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Provenance management
� Data management all about query evaluation
� What if we want something more than the query result?

� Where does the result come from?
� Why was this result obtained?
� How was the result produced?
� What is the probability of the result?
� How many times was the result obtained?
� How would the result change if part of the input data was

missing?
� What is the minimal security clearance I need to see the

result?
� What is the most economical way of obtaining the result?
� How can a result be explained in layman terms?

� Provenance management: along with query evaluation,
record additional bookkeeping information allowing to
answer the questions above
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Data model

� Relational data model: data decomposed into relations,
with labeled attributes. . .

� . . . with an extra provenance annotation for each tuple
(think of it first as a tuple id)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret
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Data model

� Relational data model: data decomposed into relations,
with labeled attributes. . .

� . . . with an extra provenance annotation for each tuple
(think of it first as a tuple id)

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7



4/44

Provenance Representation Systems for Provenance Implementing Provenance Support Conclusion

Relations and databases

Formally:
� A relational schema R is a finite sequence of distinct
attribute names; the arity of R is jRj

� A database schema is a mapping from relation names to
relational schemas, with finite support

� A tuple over relation schema R is a mapping from R to
data values; each tuple comes with a provenance annotation

� A relation instance (or relation) over R is a finite set of
tuples over R

� A database instance (or database) over database schema D
is a mapping from the support of D mapping each relation
name R to a relation instance over D(R)
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Queries

� A query is an arbitrary function that maps databases over
a fixed database schema D to relations over some relational
schema R

� The query does not consider or produce any provenance
annotations; we will give semantics for the provenance
annotations of the output, based on that of the input

� In practice, one often restricts to specific query languages:
� Monadic-Second Order logic (MSO)
� First-Order logic (FO) or the relational algebra
� SQL with aggregate functions
� etc.
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Boolean provenance [Imieliński and Lipski, 1984]

� X = fx1; x2; : : : ; xng finite set of Boolean events
� Provenance annotation: Boolean function over X , i.e., a

function of the form: (X ! f?;>g)! f?;>g

� Interpretation: possible-world semantics
� every valuation � : X ! f?;>g denotes a possible world of

the database
� the provenance of a tuple on � evaluates to ? or >

depending whether this tuple exists in that possible world
� for example, if every tuple of a database is annotated with

the indicator function of a distinct Boolean event, the set of
possible worlds is the set of all subdatabases



8/44

Provenance Representation Systems for Provenance Implementing Provenance Support Conclusion

Example of possible worlds

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

�:
t1 t2 t3 t4 t5 t6 t7

> > > > > > >
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Example of possible worlds

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

�:
t1 t2 t3 t4 t5 t6 t7

> ? > ? > ? >
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Boolean provenance of query results

� �(D): the subdatabase of D where all tuples whose
provenance annotation evaluates to ? by � is removed

� The Boolean provenance provq;D(t) of tuple t 2 q(D) is the
function:

� 7!

8<
:
> if t 2 q(�(D))

? otherwise

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

city prov

New York t1 _ t2
Paris t3 _ t5 _ t6
Berlin t4 _ t7
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Application: Probabilistic databases
[Green and Tannen, 2006, Suciu et al., 2011]

� Tuple-independent database: each tuple t in a database is
annotated with independent probability Pr(t) of existing

� Probability of a possible world D0 � D:

Pr(D0) =
Q
t2D0 Pr(t)�

Q
t2D0nD(1� Pr(t0))

� Probability of a tuple for a query q over D:

Pr(t 2 q(D)) =
P

D0�D
t2q(D0)

Pr(D0)

� If Pr(xi) := Pr(ti) where xi is the provenance annotation of
tuple ti then Pr(t 2 q(D)) = Pr(provq;D(t))

� Computing the probability of a query in probabilistic
databases thus amounts to computing Boolean provenance,
and then computing the probability of a Boolean function

� Also works for more complex probabilistic models
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Example of probability computation
name position city classification prov prob

John Director New York unclassified t1 0.5
Paul Janitor New York restricted t2 0.7
Dave Analyst Paris confidential t3 0.3
Ellen Field agent Berlin secret t4 0.2
Magdalen Double agent Paris top secret t5 1.0
Nancy HR director Paris restricted t6 0.8
Susan Analyst Berlin secret t7 0.2

city prov

New York t1 _ t2
Paris t3 _ t5 _ t6
Berlin t4 _ t7
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Example of probability computation
name position city classification prov prob

John Director New York unclassified t1 0.5
Paul Janitor New York restricted t2 0.7
Dave Analyst Paris confidential t3 0.3
Ellen Field agent Berlin secret t4 0.2
Magdalen Double agent Paris top secret t5 1.0
Nancy HR director Paris restricted t6 0.8
Susan Analyst Berlin secret t7 0.2

city prov prob

New York t1 _ t2 1� (1� 0:5)� (1� 0:7) = 0:85

Paris t3 _ t5 _ t6 1.00
Berlin t4 _ t7 1� (1� 0:2)� (1� 0:2) = 0:36
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What now?

� How to compute Boolean provenance for practical query
languages? What complexity?

� Can we do more with provenance?
� How should we represent provenance annotations?
� How can we implement support for provenance
management in a relational database management system?
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Commutative semiring (K; 0; 1;�;
)

� Set K with distinguished elements 0, 1
� � associative, commutative operator, with identity 0K :

� a� (b� c) = (a� b)� c

� a� b = b� a

� a� 0 = 0� a = a

� 
 associative, commutative operator, with identity 1K :
� a
 (b
 c) = (a
 b)
 c

� a
 b = b
 a

� a
 1 = 1
 a = a

� 
 distributes over �:

a
 (b� c) = (a
 b)� (a
 c)

� 0 is annihilating for 
:

a
 0 = 0
 a = 0
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Example semirings

� (N; 0; 1;+;�): counting semiring
� (f?;>g;?;>;_;^): Boolean semiring
� (funclassified; restricted; confidential; secret; top secretg;
top secret;unclassified;min;max): security semiring

� (N [ f1g;1; 0;min;+): tropical semiring
� (fBoolean functions over Xg;?;>;_;^): semiring of

Boolean functions over X
� (N[X ]; 0; 1;+;�): semiring of integer-valued polynomials

with variables in X (also called How-semiring or universal
semiring, see further)

� (P(P(X )); ;; f;g;[;d): Why-semiring over X
(A dB := fa [ b j a 2 A; b 2 Bg)
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Semiring provenance [Green et al., 2007]

� We fix a semiring (K;0;1;�;
)

� We assume provenance annotations are in K

� We consider a query q from the positive relational algebra
(selection, projection, renaming, cross product, union; joins
can be simulated with renaming, cross product, selection,
projection)

� We define a semantics for the provenance of a tuple
t 2 q(D) inductively on the structure of q
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Selection, renaming
Provenance annotations of selected tuples are unchanged

Example (�name!n(�city=“New York”(R)))

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

n position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2
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Projection
Provenance annotations of identical, merged, tuples are �-ed

Example (�city(R))

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

city prov

New York t1 � t2

Paris t3 � t5 � t6

Berlin t4 � t7



19/44

Provenance Representation Systems for Provenance Implementing Provenance Support Conclusion

Union
Provenance annotations of identical, merged, tuples are �-ed

Example
�city(�ends-with(position;“agent”)(R)) [ �city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

city prov

Paris t3 � t5

Berlin t4 � t7
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Cross product
Provenance annotations of combined tuples are 
-ed

Example
�city(�ends-with(position;“agent”)(R)) on �city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

city prov

Paris t3 
 t5

Berlin t4 
 t7
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What can we do with it?

counting semiring: count the number of times a tuple can be
derived, multiset semantics

Boolean semiring: determines if a tuple exists when a
subdatabase is selected

security semiring: determines the minimum clearance level
required to get a tuple as a result

tropical semiring: minimum-weight way of deriving a tuple
(think shortest path in a graph)

Boolean functions: Boolean provenance, as previously defined

integer polynomials: universal provenance, see further

Why-semiring: Why-provenance [Buneman et al., 2001], set of
combinations of tuples needed for a tuple to exist



22/44

Provenance Representation Systems for Provenance Implementing Provenance Support Conclusion

Example of security provenance

�city(�name<name2(�name;city(R) on �name!name2(�name;city(R))))

name position city prov

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

city prov

New York restricted
Paris confidential
Berlin secret
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Notes [Green et al., 2007]

� Computing provenance has a PTIME data complexity
overhead

� Semiring homomorphisms commute with provenance
computation: if there is a homomorphism from K to K 0,
then one can compute the provenance in K, apply the
homomorphism, and obtain the same result as when
computing provenance in K 0

� The integer polynomial semiring is universal: there is a
unique homomorphism to any other commutative semiring
that respects a given valuation of the variables

� This means all computations can be performed in the
universal semiring, and homomorphisms applied next

� Two equivalent queries can have two different provenance
annotations on the same database, in some semirings



24/44

Provenance Representation Systems for Provenance Implementing Provenance Support Conclusion

Outline

Provenance
Preliminaries
Boolean provenance
Semiring provenance
And beyond. . .

Representation Systems for Provenance

Implementing Provenance Support

Conclusion



25/44

Provenance Representation Systems for Provenance Implementing Provenance Support Conclusion

Semirings with monus [Amer, 1984, Geerts and Poggi, 2010]

� Some semirings can be equipped with a 	 verifying:
� a� (b	 a) = b� (a	 b)
� (a	 b)	 c = a	 (b+ c)
� a	 a = 0	 a = 0

� Boolean function semiring with ^:, Why-semiring with n,
counting semiring with truncated difference. . .

� Most natural semirings (but not all semirings [Amarilli and
Monet, 2016]!) can be extended into semirings with monus

� Sometimes strange things happen [Amsterdamer et al., 2011]:
e.g, 
 does not always distribute over 	

� Allows supporting full relational algebra with the n
operator, still PTIME

� Semantics for Boolean function semiring coincides with
that of Boolean provenance
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Difference
Provenance annotations of diff-ed tuples are 	-ed

Example
�city(�ends-with(position;“agent”)(R)) n �city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

city prov

Paris t5 	 t3

Berlin t4 	 t7
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Provenance for aggregates
[Amsterdamer et al., 2011, Fink et al., 2012]

� Trickier to define provenance for queries with aggregation,
even in the Boolean case

� One can construct a K-semimodule K �M for each monoid
aggregate M over a provenance database with a semiring
in K

� Data values become elements of the semimodule

Example (count(�name(�city=“Paris”(R)))

t3 � 1 + t5 � 1 + t6 � 1
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Where-provenance [Buneman et al., 2001]

� Different form of provenance: captures from which
database values come which output values

� Bipartite graph of provenance: two attribute values are
connected if one can be produced from the other

� Axiomatized in [Buneman et al., 2001, Cheney et al., 2009]

� Cannot be captured by provenance semirings [Cheney et al.,
2009], because of renaming (does not keep track of relation
attributes), projection (does not remember which attribute
values still exist), join (in a join, an output value comes
from two different input values)
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Representation systems

� In the Boolean semiring, the counting semiring, the
security semiring: provenance annotations are elementary

� In the Boolean function semiring, the universal semiring,
etc., provenance annotations can become quite complex

� Needs for compact representation of provenance
annotations

� Lower the provenance computation complexity as much as
possible
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Provenance formulas

� Quite straightforward
� Formalism used in most of the provenance literature
� PTIME data complexity
� Expanding formulas (e.g., computing the monomials of a

N[X ] provenance annotation) can result in an exponential
blowup

Example
Is there a city with both an analyst and an agent, and if Paris is
such a city, is there a director in the agency?

((t3 
 t5)� (t4 
 t7))
 ((t3 
 t5)
 t1)



32/44

Provenance Representation Systems for Provenance Implementing Provenance Support Conclusion

Provenance circuits [Deutch et al., 2014, Amarilli et al., 2015]

� Use arithmetic circuits (Boolean circuits for Boolean
provenance) to represent provenance

� Every time an operation reuses a previously computed
result, link to the previously created circuit gate

� Allow linear-time data complexity of provenance
computation when restricted to bounded-treewidth
databases [Amarilli et al., 2015] (MSO queries for Boolean
provenance, positive relational algebra queries for arbitrary
semirings)

� Formulas can be quadratically larger than provenance
circuits for MSO formulas, (log log)-larger for positive
relational algebra queries [Wegener, 1987, Amarilli et al., 2016]
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Example provenance circuit




t7 t4t5t3

t1

�
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OBDD and d-DNNF

� Various subclasses of Boolean circuits commonly used:
OBDD: Ordered Binary Decision Diagrams

d-DNNF: deterministic Decomposable Negation Normal
Form

� OBDDs can be obtained in PTIME data complexity on
bounded-treewidth databases [Amarilli et al., 2016]

� d-DNNFs can be obtained in linear-time data complexity
on bounded-treewidth databases

� Application: probabilistic query evaluation in linear-time
data complexity on bounded-treewidth databases (d-DNNF
evaluation is in linear-time)
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Provenance cycluits [Amarilli et al., 2017]

� Cycluit (cyclic circuit): arithmetic circuit with cycles
� Well-defined semantics on some semirings where infinite
loops do not matter

� Allows computing provenance in linear-time combined
complexity for recursive queries of a certain form
(ICG-Datalog of bounded body size [Amarilli et al., 2017],
capturing �-acyclic conjunctive queries, 2RPQs, etc.), on
bounded tree-width databases

� Related to provenance equation systems and formal series
introduced in [Green et al., 2007]
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Desiderata for a provenance-aware DBMS

� Extends a widely used database management system
� Easy to deploy
� Easy to use, transparent for the user
� Provenance automatically maintained as the user interacts
with the database management system

� Provenance computation benefits from query optimization
within the DBMS

� Allow probability computation based on provenance
� Any form of provenance can be computed: Boolean
provenance, semiring provenance in any semiring (possibly,
with monus), aggregate provenance, where-provenance, on
demand
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ProvSQL: Provenance within PostgreSQL (1/2)
[Senellart et al., 2018]

� Lightweight extension/plugin for PostgreSQL � 9:5

� Provenance annotations stored as UUIDs, in an extra
attribute of each provenance-aware relation

� A provenance circuit relating UUIDs of elementary
provenance annotations and arithmetic gates stored as
table

� All computations done in the universal semiring (more
precisely, with monus, in the free semiring with monus; for
where-provenance, in a free term algebra)
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ProvSQL: Provenance within PostgreSQL (2/2)
[Senellart et al., 2018]

� Query rewriting to automatically compute output
provenance attributes in terms of the query and input
provenance attributes:
� Duplicate elimination (DISTINCT, set union) results in

aggregation of provenance values with �
� Cross products, joins results in combination of provenance

values with 

� Difference rewritten in a join, with combination of

provenance values with 	
� Additional circuit gates on projection, join for support of
where-provenance

� Probability computation from the provenance circuits, via
various methods (naive, sampling, compilation to
d-DNNFs)
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Challenges
� Low-level access to PostgreSQL data structures in
extensions

� No simple query rewriting mechanism
� SQL is much less clean than the relational algebra
� Multiset semantics by default in SQL
� SQL is a very rich language, with many different ways of
expressing the same thing

� Inherent limitations: e.g., no aggregation within recursive
queries

� Implementing provenance computation should not slow
down the computation

� User-defined functions, updates, etc.: unclear how
provenance should work
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ProvSQL: Current status
� Supported SQL language features:

� Regular SELECT-FROM-WHERE queries (aka conjunctive
queries with multiset semantics)

� JOIN queries (regular joins and outer joins; semijoins and
antijoins are not currently supported)

� SELECT queries with nested SELECT subqueries in the
FROM clause

� GROUP BY queries (without aggregation)
� SELECT DISTINCT queries (i.e., set semantics)
� UNION’s or UNION ALL’s of SELECT queries
� EXCEPT queries

� Longer term project: aggregate computation
� Try it (and see a demo) from

https://github.com/PierreSenellart/provsql

https://github.com/PierreSenellart/provsql
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Relational Data Provenance [Senellart, 2017]

� Quite rich foundations of provenance management:
� Different types of provenance
� Semiring formalism to unify most provenance forms
� (Partial) extensions for difference, recursive queries,

aggregation
� Compact provenance representation formalisms

� Some theory still missing:
� Provenance and updates
� Going beyond the relational algebra for full semiring

provenance
� Now is the time to work on concrete implementation
� Need good implementation to convince users they should
track provenance!

� How to combine provenance computation and efficient
query evaluation, e.g., through tree decompositions?



Merci.
https://github.com/PierreSenellart/provsql

https://youtu.be/iqzSNfGHbEE?vq=hd1080

https://github.com/PierreSenellart/provsql
https://youtu.be/iqzSNfGHbEE?vq=hd1080
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