

Implementation

Semirings with monus [Amer, 1984, Geerts and Poggi, 2010]

- Some semirings can be equipped with a \ominus verifying:
- $a \oplus(b \ominus a)=b \oplus(a \ominus b)$
- $(a \ominus b) \ominus c=a \ominus(b+c)$
- $a \ominus a=\mathbb{D} \ominus a=\mathbb{0}$
- Boolean function semiring with $\wedge \neg$, Why-semiring with \backslash, counting semiring with truncated difference...
- Most natural semirings (but not all semirings [Amarilli and Monet, 2016]!) can be extended into semirings with monus
- Sometimes strange things happen [Amsterdamer et al., 2011a]: e.g, \otimes does not always distribute over Θ
- Allows supporting full relational algebra with the \} operator, still PTIME
- Semantics for Boolean function semiring coincides with that of Boolean provenance

Difference

Provenance annotations of diff-ed tuples are Θ-ed

Example

$\pi_{\text {city }}\left(\sigma_{\text {ends-with(position,"agent") }}(R)\right) \backslash \pi_{\text {city }}\left(\sigma_{\text {position="Analyst" }}(R)\right)$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
Paris	$x_{5} \ominus x_{3}$
Berlin	$x_{4} \ominus x_{7}$

Provenance for aggregates [Amsterdamer et al., 2011b, Fink et al., 2012]

- Trickier to define provenance for queries with aggregation, even in the Boolean case
- One can construct a K-semimodule $K * M$ for each monoid aggregate M over a provenance database with a semiring in K
- Data values become elements of the semimodule

Example $\left(\operatorname{count}\left(\pi_{\text {name }}\left(\sigma_{\text {city="Paris" }}(R)\right)\right)\right.$

$$
x_{3} * 1+x_{5} * 1+x_{6} * 1
$$

Outline

Provenance

Applications
Probabilistic databases
Views
Explanation

Implementation

Application: Probabilistic databases [Green and Tannen, 2006, Suciu et al., 2011]

- Tuple-independent database: each tuple t in a database is annotated with independent probability $\operatorname{Pr}(t)$ of existing
- Probability of a possible world $D^{\prime} \subseteq D$:

$$
\operatorname{Pr}\left(D^{\prime}\right)=\prod_{t \in D^{\prime}} \operatorname{Pr}(t) \times \prod_{t \in D^{\prime} \backslash D}\left(1-\operatorname{Pr}\left(t^{\prime}\right)\right)
$$

- Probability of a tuple for a query q over D :

$$
\operatorname{Pr}(t \in q(D))=\sum_{\substack{D^{\prime} \subseteq \mathcal{Q}^{\prime}\left(D^{\prime}\right)}} \operatorname{Pr}\left(D^{\prime}\right)
$$

- If $\operatorname{Pr}\left(x_{i}\right):=\operatorname{Pr}\left(x_{i}\right)$ where x_{i} is the provenance annotation of tuple x_{i} then $\operatorname{Pr}(t \in q(D))=\operatorname{Pr}\left(\operatorname{prov}_{q, D}(t)\right)$
- Computing the probability of a query in probabilistic databases thus amounts to computing Boolean provenance, and then computing the probability of a Boolean function
- Also works for more complex probabilistic models

Example of probability computation

name	position	city	classification	prov	prob
John	Director	New York	unclassified	x_{1}	0.5
Paul	Janitor	New York	restricted	x_{2}	0.7
Dave	Analyst	Paris	confidential	x_{3}	0.3
Ellen	Field agent	Berlin	secret	x_{4}	0.2
Magdalen	Double agent	Paris	top secret	x_{5}	1.0
Nancy	HR director	Paris	restricted	x_{6}	0.8
Susan	Analyst	Berlin	secret	x_{7}	0.2

city	prov
New York	$x_{1} \vee x_{2}$
Paris	$x_{3} \vee x_{5} \vee x_{6}$
Berlin	$x_{4} \vee x_{7}$

Example of probability computation

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}
city	prov		prob	
New York	$x_{1} \vee x_{2}$	$1-(1-0.5) \times(1-0.7)=0.85$		
Paris	$x_{3} \vee x_{5} \vee x_{6}$			1.00
Berlin	$x_{4} \vee x_{7}$	$1-(1-0.2) \times(1-0.2)=0.36$		

Outline

Provenance

Applications

Probabilistic databases

Views
Explanation

Implementation

Views

- Views are named queries
- They are used in the same way as tables within other queries
- Semantics: one replaces the view by the result of the evaluation of the corresponding query

Virtual and materialized views

- A view may be virtual or materialized
- No semantic difference
- Operational difference, with an impact on the efficiency of query evaluation:
virtual view: the query defining the view is evaluated each
time the view is used in a query
materialized view: the query defining the view is evaluated when the view is created and the result is stored in an auxiliary table; this table is directly used each time the view is used in another query

Why using views?

Logical independence: an application can access views, without the need to know how data is effectively organized in the database (the organization can change in a transparent manner, by just redefining the views)
Access control: different access rights can be given to base tables and to views, so that a given user or application only has access to a restricted subset of the content of the database

Data integration: views can be defined to gather data from multiple sources with different schemas
Optimization: materialized views can be defined for frequent queries or subqueries, so that they do not need to be evaluated each time they are used

Views and updates

Views interact in complex ways with updates (insertions, modifications, deletions).
View maintenance: when an update is performed on base tables, this update should be reflected in the views

- Nothing to do for virtual views
- More complex for materialized views, that need to be maintained in terms of the updates

Views and updates

Views interact in complex ways with updates (insertions, modifications, deletions).
View maintenance: when an update is performed on base tables, this update should be reflected in the views

- Nothing to do for virtual views
- More complex for materialized views, that need to be maintained in terms of the updates

View update: one wants in some settings to perform an update directly on a view, which causes appropriate updates on base tables

Views and updates

Views interact in complex ways with updates (insertions, modifications, deletions).
View maintenance: when an update is performed on base tables, this update should be reflected in the views

- Nothing to do for virtual views
- More complex for materialized views, that need to be maintained in terms of the updates

View update: one wants in some settings to perform an update directly on a view, which causes appropriate updates on base tables
How to do it? With provenance! At least for deletions

View maintenance for deletions

- Just use Boolean provenance!
- Remove all tuples whose provenance annotation evaluates to \perp

View maintenance for deletions

- Just use Boolean provenance!
- Remove all tuples whose provenance annotation evaluates to \perp

name	position	city	prov
John	Director	New York	x_{1}
Paul	Janitor	New York	x_{2}
Dave	Analyst	Paris	x_{3}
Ellen	Field agent	Berlin	x_{4}
Magdalen	Double agent	Paris	x_{5}
Nancy	HR director	Paris	x_{6}
Susan	Analyst	Berlin	x_{7}

city	prov
New York	$x_{1} \wedge x_{2}$
Paris	$x_{3} \wedge x_{5} \vee x_{3} \wedge x_{6} \vee x_{5} \wedge x_{6}$
Berlin	$x_{4} \wedge x_{7}$

If x_{1} disappears

View maintenance for deletions

- Just use Boolean provenance!
- Remove all tuples whose provenance annotation evaluates to \perp

name	position	city	prov
John	Director	New York	x_{1}
Paul	Janitor	New York	x_{2}
Dave	Analyst	Paris	x_{3}
Ellen	Field agent	Berlin	x_{4}
Magdalen	Double agent	Paris	x_{5}
Nancy	HR director	Paris	x_{6}
Susan	Analyst	Berlin	x_{7}

city	prov
New York	$x_{1} \wedge x_{2}$
Paris	$x_{3} \wedge x_{5} \vee x_{3} \wedge x_{6} \vee x_{5} \wedge x_{6}$
Berlin	$x_{4} \wedge x_{7}$

If x_{1} disappears, New York disappears from the result of the view.

View update for deletions [Buneman et al., 2002]

- Use case for Why-provenance!
- To delete a tuple t in the result of a view, select a minimal subset of tuples (in terms of size, or in terms of side effects on other tuples of the deleted view) whose annotation appears in every set of annotations of the Why-provenance of t
- NP-complete in general

View update for deletions [Buneman et al., 2002]

- Use case for Why-provenance!
- To delete a tuple t in the result of a view, select a minimal subset of tuples (in terms of size, or in terms of side effects on other tuples of the deleted view) whose annotation appears in every set of annotations of the Why-provenance of t
- NP-complete in general

name	position	city	prov
John	Director	New York	x_{1}
Paul	Janitor	New York	x_{2}
Dave	Analyst	Paris	x_{3}
Ellen	Field agent	Berlin	x_{4}
Magdalen	Double agent	Paris	x_{5}
Nancy	HR director	Paris	x_{6}
Susan	Analyst	Berlin	x_{7}

ville	prov
New York	$\left\{\left\{x_{1}, x_{2}\right\}\right\}$
Paris	$\left\{\left\{x_{3}, x_{5}\right\},\left\{x_{3}, x_{6}\right\},\left\{x_{5}, x_{6}\right\}\right\}$
Berlin	$\left\{\left\{x_{4}, x_{7}\right\}\right\}$

To delete Paris

View update for deletions [Buneman et al., 2002]

- Use case for Why-provenance!
- To delete a tuple t in the result of a view, select a minimal subset of tuples (in terms of size, or in terms of side effects on other tuples of the deleted view) whose annotation appears in every set of annotations of the Why-provenance of t
- NP-complete in general

name	position	city	prov
John	Director	New York	x_{1}
Paul	Janitor	New York	x_{2}
Dave	Analyst	Paris	x_{3}
Ellen	Field agent	Berlin	x_{4}
Magdalen	Double agent	Paris	x_{5}
Nancy	HR director	Paris	x_{6}
Susan	Analyst	Berlin	x_{7}

ville	prov
New York	$\left\{\left\{x_{1}, x_{2}\right\}\right\}$
Paris	$\left\{\left\{x_{3}, x_{5}\right\},\left\{x_{3}, x_{6}\right\},\left\{x_{5}, x_{6}\right\}\right\}$
Berlin	$\left\{\left\{x_{4}, x_{7}\right\}\right\}$

To delete Paris, delete two tuples among x_{3}, x_{5}, x_{6}.

Outline

Provenance

Applications
Probabilistic databases
Views

Explanation

Implementation

Using provenance for explanation

- Semiring provenance can be used to provide a user with explanation on the query result:
- How-provenance (provenance polynomials) explains precisely how a result has been computed: often too fine-grained
- Why-provenance explains why a particular result is generated by providing combinations of tuples required for a tuple to be produced
- Provenance often too long and complex, (imperfect) summarization may be required [Ainy et al., 2015]
- Still far from a natural language explanation!
- Why-not provenance: why a result was not produced. Expressible with m-semirings, but requires dedicated techniques [Chapman and Jagadish, 2009] for compact explanations

Where-provenance [Buneman et al., 2001]

- Different form of provenance: captures from which database values come which output values
- Bipartite graph of provenance: two attribute values are connected if one can be produced from the other
- Axiomatized in [Buneman et al., 2001, Cheney et al., 2009]
- Cannot be captured by provenance semirings [Cheney et al., 2009], because of renaming (does not keep track of relation attributes), projection (does not remember which attribute values still exist), join (in a join, an output value comes from two different input values)

Outline

Provenance

Applications

Implementation
Representation Systems for Provenance
ProvSQL

Conclusion

Representation systems

- In the Boolean semiring, the counting semiring, the security semiring: provenance annotations are elementary
- In the Boolean function semiring, the universal semiring, etc., provenance annotations can become quite complex
- Needs for compact representation of provenance annotations
- Lower the provenance computation complexity as much as possible

Provenance formulas

- Quite straightforward
- Formalism used in most of the provenance literature
- PTIME data complexity
- Expanding formulas (e.g., computing the monomials of a $\mathbb{N}[\mathcal{X}]$ provenance annotation) can result in an exponential blowup

Example

Is there a city with both an analyst and an agent, and if Paris is such a city, is there a director in the agency?

$$
\left(\left(x_{3} \otimes x_{5}\right) \oplus\left(x_{4} \otimes x_{7}\right)\right) \otimes\left(\left(x_{3} \otimes x_{5}\right) \otimes x_{1}\right)
$$

Provenance circuits [Deutch et al., 2014, Amarilli et al., 2015]

- Use arithmetic circuits (Boolean circuits for Boolean provenance) to represent provenance
- Every time an operation reuses a previously computed result, link to the previously created circuit gate
- Allow linear-time data complexity of provenance computation when restricted to bounded-treewidth databases [Amarilli et al., 2015] (MSO queries for Boolean provenance, positive relational algebra queries for arbitrary semirings)
- Formulas can be quadratically larger than provenance circuits for MSO formulas, (log log)-larger for positive relational algebra queries [Wegener, 1987, Amarilli et al., 2016]

Example provenance circuit

OBDD and d-DNNF

- Various subclasses of Boolean circuits commonly used:

OBDD: Ordered Binary Decision Diagrams
d-DNNF: deterministic Decomposable Negation Normal Form

- OBDDs can be obtained in PTIME data complexity on bounded-treewidth databases [Amarilli et al., 2016]
- d-DNNFs can be obtained in linear-time data complexity on bounded-treewidth databases
- Application: probabilistic query evaluation in linear-time data complexity on bounded-treewidth databases (d-DNNF evaluation is in linear-time)

Outline

Provenance

Applications

Implementation

Representation Systems for Provenance
ProvSQL

Conclusion

Desiderata for a provenance-aware DBMS

- Extends a widely used database management system
- Easy to deploy
- Easy to use, transparent for the user
- Provenance automatically maintained as the user interacts with the database management system
- Provenance computation benefits from query optimization within the DBMS
- Allow probability computation based on provenance
- Any form of provenance can be computed: Boolean provenance, semiring provenance in any semiring (possibly, with monus), aggregate provenance, where-provenance, on demand

ProvSQL: Provenance within PostgreSQL (1/2) [Senellart et al., 2018]

- Lightweight extension/plugin for PostgreSQL ≥ 9.5 (tested against all versions - upgrade to a new version typically takes a couple of hours)
- Provenance annotations stored as Universally Unique Identifiers (UUIDs), in an extra attribute of each provenance-aware relation
- UUIDs of base tuples randomly generated; UUIDs of query results generated in a deterministic manner
- A provenance circuit relating UUIDs of elementary provenance annotations and arithmetic gates stored in shared memory of the DBMS (or on disk)
- All computations done in the universal semiring (more precisely, with monus, in the free semiring with monus; for where-provenance, in a free term algebra)

ProvSQL: Provenance within PostgreSQL (2/2) [Senellart et al., 2018]

- Query rewriting to automatically compute output provenance attributes in terms of the query and input provenance attributes:
- Duplicate elimination (DISTINCT, set union) results in aggregation of provenance values with \oplus
- Cross products, joins results in combination of provenance values with \otimes
- Difference rewritten in a join, with combination of provenance values with Θ
- Additional circuit gates on projection, join for support of where-provenance
- Probability computation from the provenance circuits, via various methods (naive, sampling, compilation to d-DNNFs, tree decomposition)

Challenges

- Low-level access to PostgreSQL data structures in extensions
- No simple query rewriting mechanism
- SQL is much less clean than the relational algebra
- Multiset semantics by default in SQL
- SQL is a very rich language, with many different ways of expressing the same thing
- Inherent limitations: e.g., no aggregation within recursive queries
- Implementing provenance computation should not slow down the computation too much - but provenance optimization loses some optimizations
- User-defined functions, updates, etc.: unclear how provenance should work

ProvSQL: Current status

- Supported SQL language features:
- Regular SELECT-FROM-WHERE queries (aka conjunctive queries with multiset semantics)
- JOIN queries (regular joins and outer joins; semijoins and antijoins are not currently supported)
- SELECT queries with nested SELECT subqueries in the FROM clause
- GROUP BY queries
- SELECT DISTINCT queries (i.e., set semantics)
- UNION's or UNION ALL's of SELECT queries
- EXCEPT queries
- Aggregate queries (terminal, for simple aggregates)
- Try it (and see a demo) from https://github.com/PierreSenellart/provsql

Other databases with provenance management

- Older probabilistic database systems can compute some forms of provenance (especially, Boolean provenance); but tied to specific version of PostgreSQL (8.3), hard to deploy

Trio: http://infolab.stanford.edu/trio/
[Benjelloun et al., 2006]
MayBMS: http://maybms.sourceforge.net/ [Huang et al., 2009]

- Perm https://github.com/IITDBGroup/perm [Glavic and Alonso, 2009] now obsolete system for provenance management; also tied to PostgreSQL 8.3
- GProM http:
//www.cs.iit.edu/~dbgroup/projects/gprom.html [Arab et al., 2018] is similar to ProvSQL (though no probabilistic database capabilities), with some extra features; implemented as a middleware

Outline

Provenance

Applications

Implementation

Conclusion

Database Provenance [Senellart, 2017]

- Quite rich foundations of provenance management:
- Different types of provenance
- Semiring formalism to unify most provenance forms
- (Partial) extensions for difference, recursive queries, aggregation, updates [Bourhis et al., 2020]; to other data models
- Compact provenance representation formalisms
- Complexity results, classification of queries/databases for which probabilistic query evaluation is tractable [Dalvi and Suciu, 2012, Amarilli et al., 2016]
- Connections with the field of knowledge compilation [Amarilli et al., 2020]
- ProvSQL: aim at concrete, efficient, usable implementation of all of this!

Many things to do

Usability: Support for larger subset of SQL, utility functions, better interface, documentation, ability to restrict to specific semirings
Efficiency: Benchmarks, optimizations of provenance and probability computation, scalability, manipulate circuit both on disk and in main memory
Knowledge compilation: closer integration with knowledge compilers
More complete probabilistic query evaluation: implementation of safe query plans, continuous probability distributions
Use cases: Work with users, provide semirings that implement useful behavior (e.g., the semiring of unions of real intervals for temporal databases)

Collaborators welcome!

ProvSQL tutorial:
https://github.com/PierreSenellart/provsql/tree/master/doc/tutorial

Bibliography I

Eleanor Ainy, Pierre Bourhis, Susan B. Davidson, Daniel Deutch, and Tova Milo. Approximated summarization of data provenance. In CIKM, 2015.
Antoine Amarilli and Mikaël Monet. Example of a naturally ordered semiring which is not an m-semiring. http://math.stackexchange.com/questions/1966858, 2016.

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance circuits for trees and treelike instances. In Proc. $I C A L P$, pages 56-68, Kyoto, Japan, July 2015.

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable lineages on treelike instances: Limits and extensions. In Proc. PODS, pages 355-370, San Francisco, USA, June 2016.

Bibliography II

Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre Senellart. Connecting knowledge compilation classes and width parameters. Theory Comput. Syst., 64(5):861-914, 2020. doi: 10.1007/s00224-019-09930-2. URL https://doi.org/10.1007/s00224-019-09930-2.
K. Amer. Equationally complete classes of commutative monoids with monus. Algebra Universalis, 18(1), 1984.
Yael Amsterdamer, Daniel Deutch, and Val Tannen. On the limitations of provenance for queries with difference. In $T a P P, 2011 a$.

Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for aggregate queries. In $P O D S, 2011 \mathrm{~b}$.
Bahareh Sadat Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian Zeng. GProM - A swiss army knife for your provenance needs. IEEE Data Eng. Bull., 41(1):51-62, 2018.

Bibliography III

Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom. ULDBs: Databases with uncertainty and lineage. In $V L D B$, pages 953-964, 2006.
Pierre Bourhis, Daniel Deutch, and Yuval Moskovitch. Equivalence-invariant algebraic provenance for hyperplane update queries. In SIGMOD, pages 415-429. ACM, 2020. doi: $10.1145 / 3318464.3380578$. URL https://doi.org/10.1145/3318464.3380578.

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A characterization of data provenance. In Database Theory - ICDT 2001, 8th International Conference, London, UK, January 4-6, 2001, Proceedings., 2001.

Bibliography IV

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. On propagation of deletions and annotations through views. In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, pages 150-158, 2002. doi: 10.1145/543613.543633. URL http://doi.acm.org/10.1145/543613.543633.
Adriane Chapman and H. V. Jagadish. Why not? In SIGMOD, 2009.

James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in databases: Why, how, and where. Foundations and Trends in Databases, 1(4), 2009.
Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of conjunctive queries. J. ACM, 59(6), 2012.

Bibliography V

Susan B. Davidson, Sarah Cohen Boulakia, Anat Eyal, Bertram Ludäscher, Timothy M. McPhillips, Shawn Bowers, Manish Kumar Anand, and Juliana Freire. Provenance in scientific workflow systems. IEEE Data Eng. Bull., 30(4): 44-50, 2007. URL http://sites.computer.org/debull/A07dec/susan.pdf.
Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits for Datalog provenance. In ICDT, 2014.
Robert Fink, Larisa Han, and Dan Olteanu. Aggregation in probabilistic databases via knowledge compilation.
Proceedings of the VLDB Endowment, 5(5):490-501, 2012.
Floris Geerts and Antonella Poggi. On database query languages for k-relations. J. Applied Logic, 8(2), 2010.

Bibliography VI

Boris Glavic and Gustavo Alonso. Perm: Processing provenance and data on the same data model through query rewriting. In $I C D E$, pages 174-185, 2009.
Todd J. Green and Val Tannen. Models for incomplete and probabilistic information. IEEE Data Eng. Bull., 29(1), 2006.

Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In PODS, 2007.
Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. MayBMS: a probabilistic database management system. In SIGMOD, pages 1071-1074, 2009.

Tomasz Imieliński and Jr. Lipski, Witold. Incomplete information in relational databases. J. ACM, 31(4), 1984.

Bibliography VII

Pierre Senellart. Provenance and probabilities in relational databases: From theory to practice. SIGMOD Record, 46(4), December 2017.

Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. ProvSQL: provenance and probability management in postgresql. In $V L D B, 2018$. Demonstration.
Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Morgan \& Claypool, 2011.

Ingo Wegener. The Complexity of Boolean Functions. Wiley, 1987.

