UnSAID: Uncertainty and Structure in the Access to Intensional Data

Pierre Senellart
Uncertain data is everywhere

Numerous sources of **uncertain data**:

- Measurement errors
- Data integration from contradicting sources
- Imprecise mappings between heterogeneous schemas
- Imprecise automatic processes (information extraction, natural language processing, etc.)
- Imperfect human judgment
- Lies, opinions, rumors
Structured data is everywhere

Data is **structured**, not flat:

- Variety of **representation formats** of data in the wild:
 - relational tables
 - trees, semi-structured documents
 - graphs, e.g., social networks or semantic graphs
 - data streams
 - complex views aggregating individual information

- Heterogeneous schemas

- Additional **structural constraints**: keys, inclusion dependencies
Intensional data is everywhere

Lots of data sources can be seen as intensional: accessing all the data in the source (in extension) is impossible or very costly, but it is possible to access the data through views, with some access constraints, associated with some access cost.

- Indexes over regular data sources
- Deep Web sources: Web forms, Web services
- The Web or social networks as partial graphs that can be expanded by crawling
- Outcome of complex automated processes: information extraction, natural language analysis, machine learning, ontology matching
- Crowd data: (very) partial views of the world
- Logical consequences of facts, costly to compute
Introducing UnSAID

- **Uncertainty and Structure in the Access to Intensional Data**
- Jointly deal with Uncertainty, Structure, and the fact that access to data is **limited** and has a **cost**, to solve a user’s **knowledge need**
- **Lazy evaluation** whenever possible
- Evolving probabilistic, structured view of the **current knowledge of the world**
- Solve at each step the problem: **What is the next best access to do** given my current knowledge of the world and the knowledge need
- **Knowledge acquisition plan** (recursive, dynamic, adaptive) that minimizes access cost, and provides probabilistic guarantees
formulation

Knowledge need
Knowledge need

Current knowledge of the world

$priors$

Structured source profiles

$modeling$

formulation
Knowledge need

- Knowledge acquisition plan

- Structure source profiles

- Current knowledge of the world

- Priors

- Formulation

- Optimization

- Modeling

Knowledge need

Current knowledge of the world

Priors

Structured source profiles

Knowledge acquisition plan

Formulation

Optimization

Modeling
Knowledge need

- Current knowledge of the world
 - priors
 - Structured source profiles
 - modeling
 - intensional access

- Knowledge acquisition plan
 - optimization
 - Uncertain access result

formulation
Knowledge need

Current knowledge of the world

Structured source profiles

Knowledge acquisition plan

Knowledge update

Uncertain access result

Formulation

Optimization

Modeling

Intensional access

Knowledge acquisition plan

Knowledge update

Current knowledge of the world

Structured source profiles

Knowledge acquisition plan

Knowledge need
What this talk is about

- **General overview** of my current (and recent) research, through one-slide presentation of individual works
- Hopefully, emerging **consistent themes**
- **Connections** with the UnSAID problem
Plan

Introduction

Instances of UnSAID

Uncertainty and Structure

UnSAID Applications

Conclusion
Adaptive focused crawling
(Gouriten, Maniu, and Senellart 2014)

- **Problem:** Efficiently crawl nodes in a graph such that **total score is high**
- **Challenge:** The score of a node is unknown till it is crawled
- **Methodology:** Use various predictors of node scores, and **adaptively select the best one so far** with multi-armed bandits
Problem: Efficiently crawl nodes in a graph such that total score is high

Challenge: The score of a node is unknown till it is crawled

Methodology: Use various predictors of node scores, and adaptively select the best one so far with multi-armed bandits
Adaptive focused crawling
(Gouriten, Maniu, and Senellart 2014)

- **Problem:** Efficiently crawl nodes in a graph such that total score is high
- **Challenge:** The score of a node is unknown till it is crawled
- **Methodology:** Use various predictors of node scores, and adaptively select the best one so far with multi-armed bandits
Problem: Optimize the amount of distinct content retrieved from a Web site w.r.t. the number of HTTP requests

Challenge: No way to know a priori where the content lies on the Web site

Methodology: Sample a small part of the Web site and discover optimal crawling patterns from it
Problem: Given a query, what is the next best question to ask the crowd when crowd answers are constrained by a partial order.

Challenge: Order constraints make questions not independent of each other.

Methodology: Construct a polytope of admissible regions and uniformly sample from it to determine the impact of a data item.
Online influence maximization

Problem: Run influence campaigns in social networks, optimizing the amount of influenced nodes

Challenge: Influence probabilities are unknown

Methodology: Build a model of influence probabilities and focus on influent nodes, with an exploration/exploitation trade-off
Problem: Determine efficiently the probability of a query being true, given some data and uncertain rules over this data.

Challenge: Produced facts may be correlated, the same facts can be generated in different ways, probability computation is hard in general...

Methodology: Find restrictions on the rules (guarded?) and the data (bounded tree-width?) that make the problem tractable.
Plan

Introduction

Instances of UnSAID

Uncertainty and Structure

UnSAID Applications

Conclusion
Efficient querying of uncertain graphs
(Maniu, Cheng, and Senellart 2014)

- **Problem:** Optimize query evaluation on probabilistic graphs
- **Challenge:** Probabilistic query evaluation is hard, and standard indexing techniques for large graphs do not work
- **Methodology:** Build a tree decomposition that preserves probabilities and run the query on this tree decomposition
Uniform sampling of XML documents
(Tang, Amarilli, Senellart, and Bressan 2014)

- **Problem:** Sample a subtree of fixed size/characteristics uniformly at random from a tree, e.g., for data pricing reasons

- **Challenge:** Naive top-down sampling does not work, will result in biased sampling depending on the tree structure

- **Methodology:** Bottom-up annotation of the tree recording distribution information, followed by top-down sampling
Truth discovery on heterogeneous data

- **Problem:** Determine true values from integrated semi-structured Web sources

- **Challenge:** Semi-structured data on the Web is contradictory and copied from source to source

- **Methodology:** Estimate the truth and determine copy patterns between sources, not only of base facts but of subtrees of the data
Probabilistic XML conditioning

- **Problem**: Incorporate a logical constraint into a probabilistic XML database
- **Challenge**: Constraining is not a standard probabilistic database operation, NP-hard in general
- **Methodology**: Identify tractable subcases
- **Problem:** Clean semantics for nondeterministic order-aware queries

- **Challenge:** Existing data manipulation languages treat order in an ad hoc manner, with no compositional semantics

- **Methodology:** Order-aware type system for strict static checking, and individual data-level provenance annotations for dynamic analysis of allowed ordered operations

<table>
<thead>
<tr>
<th>Read</th>
<th>Ord</th>
<th>Ann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>$(t_0 \cdot [0 < Y_0]) \otimes 1 + (t_1 \cdot [1 < Y_0]) \otimes 1$</td>
<td>r_0</td>
</tr>
<tr>
<td>Door</td>
<td>$(t_0 \cdot [0 < Y_0 + Y_1]) \otimes 1 + (t_1 \cdot [1 < Y_0 + Y_1]) \otimes 1$</td>
<td>r_1</td>
</tr>
<tr>
<td>Light</td>
<td>$(t_0 \cdot [0 < Y_0 + Y_1]) \otimes 1 + (t_1 \cdot [1 < Y_0 + Y_1]) \otimes 1 + (t_2 \cdot [1 < Y_0 + Y_1 + Y_2]) \otimes 1$</td>
<td>r_2</td>
</tr>
<tr>
<td>Beep</td>
<td>$(r_0 \cdot [Y_0 \leq 0]) \otimes 1 + (r_1 \cdot [Y_0 + Y_1 \leq 0]) \otimes 1 + (r_2 \cdot [Y_0 + Y_1 + Y_2 \leq 0]) \otimes 1$</td>
<td>t_0</td>
</tr>
<tr>
<td>Door</td>
<td>$t_0 \otimes 1 + (r_0 \cdot [Y_0 \leq 1]) \otimes 1 + (r_1 \cdot [Y_0 + Y_1 \leq 1]) \otimes 1 + (r_2 \cdot [Y_0 + Y_1 + Y_2 \leq 1]) \otimes 1$</td>
<td>t_1</td>
</tr>
</tbody>
</table>
Plan

Introduction

Instances of UnSAID

Uncertainty and Structure

UnSAID Applications

Conclusion
Problem: Infer trajectories and meta-information of moving objects from Web and social Web data

Challenge: Uncertainty and inconsistency in extracted information

Methodology: Data cleaning by filtering incorrect locations, and truth discovery to identify reliable sources
Smarter urban mobility

- **Problem:** Smart and adaptive recommendations for mobility in cities (transit, bike rental, car, etc.)
- **Challenge:** Should take into account personal information (calendar, etc.), past trajectories, public information about transit and traffic
- **Methodology:** Map GPS tracks to routes of public transport, learn route patterns, infer destination while in transit and provide push suggestions
Plan

Introduction

Instances of UnSAID

Uncertainty and Structure

UnSAID Applications

Conclusion
What’s next?

- So far, we have tackled *individual* aspects or specializations of the UnSAID problem.
- Now we need to consider the general problem, and propose *general* solutions.
- There is a strong potential for uncovering the *unsaid information* from the Web.
- Strong *connections* with a number of research areas: active learning, reinforcement learning, adaptive query evaluation, etc. Inspiration to get from these areas.
- *Everyone is welcome* to join the effort!
What’s next?

- So far, we have tackled individual aspects or specializations of the UnSAID problem.
- Now we need to consider the general problem, and propose general solutions.
- There is a strong potential for uncovering the unsaid information from the Web.
- Strong connections with a number of research areas: active learning, reinforcement learning, adaptive query evaluation, etc. Inspiration to get from these areas.
- Everyone is welcome to join the effort!

Merci.

