

ProFoUnd: Program-analysis-based Form Understanding

(joint work with M. Benedikt, T. Furche, A. Savvides)

IC2 Group Seminar, 16 May 2012

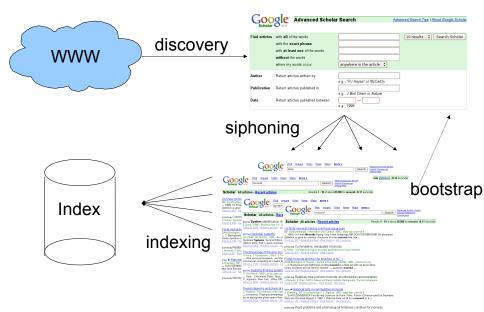
Definition (Deep Web, Hidden Web, Invisible Web)

All the content on the Web that is not directly accessible through hyperlinks. In particular: HTML forms, Web services.

Size estimate: 500 times more content than on the surface Web! [BrightPlanet, 2001]. Hundreds of thousands of deep Web databases [Chang et al., 2004]

Example

- Yellow Pages and other directories;
- Library catalogs;
- Weather services;
- US Census Bureau data;
- etc.


Discovering Knowledge from the Deep Web [Varde et al., 2009]

- Content of the deep Web hidden to classical Web search engines (they just follow links)
- But very valuable and high quality!
- Even services allowing access through the surface Web (e.g., e-commerce) have more semantics when accessed from the deep Web
- How to benefit from this information?

Focus here: Automatic, unsupervised, methods

Extensional Approach

Notes on the Extensional Approach

Main issues:

- Discovering services
- Choosing appropriate data to submit forms
- Use of data found in result pages to bootstrap the siphoning process
- Ensure good coverage of the database
- Approach favored by Google, used in production [Madhavan et al., 2006]
- Not always feasible (huge load on Web servers)

Intensional Approach

Notes on the Intensional Approach

- More ambitious [Chang et al., 2005, Senellart et al., 2008]Main issues:
 - Discovering services
 - Understanding the structure and semantics of a form
 - Understanding the structure and semantics of result pages
 - Semantic analysis of the service as a whole
- No significant load imposed on Web servers

Introduction

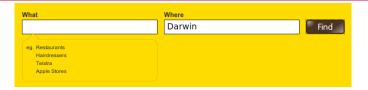
ProFoUnd

JavaScript and the Deep Web Form Understanding through JavaScript Analysis

Conclusions

Introduction

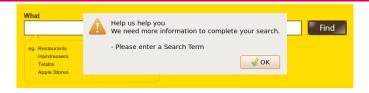
ProFoUnd


JavaScript and the Deep Web

Form Understanding through JavaScript Analysis

Conclusions

Better Form Analysis



INFRES

Pierre Senellart

Better Form Analysis

Better Form Analysis

What	Help us help you We need more information to complete your search.	Find
eg. Restaurants Hairdressers Telstra Apple Stores	- Please enter a Search Term	
Apple Stores		

```
// Do not submit unless form is valid
$j("#searchForm").submit(function(event) {
    $j("#searchFormLocationClue").val($j("#searchFormLocationClue").val().trim());
    if ($j("#searchFormBusinessClue").val().isEmpty()) {
        alert('Help us help you\nWe need more information to
            complete your search.\n\n- Please enter a Search Term');
        return false;
    } else {
        return true;
    }
});
```


JavaScript: the Data Language of the Web

- Lots of JavaScript code on the Web (source is always available!)
- Lots of information can be gained by static analysis of this code:
 - Required fields
 - Dependencies between fields (if x is filled in, so should be y; the value of x should be less than that of y; etc.)
 - Datatype of each fields (regular expressions, numeric types, dates, etc.)
- Is this feasible in practice?

Introduction

ProFoUnd

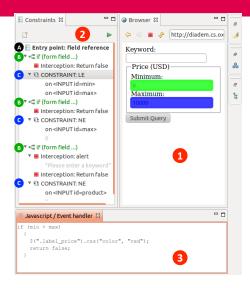
JavaScript and the Deep Web Form Understanding through JavaScript Analysis

Conclusions

ProFoUnd architecture

- Entry points are HTML event attributes, setting of event handlers in code, etc. (event: *click* on a submit button, *submit* on a form)
- Conditions are (in)equality tests on form field values (possibly aliased)
- Interceptions are interruptions of the form submission process (error messages, simple return false; in event handler, etc.)

- Rice's theorem: no hope in a sound and complete constraint finder
- But that's ok! Anything that we can learn is more than what we have at the moment.
- Coarse abstraction of the JS code:
 - Only conditions on the code flow from entry points to interceptions are considered.
 - We consider only a simple subset of the JS language; anything beyond that is ignored.
 - Side-effects are mostly ignored
- As a consequence: no guarantee of either soundness or completeness ⇒ only experimental guarantees



Engineering issues to deal with

- Extracting a Web form model: DIADEM's tools http://www.diadem-project.info/
- Parsing JavaScript: Mozilla Rhino (but see later)
- JavaScript frameworks: ad-hoc support for most popular ones (jQuery, Prototype, ASP.NET generated code, YUI, Dojo, MooTools)
- Evaluating JavaScript code (e.g., to determine what a jQuery selector (\$.("form#lookup .product")) returns): Mozilla JS engine
- Abstraction, alias references, etc.: ProFoUnd core, developed from scratch

ProFoUnd interface [Benedikt et al., 2012]

- 1. Web page view, with fields highlighted
- 2. Constraints found: $min < max, max \neq 0,$ $product \neq "$
- 3. JS fragment for the highlighted constraint

Book Strain Preliminary evaluation

- 70 real-estate websites containing search forms
- 30 out of 70 use client-side validation, with a total of 35 constraints
- **100%** precision: all identified constraints are correct
- **63%** recall: 22 out of 35 JS-enforced constraints were found
- Why did we miss some?
 - Use of complex JavaScript features, such as eval
 - Code obfuscation by introducing extra layers of computation
 - Limitations of the abstracter work in progress!

Introduction

ProFoUnd

Conclusions

19 / 22

INFRES

Pierre Senellart

- Exploiting data from the deep Web in an automatic manner: non-trivial, largely open problem
- Classical techniques exploit both domain knowledge and the structure of forms and result pages
- Possible to get very precise information about the behavior of Web forms by static analysis of client-side code

Born Perspectives

- Use a real JS parser (Rhino has lots of limitations); trying with SpiderMonkey, Mozilla's JS engine
- Large-scale evaluation, application to deep Web crawling
- Type inference for form fields: regular expressions, simple datatypes
- Combining with dynamic analysis
- Type inference for AJAX applications: static analysis of AJAX calls to determine input and output types (possibly JSON or XML types)

PhD Opportunity

PhD scholarship on this topic at U. Oxford, looking for excellent candidates!

Born Perspectives

- Use a real JS parser (Rhino has lots of limitations); trying with SpiderMonkey, Mozilla's JS engine
- Large-scale evaluation, application to deep Web crawling
- Type inference for form fields: regular expressions, simple datatypes
- Combining with dynamic analysis
- Type inference for AJAX applications: static analysis of AJAX calls to determine input and output types (possibly JSON or XML types)

PhD Opportunity

PhD scholarship on this topic at U. Oxford, looking for excellent candidates!

21 / 22

Merci.

22 / 22

INFRES

Pierre Senellart

- Michael Benedikt, Tim Furche, Andreas Savvides, and Pierre Senellart. ProFoUnd: Program-analysis-based form understanding. In *Proc. WWW*, Lyon, France, April 2012. Demonstration.
- BrightPlanet. The deep Web: Surfacing hidden value. White Paper, July 2001.
- Kevin Chen-Chuan Chang, Bin He, Chengkai Li, Mitesh Patel, and Zhen Zhang. Structured databases on the Web: Observations and implications. *SIGMOD Record*, 33(3):61-70, September 2004.
- Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang. Toward large scale integration: Building a metaquerier over databases on the Web. In *Proc. CIDR*, Asilomar, USA, January 2005.

- Jayant Madhavan, Alon Y. Halevy, Shirley Cohen, Xin Dong, Shawn R. Jeffery, David Ko, and Cong Yu. Structured data meets the Web: A few observations. *IEEE Data Engineering Bulletin*, 29 (4):19-26, December 2006.
- Pierre Senellart, Avin Mittal, Daniel Muschick, Rémi Gilleron, and Marc Tommasi. Automatic wrapper induction from hidden-Web sources with domain knowledge. In *Proc. WIDM*, pages 9–16, Napa, USA, October 2008.
- Aparna Varde, Fabian M. Suchanek, Richi Nayak, and Pierre Senellart.Knowledge discovery over the deep Web, semantic Web and XML.In *Proc. DASFAA*, pages 784–788, Brisbane, Australia, April 2009.Tutorial.