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Provenance management
� Data management all about query evaluation

� What if we want something more than the query result?
� Where does the result come from?
� Why was this result obtained?
� How was the result produced?
� What is the probability of the result?
� How many times was the result obtained?
� How would the result change if part of the input data was

missing?
� What is the minimal security clearance I need to see the

result?
� What is the most economical way of obtaining the result?
� How can a result be explained in layman terms?

� Provenance management: along with query evaluation,
record additional bookkeeping information allowing to
answer the questions above
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Workflow provenance vs fine-grained provenance
Workflow provenance
[Davidson et al., 2007]

� Uniquely identifies
datasets used and
produced

� Documents every
action carried out
(date, tool, version,
parameters, inputs,
outputs, etc.)

� Typically has a
simple directed
graph structure

Data (fine-grained) provenance
[Buneman et al., 2001]

� At the level of a single data
item (a record, a data value, a
node in a graph, etc.)

� Documents how this
particular data item was
produced

� Possibly a rich mathematical
structure

� Support for a limited set of
data operations
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Data model

� Relational data model: data decomposed into relations,
with labeled attributes. . .

� . . . with an extra provenance annotation for each tuple
(think of it first as a tuple id)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret
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Data model

� Relational data model: data decomposed into relations,
with labeled attributes. . .

� . . . with an extra provenance annotation for each tuple
(think of it first as a tuple id)

name position city classification prov
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Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6
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Queries

� A query is an arbitrary function that maps databases over
a fixed database schema D to relations over some relational
schema R

� The query does not consider or produce any provenance
annotations; we will give semantics for the provenance
annotations of the output, based on that of the input

� In practice, one often restricts to specific query languages:
� Monadic-Second Order logic (MSO)
� First-Order logic (FO) or the relational algebra, or

fragments thereof
� SQL with aggregate functions
� etc.
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Boolean provenance [Imieliński and Lipski, 1984]

� X = fx1; x2; : : : ; xng finite set of Boolean events
� Provenance annotation: Boolean function over X , i.e., a

function of the form: (X ! f?;>g)! f?;>g

� Interpretation: possible-world semantics
� every valuation � : X ! f?;>g denotes a possible world of

the database
� the provenance of a tuple on � evaluates to ? or >

depending whether this tuple exists in that possible world
� for example, if every tuple of a database is annotated with

the indicator function of a distinct Boolean event, the set of
possible worlds is the set of all subdatabases
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Example of possible worlds

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

�:
x1 x2 x3 x4 x5 x6 x7

> > > > > > >
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Example of possible worlds

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

�:
x1 x2 x3 x4 x5 x6 x7

> ? > ? > ? >
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Boolean provenance of query results

� �(D): the subdatabase of D where all tuples whose
provenance annotation evaluates to ? by � are removed

� The Boolean provenance provq;D(t) of tuple t 2 q(D) is the
function:

� 7!

8<
:
> if t 2 q(�(D))

? otherwise

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 _ x2
Paris x3 _ x5 _ x6
Berlin x4 _ x7
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What now?

� How to compute Boolean provenance for practical query
languages? What complexity?

� What can we do with provenance?
� How should we represent provenance annotations?
� How can we implement support for provenance

management in a relational database management system?
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Commutative semiring (K; 0; 1;�;
)
� Set K with distinguished elements 0, 1
� � associative, commutative operator, with identity 0K :

� a� (b� c) = (a� b)� c

� a� b = b� a

� a� 0 = 0� a = a

� 
 associative, commutative operator, with identity 1K :
� a
 (b
 c) = (a
 b)
 c

� a
 b = b
 a

� a
 1 = 1
 a = a

� 
 distributes over �:

a
 (b� c) = (a
 b)� (a
 c)

� 0 is annihilating for 
:

a
 0 = 0
 a = 0
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Example semirings

� (N; 0; 1;+;�): counting semiring
� (f?;>g;?;>;_;^): Boolean semiring
� (funclassified; restricted; confidential; secret; top secretg;

top secret;unclassified;min;max): security semiring
� (N [ f1g;1; 0;min;+): tropical semiring
� (fBoolean functions over Xg;?;>;_;^): semiring of

Boolean functions over X
� (N[X ]; 0; 1;+;�): semiring of integer-valued polynomials

with variables in X (also called How-semiring or universal
semiring, see further)

� (P(P(X )); ;; f;g;[;d): Why-semiring over X
(A dB := fa [ b j a 2 A; b 2 Bg)
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Semiring provenance [Green et al., 2007]

� We fix a semiring (K;0;1;�;
)

� We assume provenance annotations are in K

� We consider a query q from the positive relational algebra
(selection, projection, renaming, cross product, union; joins
can be simulated with renaming, cross product, selection,
projection)

� We define a semantics for the provenance of a tuple
t 2 q(D) inductively on the structure of q
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Selection, renaming
Provenance annotations of selected tuples are unchanged

Example (�name!n(�city=“New York”(R)))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

n position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2
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Projection
Provenance annotations of identical, merged, tuples are �-ed

Example (�city(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 � x2

Paris x3 � x5 � x6

Berlin x4 � x7
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Union
Provenance annotations of identical, merged, tuples are �-ed

Example
�city(�ends-with(position;“agent”)(R)) [ �city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 � x5

Berlin x4 � x7
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Cross product
Provenance annotations of combined tuples are 
-ed

Example
�city(�ends-with(position;“agent”)(R)) on �city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 
 x5

Berlin x4 
 x7
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What can we do with it?

counting semiring: count the number of times a tuple can be
derived, multiset semantics

Boolean semiring: determines if a tuple exists when a
subdatabase is selected

security semiring: determines the minimum clearance level
required to get a tuple as a result

tropical semiring: minimum-weight way of deriving a tuple
(think shortest path in a graph)

Boolean functions: Boolean provenance, as previously defined

integer polynomials: universal provenance, see further

Why-semiring: Why-provenance [Buneman et al., 2001], set of
combinations of tuples needed for a tuple to exist
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Example of security provenance

�city
�
�name<name2[�name;city(R) on �name!name2(�name;city(R))]

�

name position city prov

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

city prov

New York restricted
Paris confidential
Berlin secret
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Notes [Green et al., 2007]

� Computing provenance has a PTIME data complexity
overhead

� Semiring homomorphisms commute with provenance
computation: if there is a homomorphism from K to K 0,
then one can compute the provenance in K, apply the
homomorphism, and obtain the same result as when
computing provenance in K 0

� The integer polynomial semiring is universal: there is a
unique homomorphism to any other commutative semiring
that respects a given valuation of the variables

� This means all computations can be performed in the
universal semiring, and homomorphisms applied next

� Two equivalent queries can have two different provenance
annotations on the same database, in some semirings
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Semirings with monus [Amer, 1984, Geerts and Poggi, 2010]

� Some semirings can be equipped with a 	 verifying:
� a� (b	 a) = b� (a	 b)
� (a	 b)	 c = a	 (b+ c)
� a	 a = 0	 a = 0

� Boolean function semiring with ^:, Why-semiring with n,
counting semiring with truncated difference. . .

� Most natural semirings (but not all semirings [Amarilli and
Monet, 2016]!) can be extended into semirings with monus

� Sometimes strange things happen [Amsterdamer et al.,
2011a]: e.g, 
 does not always distribute over 	

� Allows supporting full relational algebra with the n
operator, still PTIME

� Semantics for Boolean function semiring coincides with
that of Boolean provenance
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Difference
Provenance annotations of diff-ed tuples are 	-ed

Example
�city(�ends-with(position;“agent”)(R)) n �city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x5 	 x3

Berlin x4 	 x7
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Provenance for aggregates
[Amsterdamer et al., 2011b, Fink et al., 2012]

� Trickier to define provenance for queries with aggregation,
even in the Boolean case

� One can construct a K-semimodule K �M for each monoid
aggregate M over a provenance database with a semiring
in K

� Data values become elements of the semimodule

Example (count(�name(�city=“Paris”(R)))

x3 � 1 + x5 � 1 + x6 � 1
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Application: Probabilistic databases
[Green and Tannen, 2006, Suciu et al., 2011]

� Tuple-independent database: each tuple t in a database is
annotated with independent probability Pr(t) of existing

� Probability of a possible world D0 � D:

Pr(D0) =
Q
t2D0 Pr(t)�

Q
t2D0nD(1� Pr(t0))

� Probability of a tuple for a query q over D:

Pr(t 2 q(D)) =
P

D0�D
t2q(D0)

Pr(D0)

� If Pr(xi) := Pr(xi) where xi is the provenance annotation
of tuple xi then Pr(t 2 q(D)) = Pr(provq;D(t))

� Computing the probability of a query in probabilistic
databases thus amounts to computing Boolean provenance,
and then computing the probability of a Boolean function

� Also works for more complex probabilistic models
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Example of probability computation

name position city classification prov prob

John Director New York unclassified x1 0.5
Paul Janitor New York restricted x2 0.7
Dave Analyst Paris confidential x3 0.3
Ellen Field agent Berlin secret x4 0.2
Magdalen Double agent Paris top secret x5 1.0
Nancy HR director Paris restricted x6 0.8
Susan Analyst Berlin secret x7 0.2

city prov

New York x1 _ x2
Paris x3 _ x5 _ x6
Berlin x4 _ x7
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Example of probability computation

name position city classification prov prob

John Director New York unclassified x1 0.5
Paul Janitor New York restricted x2 0.7
Dave Analyst Paris confidential x3 0.3
Ellen Field agent Berlin secret x4 0.2
Magdalen Double agent Paris top secret x5 1.0
Nancy HR director Paris restricted x6 0.8
Susan Analyst Berlin secret x7 0.2

city prov prob

New York x1 _ x2 1� (1� 0:5)� (1� 0:7) = 0:85

Paris x3 _ x5 _ x6 1.00
Berlin x4 _ x7 1� (1� 0:2)� (1� 0:2) = 0:36
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Views

� Views are named queries
� They are used in the same way as tables within other

queries
� Semantics: one replaces the view by the result of the

evaluation of the corresponding query
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Virtual and materialized views

� A view may be virtual or materialized
� No semantic difference
� Operational difference, with an impact on the efficiency of

query evaluation:
virtual view: the query defining the view is evaluated each

time the view is used in a query
materialized view: the query defining the view is evaluated

when the view is created and the result is
stored in an auxiliary table; this table is
directly used each time the view is used in
another query
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Why using views?

Logical independence: an application can access views, without
the need to know how data is effectively organized
in the database (the organization can change in a
transparent manner, by just redefining the views)

Access control: different access rights can be given to base
tables and to views, so that a given user or
application only has access to a restricted subset of
the content of the database

Data integration: views can be defined to gather data from
multiple sources with different schemas

Optimization: materialized views can be defined for frequent
queries or subqueries, so that they do not need to
be evaluated each time they are used
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Views and updates

Views interact in complex ways with updates (insertions,
modifications, deletions).

View maintenance: when an update is performed on base
tables, this update should be reflected in the views
� Nothing to do for virtual views
� More complex for materialized views, that

need to be maintained in terms of the updates

View update: one wants in some settings to perform an update
directly on a view, which causes appropriate
updates on base tables

How to do it? With provenance! At least for deletions
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View maintenance for deletions

� Just use Boolean provenance!
� Remove all tuples whose provenance annotation evaluates

to ?

name position city prov

John Director New York x1

Paul Janitor New York x2

Dave Analyst Paris x3

Ellen Field agent Berlin x4

Magdalen Double agent Paris x5

Nancy HR director Paris x6

Susan Analyst Berlin x7

city prov

New York x1 ^ x2
Paris x3 ^ x5 _ x3 ^ x6 _ x5 ^ x6
Berlin x4 ^ x7

If x1 disappears, New York disappears from the result of the
view.
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View update for deletions [Buneman et al., 2002]

� Use case for Why-provenance!
� To delete a tuple t in the result of a view, select a minimal

subset of tuples (in terms of size, or in terms of side effects
on other tuples of the deleted view) whose annotation
appears in every set of annotations of the Why-provenance
of t

� NP-complete in general

name position city prov

John Director New York x1

Paul Janitor New York x2

Dave Analyst Paris x3

Ellen Field agent Berlin x4

Magdalen Double agent Paris x5

Nancy HR director Paris x6

Susan Analyst Berlin x7

ville prov

New York
�
fx1; x2g

	
Paris

�
fx3; x5g; fx3; x6g; fx5; x6g

	
Berlin

�
fx4; x7g

	

To delete Paris, delete two tuples among x3, x5, x6.
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Using provenance for explanation
� Semiring provenance can be used to provide a user with

explanation on the query result:
� How-provenance (provenance polynomials) explains

precisely how a result has been computed: often too
fine-grained

� Why-provenance explains why a particular result is
generated by providing combinations of tuples required for
a tuple to be produced

� Provenance often too long and complex, (imperfect)
summarization may be required [Ainy et al., 2015]

� Still far from a natural language explanation!
� Why-not provenance: why a result was not produced.

Expressible with m-semirings, but requires dedicated
techniques [Chapman and Jagadish, 2009] for compact
explanations
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Where-provenance [Buneman et al., 2001]

� Different form of provenance: captures from which
database values come which output values

� Bipartite graph of provenance: two attribute values are
connected if one can be produced from the other

� Axiomatized in [Buneman et al., 2001, Cheney et al., 2009]

� Cannot be captured by provenance semirings [Cheney et al.,
2009], because of renaming (does not keep track of relation
attributes), projection (does not remember which attribute
values still exist), join (in a join, an output value comes
from two different input values)
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Representation systems

� In the Boolean semiring, the counting semiring, the
security semiring: provenance annotations are elementary

� In the Boolean function semiring, the universal semiring,
etc., provenance annotations can become quite complex

� Needs for compact representation of provenance
annotations

� Lower the provenance computation complexity as much as
possible
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Provenance formulas

� Quite straightforward
� Formalism used in most of the provenance literature
� PTIME data complexity
� Expanding formulas (e.g., computing the monomials of a

N[X ] provenance annotation) can result in an exponential
blowup

Example
Is there a city with both an analyst and an agent, and if Paris is
such a city, is there a director in the agency?

((x3 
 x5)� (x4 
 x7))
 ((x3 
 x5)
 x1)
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Provenance circuits [Deutch et al., 2014, Amarilli et al., 2015]

� Use arithmetic circuits (Boolean circuits for Boolean
provenance) to represent provenance

� Every time an operation reuses a previously computed
result, link to the previously created circuit gate

� Allow linear-time data complexity of provenance
computation when restricted to bounded-treewidth
databases [Amarilli et al., 2015] (MSO queries for Boolean
provenance, positive relational algebra queries for arbitrary
semirings)

� Formulas can be quadratically larger than provenance
circuits for MSO formulas, (log log)-larger for positive
relational algebra queries [Wegener, 1987, Amarilli et al., 2016]
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Example provenance circuit

x3




x5 x7




x4

x1


 �
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OBDD and d-DNNF

� Various subclasses of Boolean circuits commonly used:
OBDD: Ordered Binary Decision Diagrams

d-DNNF: deterministic Decomposable Negation Normal
Form

� OBDDs can be obtained in PTIME data complexity on
bounded-treewidth databases [Amarilli et al., 2016]

� d-DNNFs can be obtained in linear-time data complexity
on bounded-treewidth databases

� Application: probabilistic query evaluation in linear-time
data complexity on bounded-treewidth databases (d-DNNF
evaluation is in linear-time)
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Desiderata for a provenance-aware DBMS

� Extends a widely used database management system
� Easy to deploy
� Easy to use, transparent for the user
� Provenance automatically maintained as the user interacts

with the database management system
� Provenance computation benefits from query optimization

within the DBMS
� Allow probability computation based on provenance
� Any form of provenance can be computed: Boolean

provenance, semiring provenance in any semiring (possibly,
with monus), aggregate provenance, where-provenance, on
demand
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ProvSQL: Provenance within PostgreSQL (1/2)
[Senellart et al., 2018]

� Lightweight extension/plugin for PostgreSQL � 9:5 (tested
against all versions – upgrade to a new version typically
takes a couple of hours)

� Provenance annotations stored as Universally Unique
Identifiers (UUIDs), in an extra attribute of each
provenance-aware relation

� UUIDs of base tuples randomly generated; UUIDs of query
results generated in a deterministic manner

� A provenance circuit relating UUIDs of elementary
provenance annotations and arithmetic gates stored in
shared memory of the DBMS (or on disk)

� All computations done in the universal semiring (more
precisely, with monus, in the free semiring with monus; for
where-provenance, in a free term algebra)
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ProvSQL: Provenance within PostgreSQL (2/2)
[Senellart et al., 2018]

� Query rewriting to automatically compute output
provenance attributes in terms of the query and input
provenance attributes:
� Duplicate elimination (DISTINCT, set union) results in

aggregation of provenance values with �
� Cross products, joins results in combination of provenance

values with 

� Difference rewritten in a join, with combination of

provenance values with 	

� Additional circuit gates on projection, join for support of
where-provenance

� Probability computation from the provenance circuits, via
various methods (naive, sampling, compilation to
d-DNNFs, tree decomposition)
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Challenges
� Low-level access to PostgreSQL data structures in

extensions
� No simple query rewriting mechanism
� SQL is much less clean than the relational algebra
� Multiset semantics by default in SQL
� SQL is a very rich language, with many different ways of

expressing the same thing
� Inherent limitations: e.g., no aggregation within recursive

queries
� Implementing provenance computation should not slow

down the computation too much – but provenance
optimization loses some optimizations

� User-defined functions, updates, etc.: unclear how
provenance should work
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ProvSQL: Current status

� Supported SQL language features:
� Regular SELECT-FROM-WHERE queries (aka conjunctive

queries with multiset semantics)
� JOIN queries (regular joins and outer joins; semijoins and

antijoins are not currently supported)
� SELECT queries with nested SELECT subqueries in the

FROM clause
� GROUP BY queries
� SELECT DISTINCT queries (i.e., set semantics)
� UNION’s or UNION ALL’s of SELECT queries
� EXCEPT queries
� Aggregate queries (terminal, for simple aggregates)

� Try it (and see a demo) from
https://github.com/PierreSenellart/provsql

https://github.com/PierreSenellart/provsql
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Other databases with provenance management
� Older probabilistic database systems can compute some

forms of provenance (especially, Boolean provenance); but
tied to specific version of PostgreSQL (8.3), hard to deploy

Trio: http://infolab.stanford.edu/trio/
[Benjelloun et al., 2006]

MayBMS: http://maybms.sourceforge.net/ [Huang
et al., 2009]

� Perm https://github.com/IITDBGroup/perm [Glavic and
Alonso, 2009] now obsolete system for provenance
management; also tied to PostgreSQL 8.3

� GProM http:
//www.cs.iit.edu/~dbgroup/projects/gprom.html
[Arab et al., 2018] is similar to ProvSQL (though no
probabilistic database capabilities), with some extra
features; implemented as a middleware

http://infolab.stanford.edu/trio/
http://maybms.sourceforge.net/
https://github.com/IITDBGroup/perm
http://www.cs.iit.edu/~dbgroup/projects/gprom.html
http://www.cs.iit.edu/~dbgroup/projects/gprom.html
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Database Provenance [Senellart, 2017]

� Quite rich foundations of provenance management:
� Different types of provenance
� Semiring formalism to unify most provenance forms
� (Partial) extensions for difference, recursive queries,

aggregation, updates [Bourhis et al., 2020]; to other data
models

� Compact provenance representation formalisms
� Complexity results, classification of queries/databases for

which probabilistic query evaluation is tractable [Dalvi and
Suciu, 2012, Amarilli et al., 2016]

� Connections with the field of knowledge compilation
[Amarilli et al., 2020]

� ProvSQL: aim at concrete, efficient, usable implementation
of all of this!
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Many things to do
Usability: Support for larger subset of SQL, utility functions,

better interface, documentation, ability to restrict
to specific semirings

Efficiency: Benchmarks, optimizations of provenance and
probability computation, scalability, manipulate
circuit both on disk and in main memory

Knowledge compilation: closer integration with knowledge
compilers

More complete probabilistic query evaluation: implementation
of safe query plans, continuous probability
distributions

Use cases: Work with users, provide semirings that
implement useful behavior (e.g., the semiring of
unions of real intervals for temporal databases)



Collaborators welcome!

ProvSQL tutorial:
https://github.com/PierreSenellart/provsql/tree/master/doc/tutorial

https://github.com/PierreSenellart/provsql/tree/master/doc/tutorial
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