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The Deep Web

Definition (Deep Web, Hidden Web, Invisible Web)
All the content on the Web that is not directly accessible through
hyperlinks. In particular: HTML forms, Web services.

Size estimate: 500 times more content than on the surface Web!
[BrightPlanet, 2001]. Hundreds of thousands of deep Web databases
[Chang et al., 2004]
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Sources of the Deep Web

Example

Yellow Pages and other directories;

Library catalogs;

Weather services;

US Census Bureau data;

etc.
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Discovering Knowledge from the Deep Web
[Nayak et al., 2012]

Content of the deep Web hidden to classical Web search engines
(they just follow links)

But very valuable and high quality!

Even services allowing access through the surface Web (e.g.,
e-commerce) have more semantics when accessed from the deep
Web

How to benefit from this information?

How to analyze, extract and model this information?

Focus here: Automatic, unsupervised, methods, for a given domain of
interest
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Notes on the Extensional Approach

Main issues:
Discovering services
Choosing appropriate data to submit forms
Use of data found in result pages to bootstrap the siphoning process
Ensure good coverage of the database

Approach favored by Google, used in production [Madhavan et al.,
2006]

Not always feasible (huge load on Web servers)
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Notes on the Intensional Approach

More ambitious [Chang et al., 2005, Senellart et al., 2008]
Main issues:

Discovering services
Understanding the structure and semantics of a form
Understanding the structure and semantics of result pages
Semantic analysis of the service as a whole
Query rewriting using the services

No significant load imposed on Web servers
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Forms

Analyzing the structure of HTML forms.

Authors

Title Year Page 

Conference ID 

Journal Volume Number 

Maximum of  matches

Goal
Associating to each form field the appropriate domain concept.
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1st Step: Structural Analysis

1. Build a context for each field:

label tag;
id and name attributes;
text immediately before the field.

2. Remove stop words, stem.

3. Match this context with the concept names, extended with
WordNet.

4. Obtain in this way candidate annotations.
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2nd Step: Confirm Annotations w/ Probing

For each field annotated with a concept c:

1. Probe the field with nonsense word to get an error page.

2. Probe the field with instances of c (chosen representatively of the
frequency distribution of c).

3. Compare pages obtained by probing with the error page (by
clustering along the DOM tree structure of the pages), to
distinguish error pages and result pages.

4. Confirm the annotation if enough result pages are obtained.
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How well does this work?

Good results in practice [Senellart et al., 2008]

Initial annot. Confirmed annot.

p(%) r(%) p(%) r(%)

Average 49 73 82 73

Probing raises precision without hurting recall

Clustering according to DOM paths: much better than previous
approaches
But some critical assumptions:

All form fields are independent
It is possible to query a field with a subword
No field is required
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Better Form Analysis

// Do not submit unless form is valid
$j("#searchForm").submit(function(event) {

$j("#searchFormLocationClue").val($j("#searchFormLocationClue").val().trim());
if ($j("#searchFormBusinessClue").val().isEmpty()) {

alert(’Help us help you\nWe need more information to
complete your search.\n\n- Please enter a Search Term’);

return false;
} else {

return true;
}

});
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JavaScript: the Data Language of the Web

Lots of JavaScript code on the Web (source is always available!)

Lots of information can be gained by static analysis of this code:

Required fields
Dependencies between fields (if x is filled in, so should be y ; the
value of x should be less than that of y ; etc.)
Datatype of each fields (regular expressions, numeric types, dates,
etc.)

Is this feasible in practice?
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ProFoUnd [Benedikt et al., 2012b]
architecture

Field Reference 
Detector

Entry 
Points

Entry Point 
Finder

Code 
Filter

Condi-
tions

Interception 
Finder

Inter-
ception Abstracter

Constraint 
Generator

Con-
straints

Entry points are HTML event attributes, setting of event handlers
in code, etc. (event: click on a submit button, submit on a form)

Conditions are (in)equality tests on form field values (possibly
aliased)

Interceptions are interruptions of the form submission process
(error messages, simple return false; in event handler, etc.)
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Preliminary evaluation

70 real-estate websites containing search forms

30 out of 70 use client-side validation, with a total of 35 constraints

100% precision: all identified constraints are correct

63% recall: 22 out of 35 JS-enforced constraints were found
Why did we miss some?

Use of complex JavaScript features, such as eval
Code obfuscation by introducing extra layers of computation
Limitations of the abstracter – work in progress!
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Result Pages

Pages resulting from a given form submission:

share the same structure;

set of records with fields;

unknown presentation!

Goal
Building wrappers for a given kind of
result pages, in a fully automatic, unsu-
pervised, way.
Simplification: restriction to a domain
of interest, with some domain knowl-
edge.
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Annotation by domain knowledge

Automatic pre-annotation with domain knowledge (gazetteer):

Entity recognizers for dates, person names, etc.

Titles of articles, conference names, etc.: those that are in the
knowledge base.

Both incomplete and imprecise!
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Unsupervised Wrapper Induction

Use the pre-annotation as the input of a structural supervised
machine learning process.

Purpose: remove outliers, generalize incomplete annotations.

table / articles

tr / article

td / title

token / title

#text

td / authors

token / author

#text
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Architecture

ANNOTATED

LCA Analysis

Posttreatment

Outlier Removal

Extract Features

Gazetteer

XCRF

Train XCRF

CORPUS

Extract Data
enrich

Tokenization

Preprocessing

Pretreatment

{
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How well does this work?

Good, but not great, results [Senellart et al., 2008]

Title Author Date

Fg Fx Fg Fx Fg Fx

Average 44 63 64 70 85 76

Fg : F -measure (%) of the annotation by the gazetteer.
Fx : F -measure (%) of the annotation by the induced wrapper.

Main issue: the machine learning assumes that the initial
annotation is really the reference one



24 / 43 INFRES Pierre Senellart

Handling Uncertainty

The outcome of an annotation process, of machine learning, is
inherently imprecise

Even more so for conditional random fields: we get probabilities
that an item is given an annotation

Issue: usually, these confidence scores, probabilities, etc., are
disregarded and just used for ranking or top-k selection

What we would like: to deal with these scores in a rigorous
manner, and keep them throughout a long process

Web data is usually loosely structured and tree shaped ⇒
XML-like
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Uncertain data

Numerous sources of uncertain data:

Measurement errors

Data integration from contradicting sources

Imprecise mappings between heterogeneous schemata

Imprecise automatic process (information extraction, natural
language processing, etc.)

Imperfect human judgment
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Managing this imprecision

Objective
Not to pretend this imprecision does not exist, and manage it as rigor-
ously as possible throughout a long, automatic and human, potentially
complex, process.

Especially:

Use probabilities to represent the confidence in the data

Query data and retrieve probabilistic results

Allow adding, deleting, modifying data in a probabilistic way
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A General Probabilistic XML Model
[Abiteboul et al., 2009, Kimelfeld and Senel-
lart, 2013]

root

sensor

id

i25

mes
e

t

1

vl

30

mes

t

2

vl

N (70, 4)

sensor

id

i35

mes
e

t

1

vl

MUX

17
.6

23
.1

20
.3

e : event “it did not
rain” at time 1

MUX: mutually
exclusive options

N (70, 4): normal
distribution

Compact representation of a set of possible worlds

Two kinds of dependencies: global (e) and local (MUX)

Generalizes existing models of the literature
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Query languages on trees

Tree-pattern queries (TP) /A[C/D]//B

A

C

D

B

Tree-pattern queries with joins (TPJ) for $x in $doc/A/C/D

return $doc/A//B[.=$x]

A

C

D

B

Monadic second-order queries (MSO) generalization of TP, do not
cover TPJ unless the size of the alphabet is bounded

But also: updates (insertion, deletions), aggregate queries (count, sum,
max, avg. . . )
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Querying probabilistic XML

Semantics of a (Boolean) query = probability:

1. Generate all possible worlds of a given probabilistic document

(possibly exponentially many)

2. In each world, evaluate the query

3. Add up the probabilities of the worlds that make the query true

EXPTIME algorithm! Can we do better, i.e., can we apply directly the
algorithm on the probabilistic document?

We shall talk about data complexity of query answering.
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Complexity of Query Evaluation

Boolean queries:

Local dependencies Global dependencies

TP
PTIME
[Kimelfeld et al., 2009]

FP#P-complete

TPJ FP#P-complete FP#P-complete

MSO
PTIME
[Cohen et al., 2009]

FP#P-complete

Aggregate queries: (somewhat) tractable on local dependencies
when the aggregate function is a monoid function; continuous
distributions do not add complexity [Abiteboul et al., 2010]

Not the same kind of updates are tractable for local and global
dependencies [Kharlamov et al., 2010]
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Datalog

Basic query language with recursion.

ReachGood()← Start(x ),Reach(x , y),Good(y)

Reach(x , y)← Reach(x , z ),Reach(z , y)

Reach(x , y)← G(x , y)

Rules consisting of Horn clauses.

Heads of rules are intensional predicates.

Other predicates are extensional (input) predicates.

Distinguished goal predicate.

Given an instance of the input predicates, computes the goal predicate
using a least fixed point semantics.
Monadic Datalog (MDL)= all intensional predicates are unary.
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Datalog

ReachGood()← Start(x ),Reach(x , y),Good(y)

Reach(x , y)← Reach(x , z ),Reach(z , y)

Reach(x , y)← G(x , y)

DL query, not MDL

ReachGood()← Reachable(x ),Good(x )

Reachable(y)← G(x , y),Reachable(x )

Reachable(x )← Start(x )

(Equivalent) MDL query
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Containment of Datalog

Q ⊆ Q ′ iff for every input instance D , Q(D) ⊆ Q ′(D)

One can use containment to decide equivalence, giving natural way to
optimize recursive queries.

Bad news [Shmueli, 1987]
Datalog containment and equivalence are undecidable

But important special cases known to be decidable, e.g., MDL
containment in is in 2EXPTIME [Cosmadakis et al., 1988].
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MDL containment and Restricted Interfaces

Restricted Access Scenario
We have a relational schema with relations R1 . . .Rn .
Each Ri has some arity ari and is additionally restricted in that access
is only via a set of access methods m1 . . .mni . An access method has a
set of “input positions” S ⊆ {1 . . . ari} that require known values.
An access to method mi is a binding of the input positions of mi ,
which returns an output.

Given an instance I for the schema, a set of initial constants C0 the
access patterns define a collection of valid access paths: sequences of
accesses ac1 . . . ack and responses such that each value in the binding
to aci is either in C0 or is an output of acj with j < i . Facts that are
returned by valid paths are the accessible data.
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Access Methods

Method ApartmentFind:
Region, Area, NumBeds → Address, Price, Description, Link
Above the input fields have enum domains – but in general the domains can
be infinite (e.g., textboxes). Querying over limited interfaces arises in many
other data management settings: web services, legacy database managers.
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Equivalence with Access Patterns

Given two conjunctive queries Q , Q ′ and a schema with access
patterns, determine whether Q and Q ′ agree on the accessible data.
Similarly Q is contained in Q ′ relative to the access patterns if
whenever Q is true on the accessible data, then so is Q ′.

Question
What is the complexity of query equivalence, containment under access
patterns?

Containment can be used to solve a number of other static analysis
questions about limited access schemas, such as whether an access is
relevant to a query. [Benedikt et al., 2011]
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Limited Access Containment and MDL
[Li and Chang, 2001]

Axiomatizing accessibility

Accessible(xj )← (R(x⃗ ) ∧
⋀︀

i∈input(m) Accessible(xi ))

Accessible(c)←

c a constant or value in some enum datatype of the schema.

An MDL program that computes the accessible values: those
obtainable via a valid access path.
⇒ For any UCQ query Q one can write an MDL query Qacc that
computes the value of Q restricting to accessible values.

Q contained in Q ′ under access patterns ⇔
Qacc contained in Q ′ on all databases.
Containment of a Monadic Datalog Query in a UCQ!
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(Formerly) Open Questions

Is the 2EXPTIME bound on UCQ containment tight?
Only known lower-bound was PSPACE.
Yes, the bound is tight. [Benedikt et al., 2012a]

What about containment under limited access patterns?
Only obvious lower bound of NP; coNEXPTIME upper bound
proved for special cases [Calì and Martinenghi, 2008]
coNEXPTIME-complete [Benedikt et al., 2011, 2012b]

The use of these bounds to get practical query rewriting algorithms is
largely open.
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In Brief

Exploiting deep Web data in a rigorous manner requires combining
techniques:

Information retrieval

Information extraction

Machine learning

Database systems

Database theory

Static analysis

Help is most welcome!
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Merci.
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Conditional Random Fields

Generalization of hidden Markov Models [Lafferty et al., 2001]

Probabilistic discriminative model: models the probability of an
annotation given an observable (different from generative models)

Graphical model: every annotation can depends on the
neighboring annotations (as well as the observable); dependencies
measured through (boolean or integer) feature functions.

Features are automatically assigned a weight and combined to find
the most probable annotation given the observable.
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Conditional Random Fields for XML (XCRF)
[Gilleron et al., 2006]

Observables: various structural and content-based features of nodes
(tag names, tag names of ancestors, type of textual
content. . . ).

Annotations: domain concepts assigned to nodes of the tree.

Tree probabilistic model:

models dependencies between
annotations;

conditional independence:
annotations of nodes only depend on
their neighbors (and on observables).

Y1

Y2

Y3 Y4

Y5

Y6 Y7

Y8

Most discriminative features selected.
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Why Probabilistic XML?

Extensive literature about probabilistic relational databases [Dalvi
et al., 2009, Widom, 2005, Koch, 2009]

Different typical querying languages: conjunctive queries vs
tree-pattern queries (possibly with joins)
Cases where a tree-like model might be appropriate:

No schema or few constraints on the schema
Independent modules annotating freely a content warehouse
Inherently tree-like data (e.g., mailing lists, parse trees) with
naturally occurring queries involving the descendant axis

Remark
Some results can be transferred from one model to the other. In other
cases, connection much trickier!
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