

Challenges in Deep Web Data Extraction

PIERRE SENELLART

The Deep Web

Definition (Deep Web, Hidden Web, Invisible Web)

All the content on the Web that is not directly accessible through hyperlinks. In particular: HTML forms, Web services.

Size estimate: 500 times more content than on the surface Web! [BrightPlanet, 2001]. Hundreds of thousands of deep Web databases [Chang et al., 2004]

Example

- Yellow Pages and other directories;
- Library catalogs;
- Weather services;
- US Census Bureau data;
- etc.

Discovering Knowledge from the Deep Web [Nayak et al., 2012]

- Content of the deep Web hidden to classical Web search engines (they just follow links)
- But very valuable and high quality!
- Even services allowing access through the surface Web (e.g., e-commerce) have more semantics when accessed from the deep Web
- How to benefit from this information?
- How to analyze, extract and model this information?

Focus here: Automatic, unsupervised, methods, for a given domain of interest.

Extensional Approach

- Main issues:
 - Discovering services
 - Choosing appropriate data to submit forms
 - Use of data found in result pages to bootstrap the siphoning process
 - Ensure good coverage of the database
- Approach favored by Google, used in production [Madhavan et al., 2006]
- Not always feasible (huge load on Web servers)

Intensional Approach

Notes on the Intensional Approach

- More ambitious [Chang et al., 2005, Senellart et al., 2008]
- Main issues:
 - Discovering services
 - Understanding the structure and semantics of a form
 - Understanding the structure and semantics of result pages
 - Semantic analysis of the service as a whole
 - Query rewriting using the services
- No significant load imposed on Web servers

一選家 Outline

Introduction

Analysis of Deep Web Forms

Information Extraction from Deep Web Pages

Modelling Uncertainty in XML

Querying the Deep Web

Conclusion

一選圖MI Forms

Analyzing the structure of HTML forms.

Authors				
Title	Year Page			
Conference	ID			
Journal	Volume Number			
Search	Reset Maximum of 100 ▼ matches			

Goal

Associating to each form field the appropriate domain concept.

- 1. Build a context for each field:
 - label tag;
 - id and name attributes;
 - text immediately before the field.
- 2. Remove stop words, stem.
- Match this context with the concept names, extended with WordNet.
- 4. Obtain in this way candidate annotations

- 1. Build a context for each field:
 - label tag;
 - id and name attributes;
 - text immediately before the field.
- 2. Remove stop words, stem.

- 1. Build a context for each field:
 - label tag;
 - id and name attributes;
 - text immediately before the field.
- 2. Remove stop words, stem.
- 3. Match this context with the concept names, extended with WordNet.

- 1. Build a context for each field:
 - label tag;
 - id and name attributes;
 - text immediately before the field.
- 2. Remove stop words, stem.
- 3. Match this context with the concept names, extended with WordNet.
- 4. Obtain in this way candidate annotations.

2nd Step: Confirm Annotations w/ Probing

- 1. Probe the field with nonsense word to get an error page.

2nd Step: Confirm Annotations w/ Probing

- 1. Probe the field with nonsense word to get an error page.
- 2. Probe the field with instances of c (chosen representatively of the frequency distribution of c).

2nd Step: Confirm Annotations w/ Probing

- 1. Probe the field with nonsense word to get an error page.
- 2. Probe the field with instances of c (chosen representatively of the frequency distribution of c).
- 3. Compare pages obtained by probing with the error page (by clustering along the DOM tree structure of the pages), to distinguish error pages and result pages.

2nd Step: Confirm Annotations w/ Probing

- 1. Probe the field with nonsense word to get an error page.
- 2. Probe the field with instances of c (chosen representatively of the frequency distribution of c).
- 3. Compare pages obtained by probing with the error page (by clustering along the DOM tree structure of the pages), to distinguish error pages and result pages.
- 4. Confirm the annotation if enough result pages are obtained.

How well does this work?

■ Good results in practice [Senellart et al., 2008]

	Initial	annot.	Confirmed annot.		
	p(%)	r(%)	p(%)	r(%)	
Average	49	73	82	73	

- Probing raises precision without hurting recall
- Clustering according to DOM paths: much better than previous approaches
- But some critical assumptions:
 - All form fields are independent
 - It is possible to query a field with a subword
 - No field is required

How well does this work?

■ Good results in practice [Senellart et al., 2008]

	Initial	annot.	Confirmed annot.		
	p(%)	r(%)	p(%)	r(%)	
Average	49	73	82	73	

- Probing raises precision without hurting recall
- Clustering according to DOM paths: much better than previous approaches
- But some critical assumptions:
 - All form fields are independent
 - It is possible to query a field with a subword
 - No field is required

Better Form Analysis

Better Form Analysis

Better Form Analysis


```
// Do not submit unless form is valid
$j("#searchForm").submit(function(event) {
  $j("#searchFormLocationClue").val($j("#searchFormLocationClue").val().trim());
  if ($j("#searchFormBusinessClue").val().isEmpty()) {
    alert('Help us help you\nWe need more information to
      complete your search.\n\n- Please enter a Search Term');
   return false:
 } else {
   return true:
}):
```


- Lots of JavaScript code on the Web (source is always available!)
- Lots of information can be gained by static analysis of this code:
 - Required fields
 - Dependencies between fields (if x is filled in, so should be y; the value of x should be less than that of y; etc.)
 - Datatype of each fields (regular expressions, numeric types, dates, etc.)
- Is this feasible in practice?

ProFoUnd [Benedikt et al., 2012b] architecture

- Entry points are HTML event attributes, setting of event handlers in code, etc. (event: *click* on a submit button, *submit* on a form)
- Conditions are (in)equality tests on form field values (possibly aliased)
- Interceptions are interruptions of the form submission process (error messages, simple return false; in event handler, etc.)

- 70 real-estate websites containing search forms
- 30 out of 70 use client-side validation, with a total of 35 constraints
- 100% precision: all identified constraints are correct
- 63% recall: 22 out of 35 JS-enforced constraints were found
- Why did we miss some?
 - Use of complex JavaScript features, such as eval
 - Code obfuscation by introducing extra layers of computation
 - Limitations of the abstracter work in progress!

一選家 Outline

Introduction

Analysis of Deep Web Forms

Information Extraction from Deep Web Pages

Modelling Uncertainty in XML

Querying the Deep Web

Conclusion

Result Pages

Pages resulting from a given form submission:

- share the same structure;
- set of records with fields;
- unknown presentation!

19 / 43

Goal

Building wrappers for a given kind of result pages, in a fully automatic, unsupervised, way.

Simplification: restriction to a domain of interest, with some domain knowledge.

Annotation by domain knowledge

Showing results 1 through 25 (of 94 total) for all:xml

cs.LO/0601085 [abs, ps, pdf, other] :

Title: A Formal Foundation for ODRI Authors: Riccardo Pucella, Vicky Weissman

Comments: 30 pgs, preliminary version presented at WITS-04 (Workshop on Issues in the Theory of Security), 2004 Subi-class: Logic in Computer Science; Cryptography and Security ACM-class: H.2.7: K.4.4

astro-ph/0512493 [abs, pdf] :

Title: VOFilter, Bridging Virtual Observatory and Industrial Office Applications Authors: Chen-zhou Cui (1), Markus Dolensky (2), Peter Quinn (2), Yong-heng Zhao (1), Francoise Genova (3) ((1)NAO China, (2) ESO, (3) CDS) Comments: Accepted for publication in ChIAA (9 pages, 2 figures, 185KB)

3. cs.DS/0512061 [abs ps pdf other]:

Title: Matching Subsequences in Trees Authors: Phillip Bille, Inge Li Goertz Subi-class: Data Structures and Algorithms

4. cs.IR/0510025 [abs, ps, pdf, other]:

Title: Practical Semantic Analysis of Web Sites and Documents

Authors: Thierry Despeyroux (INRIA Rocquencourt / INRIA Sophia Antipolis) Subi-class: Information Retrieval

5. cs.CR/0510013 [abs. pdf] :

Title: Safe Data Sharing and Data Dissemination on Smart Devices

Authors: Luc Bouganim (INRIA Rocquencourt), Cosmin Cremarenco (INRIA Rocquencourt), François Dang Ngoc (INRIA Rocquencourt, PRISM - UVSQ), Nicolas Dieu (INRIA Rocquencourt), Philippe Pucheral (INRIA Rocquencourt, PRISM - UVSQ) Subi-class: Cryptography and Security: Databases

- Titles of articles, conference names, etc.: those that are in the

图 Innotation by domain knowledge

Showing results 1 through 25 (of 94 total) for all:xml

cs.LO/0601085 [abs, ps, pdf, other] :

Title: A Formal Foundation for ODRI Authors: Riccardo Pucella, Vicky Weissman

Comments: 30 pgs, preliminary version presented at WITS-04 (Workshop on Issues in the Theory of Security), 2004 Subi-class: Logic in Computer Science; Cryptography and Security ACM-class: H.2.7: K.4.4

astro-ph/0512493 [abs, pdf] :

Title: VOFilter, Bridging Virtual Observatory and Industrial Office Applications Authors: Chen-zhou Cui (1), Markus Dolensky (2), Peter Quinn (2), Yong-heng Zhao (1), Francoise Genova (3) ((1)NAO China, (2) ESO, (3) CDS) Comments: Accepted for publication in ChIAA (9 pages, 2 figures, 185KB)

3. cs.DS/0512061 [abs ps pdf other]: Title: Matching Subsequences in Trees

Authors: Phillip Bille, Inge Li Goertz Subi-class: Data Structures and Algorithms

4. cs.IR/0510025 [abs, ps, pdf, other]:

Title: Practical Semantic Analysis of Web Sites and Documents

Authors: Thierry Despeyroux (INRIA Rocquencourt / INRIA Sophia Antipolis) Subi-class: Information Retrieval

5. cs.CR/0510013 [abs. pdf] :

Title: Safe Data Sharing and Data Dissemination on Smart Devices

Authors: Luc Bouganim (INRIA Rocquencourt), Cosmin Cremarenco (INRIA Rocquencourt), François Dang Ngoc (INRIA Rocquencourt, PRISM - UVSQ), Nicolas Dieu (INRIA Rocquencourt), Philippe Pucheral (INRIA Rocquencourt, PRISM - UVSQ) Subi-class: Cryptography and Security: Databases

Automatic pre-annotation with domain knowledge (gazetteer):

- Entity recognizers for dates, person names, etc.
- Titles of articles, conference names, etc.: those that are in the knowledge base.

图 Annotation by domain knowledge

```
Showing results 1 through 25 (of 94 total) for all:xml

    cs.LO/0601085 [abs. ps. pdf. other] :

    Title: A Formal Foundation for ODRL
    Authors: Riccardo Pucella, Vicky Weissman
    Comments: 30 pgs, preliminary version presented at WITS-04 (Workshop on Issues in the Theory of Security), 2005
    Subj-class: Logic in Computer Science: Cryptography and Security
    ACM-class: H.2.7: K.4.4
2. astro-ph/0512493 [abs, pdf] :
    Title: VOFilter, Bridging Virtual Observatory and Industrial Office Applications
    Authors: Chen-zhou Cui (1), Markus Dolensky (2), Peter Quinn (2), Yong-heng Zhao (1), Françoise Genova (3) ((1)NAO China, (2) ESO, (3) CDS)
    Comments: Accepted for publication in ChIAA (9 pages, 2 figures, 185KB)
3, cs.DS/0512061 [abs. ps. pdf. other]:
    Title: Matching Subsequences in Trees
    Authors: Philip Bille, Inge Li Goertz
    Subj-class: Data Structures and Algorithms
cs.IR/0510025 [abs. ps. pdf. other] ;
    Title: Practical Semantic Analysis of Web Sites and Documents
    Authors: Thierry Despeyroux (
    Subj-class: Information Retrie
5. cs.CR/0510013 [abs, pdf] :
    Title: Safe Data Sharing and Data Dissemination on Smart Devices
    Subi-class: Cryptography and Security: Databases
```

Automatic pre-annotation with domain knowledge (gazetteer):

- Entity recognizers for dates, person names, etc.
- Titles of articles, conference names, etc.: those that are in the knowledge base.

图 Annotation by domain knowledge

```
Showing results 1 through 25 (of 94 total) for all:xml

    cs.LO/0601085 [abs. ps. pdf. other] :

    Title: A Formal Foundation for ODRL
    Authors: Riccardo Pucella, Vicky Weissman
    Comments: 30 pgs, preliminary version presented at WITS-04 (Workshop on Issues in the Theory of Security), 2005
    Subj-class: Logic in Computer Science: Cryptography and Security
    ACM-class: H.2.7: K.4.4
2. astro-ph/0512493 [abs, pdf] :
    Title: VOFilter, Bridging Virtual Observatory and Industrial Office Applications
    Authors: Chen-zhou Cui (1), Markus Dolensky (2), Peter Quinn (2), Yong-heng Zhao (1), Françoise Genova (3) ((1)NAO China, (2) ESO, (3) CDS)
    Comments: Accepted for publication in ChIAA (9 pages, 2 figures, 185KB)
3, cs.DS/0512061 [abs. ps. pdf. other]:
    Title: Matching Subsequences in Trees
    Authors: Philip Bille, Inge Li Goertz
    Subj-class: Data Structures and Algorithms
cs.IR/0510025 [abs. ps. pdf. other] ;
    Title: Practical Semantic Analysis of Web Sites and Documents
    Authors: Thierry Despeyrous
    Subj-class: Information Retrie
5. cs.CR/0510013 [abs, pdf] :
    Title: Safe Data Sharing and Data Dissemination on Smart Devices
    Subi-class: Cryptography and Security: Databases
```

Automatic pre-annotation with domain knowledge (gazetteer):

- Entity recognizers for dates, person names, etc.
- Titles of articles, conference names, etc.: those that are in the knowledge base.

Both incomplete and imprecise!

- Use the pre-annotation as the input of a structural supervised machine learning process.
- Purpose: remove outliers, generalize incomplete annotations.

Architecture

How well does this work?

■ Good, but not great, results [Senellart et al., 2008]

	Title		Author		Date	
	$\overline{F_g}$	$\overline{F_x}$	$\overline{F_g}$	$\overline{F_x}$	$\overline{F_g}$	$\overline{F_x}$
Average	44	63	64	70	85	76

- F_q : F-measure (%) of the annotation by the gazetteer.
- F_x : F-measure (%) of the annotation by the induced wrapper.
- Main issue: the machine learning assumes that the initial annotation is really the reference one

Handling Uncertainty

- The outcome of an annotation process, of machine learning, is inherently imprecise
- Even more so for conditional random fields: we get probabilities that an item is given an annotation
- Issue: usually, these confidence scores, probabilities, etc., are disregarded and just used for ranking or top-k selection
- What we would like: to deal with these scores in a rigorous manner, and keep them throughout a long process
- Web data is usually loosely structured and tree shaped ⇒ XML-like

Handling Uncertainty

- The outcome of an annotation process, of machine learning, is inherently imprecise
- Even more so for conditional random fields: we get probabilities that an item is given an annotation
- Issue: usually, these confidence scores, probabilities, etc., are disregarded and just used for ranking or top-k selection
- What we would like: to deal with these scores in a rigorous manner, and keep them throughout a long process
- Web data is usually loosely structured and tree shaped ⇒ XML-like

一選家 Outline

Introduction

Analysis of Deep Web Forms

Information Extraction from Deep Web Pages

Modelling Uncertainty in XML

Querying the Deep Web

Conclusion

直接 Uncertain data

Numerous sources of uncertain data:

- Measurement errors
- Data integration from contradicting sources
- Imprecise mappings between heterogeneous schemata
- Imprecise automatic process (information extraction, natural language processing, etc.)
- Imperfect human judgment

Objective

Not to pretend this imprecision does not exist, and manage it as rigorously as possible throughout a long, automatic and human, potentially complex, process.

Especially:

- Use probabilities to represent the confidence in the data
- Query data and retrieve probabilistic results
- Allow adding, deleting, modifying data in a probabilistic way

Objective

Not to pretend this imprecision does not exist, and manage it as rigorously as possible throughout a long, automatic and human, potentially complex, process.

Especially:

- Use probabilities to represent the confidence in the data
- Query data and retrieve probabilistic results
- Allow adding, deleting, modifying data in a probabilistic way

A General Probabilistic XML Model [Abiteboul et al., 2009, Kimelfeld and Senellart, 2013]

- Compact representation of a set of possible worlds
- Two kinds of dependencies: global (e) and local (MUX)
- Generalizes existing models of the literature

Query languages on trees

Tree-pattern queries with joins (TPJ) for \$x in \$doc/A/C/D

Monadic second-order queries (MSO) generalization of TP, do not cover TPJ unless the size of the alphabet is bounded

But also: updates (insertion, deletions), aggregate queries (count, sum, max, avg...)

Querying probabilistic XML

Semantics of a (Boolean) query = probability:

- 1. Generate all possible worlds of a given probabilistic document
- 2. In each world, evaluate the query
- 3. Add up the probabilities of the worlds that make the query true

EXPTIME algorithm! Can we do better, i.e., can we apply directly the algorithm on the probabilistic document?

We shall talk about data complexity of query answering.

Manual Control of the Control of th

Semantics of a (Boolean) query = probability:

- 1. Generate all possible worlds of a given probabilistic document (possibly exponentially many)
- 2. In each world, evaluate the query
- 3. Add up the probabilities of the worlds that make the query true

EXPTIME algorithm! Can we do better, i.e., can we apply directly the algorithm on the probabilistic document?

We shall talk about data complexity of query answering.

Complexity of Query Evaluation

■ Boolean queries:

	Local dependencies	Global dependencies
TP TPJ	PTIME [Kimelfeld et al., 2009] FP#P-complete	FP ^{#P} -complete FP ^{#P} -complete
MSO	PTIME [Cohen et al., 2009]	FP ^{#P} -complete

- Aggregate queries: (somewhat) tractable on local dependencies when the aggregate function is a monoid function; continuous distributions do not add complexity [Abiteboul et al., 2010]
- Not the same kind of updates are tractable for local and global dependencies [Kharlamov et al., 2010]

一選家 Outline

Querying the Deep Web

32 / 43

直接影響 Datalog

Basic query language with recursion.

$$ReachGood() \leftarrow Start(x), Reach(x, y), Good(y)$$
 $Reach(x, y) \leftarrow Reach(x, z), Reach(z, y)$
 $Reach(x, y) \leftarrow G(x, y)$

- Rules consisting of Horn clauses.
- Heads of rules are intensional predicates.
- Other predicates are extensional (input) predicates.
- Distinguished goal predicate.

Given an instance of the input predicates, computes the goal predicate using a least fixed point semantics.

Monadic Datalog (MDL)= all intensional predicates are unary.

直接影响 Datalog

Basic query language with recursion.

```
ReachGood() \leftarrow Start(x), Reach(x, y), Good(y)
Reach(x, y) \leftarrow Reach(x, z), Reach(z, y)
Reach(x, y) \leftarrow G(x, y)
```

- Rules consisting of Horn clauses.
- Heads of rules are intensional predicates.
- Other predicates are extensional (input) predicates.
- Distinguished goal predicate.

Given an instance of the input predicates, computes the goal predicate using a least fixed point semantics.

Monadic Datalog (MDL)= all intensional predicates are unary.

直接影响 Datalog

Basic query language with recursion.

```
ReachGood() \leftarrow Start(x), Reach(x, y), Good(y)
Reach(x, y) \leftarrow Reach(x, z), Reach(z, y)
Reach(x, y) \leftarrow G(x, y)
```

- Rules consisting of Horn clauses.
- Heads of rules are intensional predicates.
- Other predicates are extensional (input) predicates.
- Distinguished goal predicate.

Given an instance of the input predicates, computes the goal predicate using a least fixed point semantics.

Monadic Datalog (MDL)= all intensional predicates are unary.

直接翻译 Datalog

$$ReachGood() \leftarrow Start(x), Reach(x, y), Good(y)$$

 $Reach(x, y) \leftarrow Reach(x, z), Reach(z, y)$
 $Reach(x, y) \leftarrow G(x, y)$

DL query, not MDL

$$ReachGood() \leftarrow Reachable(x), Good(x)$$

 $Reachable(y) \leftarrow G(x, y), Reachable(x)$
 $Reachable(x) \leftarrow Start(x)$

(Equivalent) MDL query

Containment of Datalog

 $Q \subseteq Q'$ iff for every input instance D, $Q(D) \subseteq Q'(D)$ One can use containment to decide equivalence, giving natural way to optimize recursive queries.

Bad news [Shmueli, 1987]

Datalog containment and equivalence are undecidable

But important special cases known to be decidable, e.g., MDL containment in is in 2EXPTIME [Cosmadakis et al., 1988].

Containment of Datalog

 $Q \subseteq Q'$ iff for every input instance D, $Q(D) \subseteq Q'(D)$ One can use containment to decide equivalence, giving natural way to optimize recursive queries.

Bad news [Shmueli, 1987]

Datalog containment and equivalence are undecidable

But important special cases known to be decidable, e.g., MDL containment in is in 2EXPTIME [Cosmadakis et al., 1988].

MDL containment and Restricted Interfaces

Restricted Access Scenario

We have a relational schema with relations $R_1 \dots R_n$.

Each R_i has some arity ar_i and is additionally restricted in that access is only via a set of access methods $m_1 \dots m_{n_i}$. An access method has a set of "input positions" $S \subset \{1 \dots ar_i\}$ that require known values. An access to method m_i is a binding of the input positions of m_i ,

which returns an output.

Given an instance I for the schema, a set of initial constants C_0 the access patterns define a collection of valid access paths: sequences of accesses $ac_1 \dots ac_k$ and responses such that each value in the binding to ac_i is either in C_0 or is an output of ac_i with j < i. Facts that are returned by valid paths are the accessible data.

Access Methods

Method ApartmentFind:

Region, Area, NumBeds \rightarrow Address, Price, Description, Link

Above the input fields have enum domains – but in general the domains can be infinite (e.g., textboxes). Querying over limited interfaces arises in many other data management settings: web services, legacy database managers.

Given two conjunctive queries Q, Q' and a schema with access patterns, determine whether Q and Q' agree on the accessible data. Similarly Q is contained in Q' relative to the access patterns if whenever Q is true on the accessible data, then so is Q'.

Question

What is the complexity of query equivalence, containment under access patterns?

Containment can be used to solve a number of other static analysis questions about limited access schemas, such as whether an access is relevant to a query. [Benedikt et al., 2011]

Given two conjunctive queries Q, Q' and a schema with access patterns, determine whether Q and Q' agree on the accessible data. Similarly Q is contained in Q' relative to the access patterns if whenever Q is true on the accessible data, then so is Q'.

Question

What is the complexity of query equivalence, containment under access patterns?

Containment can be used to solve a number of other static analysis questions about limited access schemas, such as whether an access is relevant to a query. [Benedikt et al., 2011]

Limited Access Containment and MDL [Li and Chang, 2001]

Axiomatizing accessibility

$$Accessible(x_j) \leftarrow (R(\vec{x}) \land \bigwedge_{i \in input(m)} Accessible(x_i))$$

 $Accessible(c) \leftarrow$

c a constant or value in some enum datatype of the schema.

An MDL program that computes the accessible values: those obtainable via a valid access path.

- \Rightarrow For any UCQ query Q one can write an MDL query Q_{acc} that computes the value of Q restricting to accessible values.
- Q contained in Q' under access patterns \Leftrightarrow
- Q_{acc} contained in Q' on all databases.
- Containment of a Monadic Datalog Query in a UCQ!

Limited Access Containment and MDL [Li and Chang, 2001]

Axiomatizing accessibility

$$Accessible(x_j) \leftarrow (R(\vec{x}) \land \bigwedge_{i \in input(m)} Accessible(x_i))$$

 $Accessible(c) \leftarrow$

c a constant or value in some enum datatype of the schema.

An MDL program that computes the accessible values: those obtainable via a valid access path.

- \Rightarrow For any UCQ query Q one can write an MDL query Q_{acc} that computes the value of Q restricting to accessible values.
- Q contained in Q' under access patterns \Leftrightarrow
- Q_{acc} contained in Q' on all databases.

Containment of a Monadic Datalog Query in a UCQ!

「Kermerly Open Questions」

Is the 2EXPTIME bound on UCQ containment tight? Only known lower-bound was PSPACE.

Yes, the bound is tight. [Benedikt et al., 2012a]

What about containment under limited access patterns?
 Only obvious lower bound of NP; coNEXPTIME upper bound proved for special cases [Calì and Martinenghi, 2008]
 coNEXPTIME-complete [Benedikt et al., 2011, 2012b]

(Formerly) Open Questions

- Is the 2EXPTIME bound on UCQ containment tight?
 Only known lower-bound was PSPACE.
 Yes, the bound is tight. [Benedikt et al., 2012a]
- What about containment under limited access patterns?

 Only obvious lower bound of NP; coNEXPTIME upper bound proved for special cases [Calì and Martinenghi, 2008]

 coNEXPTIME-complete [Benedikt et al., 2011, 2012b]

(Formerly) Open Questions

- Is the 2EXPTIME bound on UCQ containment tight?
 Only known lower-bound was PSPACE.
 Yes, the bound is tight. [Benedikt et al., 2012a]
- What about containment under limited access patterns? Only obvious lower bound of NP; coNEXPTIME upper bound proved for special cases [Calì and Martinenghi, 2008] coNEXPTIME-complete [Benedikt et al., 2011, 2012b]

(Formerly) Open Questions

- Is the 2EXPTIME bound on UCQ containment tight?
 Only known lower-bound was PSPACE.
 Yes, the bound is tight. [Benedikt et al., 2012a]
- What about containment under limited access patterns?

 Only obvious lower bound of NP; coNEXPTIME upper bound proved for special cases [Calì and Martinenghi, 2008]

 coNEXPTIME-complete [Benedikt et al., 2011, 2012b]

一選家 Outline

Conclusion

41 / 43

INFRES

图 In Brief

Exploiting deep Web data in a rigorous manner requires combining techniques:

- Information retrieval
- Information extraction
- Machine learning
- Database systems
- Database theory
- Static analysis

直接翻 In Brief

Exploiting deep Web data in a rigorous manner requires combining techniques:

- Information retrieval
- Information extraction
- Machine learning
- Database systems
- Database theory
- Static analysis

Help is most welcome!

Merci.

Complements

Conditional Random Fields

- Generalization of hidden Markov Models [Lafferty et al., 2001]
- Probabilistic discriminative model: models the probability of an annotation given an observable (different from generative models)
- Graphical model: every annotation can depends on the neighboring annotations (as well as the observable); dependencies measured through (boolean or integer) feature functions.
- Features are automatically assigned a weight and combined to find the most probable annotation given the observable.

Conditional Random Fields for XML (XCRF) [Gilleron et al., 2006]

Observables: various structural and content-based features of nodes (tag names, tag names of ancestors, type of textual content...).

Annotations: domain concepts assigned to nodes of the tree.

Tree probabilistic model:

- models dependencies between annotations;
- conditional independence: annotations of nodes only depend on their neighbors (and on observables).

Most discriminative features selected.

■ ※ Why Probabilistic XML?

- Extensive literature about probabilistic relational databases [Dalvi et al., 2009, Widom, 2005, Koch, 2009]
- Different typical querying languages: conjunctive queries vs tree-pattern queries (possibly with joins)
- Cases where a tree-like model might be appropriate:
 - No schema or few constraints on the schema
 - Independent modules annotating freely a content warehouse
 - Inherently tree-like data (e.g., mailing lists, parse trees) with naturally occurring queries involving the descendant axis

Remark

Some results can be transferred from one model to the other. In other cases, connection much trickier!

Complements

48 / 54

References

- Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and Pierre Senellart. On the expressiveness of probabilistic XML models. *VLDB Journal*, 18(5):1041–1064, October 2009.
- Serge Abiteboul, T-H. Hubert Chan, Evgeny Kharlamov, Werner Nutt, and Pierre Senellart. Aggregate queries for discrete and continuous probabilistic xml. In *Proc. ICDT*, Lausanne, Switzerland, March 2010.
- Michael Benedikt, Georg Gottlob, and Pierre Senellart. Determining relevance of accesses at runtime. In *Proc. PODS*, pages 211–222, Athens, Greece, June 2011.
- Michael Benedikt, Pierre Bourhis, and Pierre Senellart. Monadic datalog containment. In *Proc. ICALP*, pages 79–91, Warwick, United Kingdom, July 2012a.

- Michael Benedikt, Tim Furche, Andreas Savvides, and Pierre Senellart. ProFoUnd: Program-analysis-based form understanding. In *Proc. WWW*, pages 313–316, Lyon, France, April 2012b. Demonstration.
- BrightPlanet. The deep Web: Surfacing hidden value. White Paper, July 2001.
- Andrea Calì and Davide Martinenghi. Conjunctive query containment under access limitations. In *ER*, 2008.
- Kevin Chen-Chuan Chang, Bin He, Chengkai Li, Mitesh Patel, and Zhen Zhang. Structured databases on the Web: Observations and implications. *SIGMOD Record*, 33(3):61-70, September 2004.
- Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang. Toward large scale integration: Building a metaquerier over databases on the Web. In *Proc. CIDR*, Asilomar, USA, January 2005.

- Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Running tree automata on probabilistic XML. In *Proc. PODS*, Providence, RI, USA, June 2009.
- Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable optimization problems for database logic programs. In *STOC*, 1988.
- Nilesh Dalvi, Chrisopher Ré, and Dan Suciu. Probabilistic databases: Diamonds in the dirt. *Communications of the ACM*, 52(7), 2009.
- Rémi Gilleron, Patrick Marty, Marc Tommasi, and Fabien Torre. Interactive tuples extraction from semi-structured data. In *Proc. Web Intelligence*, Hong Kong, China, December 2006.

- Evgeny Kharlamov, Werner Nutt, and Pierre Senellart. Updating probabilistic XML. In *Proc. Updates in XML*, Lausanne, Switzerland, March 2010.
- Benny Kimelfeld and Pierre Senellart. Probabilistic XML: Models and complexity. In Zongmin Ma and Li Yan, editors, Advances in Probabilistic Databases for Uncertain Information Management, pages 39–66. Springer-Verlag, May 2013.
- Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv. Query evaluation over probabilistic XML. *VLDB Journal*, 18(5): 1117–1140, October 2009.
- Christoph Koch. MayBMS: A system for managing large uncertain and probabilistic databases. In Charu Aggarwal, editor, *Managing and Mining Uncertain Data*. Springer-Verlag, 2009.

- John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random Fields: Probabilistic models for segmenting and labeling sequence data. In *Proc. ICML*, Williamstown, USA, June 2001.
- Chen Li and Edward Chang. Answering queries with useful bindings. *TODS*, 26(3):313–343, 2001.
- Jayant Madhavan, Alon Y. Halevy, Shirley Cohen, Xin Dong, Shawn R. Jeffery, David Ko, and Cong Yu. Structured data meets the Web: A few observations. *IEEE Data Engineering Bulletin*, 29 (4):19–26, December 2006.
- Richi Nayak, Pierre Senellart, Fabian M. Suchanek, and Aparna Varde. Discovering interesting information with advances in Web technology. *SIGKDD Explorations*, 14(2), December 2012.

- Pierre Senellart, Avin Mittal, Daniel Muschick, Rémi Gilleron, and Marc Tommasi. Automatic wrapper induction from hidden-Web sources with domain knowledge. In *Proc. WIDM*, pages 9–16, Napa, USA, October 2008.
- Oded Shmueli. Decidability and Expressiveness Aspects of Logic Queries. In *PODS*, pages 237–249, 1987.
- Jennifer Widom. Trio: A system for integrated management of data, accuracy, and lineage. In *Proc. CIDR*, Asilomar, CA, USA, January 2005.