Boolean Provenance

Representations Probabilistic Databases Power Indices

Provenance, Probabilities, and Power Indices in Databases

Pierre Senellart

ENS Paris-Saclay, 1st March 2024

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

Mon parcours (1/2)

2000 Entrée à l'ENS Ulm après une prépa MP

- 2001 Stage de L3 en Belgique sur la détection de synonymes dans le graphe d'un dictionnaire 🙂 [Blondel et al., 2004]
- 2002 Stage de M1 en Suède sur la vérification de circuits logiques codant des multiplicateurs 🔅

2002-2003 M2 de Données, IA, IHM à Orsay

- 2003 Stage de M2 sur la découverte par crawl des limites d'un site Web (avec S. Abiteboul, Inria) [Senellart, 2005]
- 2003-2004 Césure d'un an pour travailler dans l'industrie (traduction automatique) [Attnäs et al., 2005, Senellart and Senellart, 2005]

0000

Mon parcours (2/2)

2004-2007 Thèse sur le Web caché, XML probabiliste... (avec S. Abiteboul, Inria) [Senellart, 2007]

- 2007 Post-doc en Allemagne sur l'archivage du Web [Spaniol et al., 2009]
- 2007 Recruté Maître de conférences à Télécom Paris
- 2012 Habilitation à diriger les recherches
- 2016 Recruté Professeur des Universités à l'ENS Ulm

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

Mon boulot maintenant (1/2)

- Cours à l'ENS (Informatique pratique L3, Enseignement Bases de données L3, Projet de Recherche M1), à PSL (M2 IASD, CPES)
 - Administration de l'enseignement: gestion de Master, gestion du concours d'entrée, coordination des enseignements à PSL

Recherche

- Réfléchir à des sujets intéressants (provenance, incertitude des données, crawl du Web, extraction d'information depuis des PDF...), trouver des solutions, les tester
 - Encadrer des doctorants, stagiaires, ingénieurs, post-doctorants sur ces sujets
 - Rédiger des articles avec nos résultats, les présenter
 - Implémenter ça dans des logiciels, les publier, en assurer le support

Mon boulot maintenant (2/3)

Boolean Provenance Representations Probabilistic Databases

Who am I?

00000

Gestion de la recherche • Responsabilité (budget, projet, rapports, personnels) d'une équipe de recherche https://team.inria.fr/valda/

- Adjoint du directeur du Département Informatique d'Ulm (idem, mais à l'échelle du département, et seulement adjoint)
- Président (élu) de la section 6 (Aspects symboliques de l'informatique) du Comité national de la recherche scientifique: recrutement des chercheurs CNRS, évaluation des chercheurs et des laboratoires CNRS https://cn6.fr/

Mon boulot maintenant (3/3)

Service à la communauté • Comités de programme, relectures, etc. pour des conférences et journaux

- Militer pour l'accès ouvert non commercial aux publications scientifiques, à différents niveaux
- Participation aux travaux du *Comité éthique* et scientifique de Parcoursup: chaque année, étudier en profondeur certains sujets liés à Parcoursup pour un rapport (public!) au parlement

Who am I? Boolean Provenance •00000000

Outline

Boolean Provenance

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

Provenance management

• Data management all about query evaluation

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

Provenance management

- Data management all about query evaluation
- What if we want something more than the query result?
 - Where does the result come from?
 - Why was this result obtained?
 - How was the result produced?
 - What is the probability of the result?
 - How many times was the result obtained?
 - How would the result change if part of the input data was missing?
 - What is the minimal security clearance I need to see the result?
 - What is the most economical way of obtaining the result?
 - How can a result be explained in layman terms?
 - Which part of the input contributes the most to the result?

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

Provenance management

- Data management all about query evaluation
- What if we want something more than the query result?
 - Where does the result come from?
 - Why was this result obtained?
 - How was the result produced?
 - What is the probability of the result?
 - How many times was the result obtained?
 - How would the result change if part of the input data was missing?
 - What is the minimal security clearance I need to see the result?
 - What is the most economical way of obtaining the result?
 - How can a result be explained in layman terms?
 - Which part of the input contributes the most to the result?
- Provenance management: along with query evaluation, record additional bookkeeping information allowing to answer (all!) the questions above

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

Provenance management

- Data management all about query evaluation
- What if we want something more than the query result?
 - Where does the result come from?
 - Why was this result obtained?
 - How was the result produced?
 - What is the probability of the result?
 - How many times was the result obtained?
 - How would the result change if part of the input data was missing?
 - What is the minimal security clearance I need to see the result?
 - What is the most economical way of obtaining the result?
 - How can a result be explained in layman terms?
 - Which part of the input contributes the most to the result?
- Provenance management: along with query evaluation, record additional bookkeeping information allowing to answer (all!) the questions above

Data model: annotated relations

• Relational data model: data decomposed into relations (sets or multisets of tuples), with labeled attributes...

Data model: annotated relations

• Relational data model: data decomposed into relations (sets or multisets of tuples), with labeled attributes...

name	position	city	
John	Director	New York	
Paul	Janitor	New York	
Dave	Analyst	Paris	
Ellen	Field agent	Berlin	
Magdalen	Double agent	Paris	
Nancy	HR director	Paris	
Susan	Analyst	Berlin	

Data model: annotated relations

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

00000000

- Relational data model: data decomposed into relations (sets or multisets of tuples), with labeled attributes...
- ... with an extra provenance annotation for each tuple (think of it first as a tuple id)

name	position	city	prov
John	Director	New York	x_1
Paul	Janitor	New York	x_2
Dave	Analyst	Paris	x_3
Ellen	Field agent	Berlin	x_4
Magdalen	Double agent	Paris	x_5
Nancy	HR director	Paris	x_6
Susan	Analyst	Berlin	x_7

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

Queries

- A query is an arbitrary function that maps databases over a fixed database schema \mathcal{D} to relations over some relational schema \mathcal{R}
- The query does not consider or produce any provenance annotations; we will give semantics for the provenance annotations of the output, based on that of the input
- In practice, one often restricts to specific query languages:
 - Monadic-Second Order logic (MSO)
 - First-Order logic (FO) or the relational algebra, or fragments thereof (such as UCQs, i.e., the positive relational algebra)
 - SQL with aggregate functions
 - etc.

Boolean provenance [Imieliński and Lipski, 1984]

Representations Probabilistic Databases Power Indices Conclusion

- $\mathcal{X} = \{x_1, x_2, \dots, x_n\}$ finite set of Boolean events
- Provenance annotation: Boolean function over X, i.e., a function of the form: (X → {⊥, ⊤}) → {⊥, ⊤}
- Interpretation: possible-world semantics

Boolean Provenance

000000000

- every valuation $\nu : \mathcal{X} \to \{\bot, \top\}$ denotes a possible world of the database
- the provenance of a tuple on
 ν evaluates to ⊥ or ⊤
 depending whether this tuple exists in that possible world
- for example, if every tuple of a database is annotated with the indicator function of a distinct Boolean event, the set of possible worlds is the set of all subdatabases

Example of possible worlds

name	position	city	prov
John	Director	New York	x_1
Paul	Janitor	New York	x_2
Dave	Analyst	Paris	x_3
Ellen	Field agent	Berlin	x_4
Magdalen	Double agent	Paris	x_5
Nancy	HR director	Paris	x_6
Susan	Analyst	Berlin	x_7

Example of possible worlds

name	position	city	prov
John	Director	New York	x_1
Dave	Analyst	Paris	x_3
Magdalen	Double agent	Paris	x_5
Susan	Analyst	Berlin	x_7
	~ ~ ~ ~ ~	~ ~ ~	
ν :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Boolean provenance of query results

Representations Probabilistic Databases Power Indices

- ν(D): the subdatabase of D where all tuples whose provenance annotation evaluates to ⊥ by ν are removed
- The Boolean provenance $\operatorname{prov}_{q,D}(t)$ of tuple $t \in q(D)$ is the function:

Example (What cities are in the table?)

Boolean Provenance

0000000000

name	position	city	prov	city	prov
John	Director	New York	x_1		-
Paul	Janitor	New York	x_2	Nour Vorl	$m \setminus m$
Dave	Analyst	Paris	x_3	New IOIK	$x_1 \lor x_2$
Ellen	Field agent	Berlin	x_4	Domin	$m \rightarrow m \rightarrow m$
Magdalen	Double agent	Paris	x_5	Paris	$x_3 \lor x_5 \lor z_5$
Nancy	HR director	Paris	x_6	Dorlin	$m \setminus m$
Susan	Analyst	Berlin	x_7	Derim	$x_4 \lor x_7$

Computing Boolean provenance

Theorem ([Imieliński and Lipski, 1984], Folklore)

Computing the provenance of Boolean query results for first-order queries (= the relational algebra, core of SQL) as Boolean functions is always possible and can be done in PTIME

Proof

Each operator of the relational algebra transforms into an operation on provenance: e.g., \wedge for cross products or joins, \vee for duplicate elimination, \wedge for difference...

Beyond Boolean provenance

- Can generalize Boolean provenance to arbitrary semiring provenance [Green and Tannen, 2006], that captures more detail about query evaluation than what Boolean provenance does
- For non-monotone queries, need for semirings with monus [Geerts and Poggi, 2010], though the theory is not as clean as with regular semirings [Amsterdamer et al., 2011a]
- Possible to also give a semantics to the provenance of aggregate queries, but need to introduce an algebraic structure at the value level (provenance semimodules [Amsterdamer et al., 2011b])
- Also works for queries with recursion such as Datalog [Green and Tannen, 2006, Deutch et al., 2014] though only for some semirings [Ramusat, 2022]

Outline

Representations

- So far, we have shown Boolean provenance as Boolean formulas, with no constraints on the shape of the formula
- May not be the most compact representation

00000

- May not be the most convenient representation for implementing provenance support in a database system
- May not be the most efficient representation to perform further computations from the provenance

Provenance formulas

- Quite straightforward
- Formalism used in most of the provenance literature

000000

- **PTIME** data complexity
- Expanding formulas (e.g., computing a DNF or CNF representation of the provenance) can result in an exponential blowup

Example

Is there a city with both an analyst and an agent, and if Paris is such a city, is there a director in the agency?

$$((x_3 \wedge x_5) \vee (x_4 \wedge x_7)) \wedge ((x_3 \wedge x_5) \wedge x_1)$$

Provenance circuits [Deutch et al., 2014, Amarilli et al., 2015]

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

• Use Boolean circuits to represent provenance

000000

- Every time an operation reuses a previously computed result, link to the previously created circuit gate
- Allow linear-time data complexity of provenance computation when restricted to bounded-treewidth databases [Amarilli et al., 2015], for arbitrary MSO queries
- Formulas can be quadratically larger than provenance circuits for MSO formulas, (log log)-larger for positive relational algebra queries [Wegener, 1987, Amarilli et al., 2016]

Example provenance circuit

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

OBDDs and d-Ds

- Various subclasses of Boolean circuits commonly used [Darwiche and Marquis, 2002]:
 - OBDD: Ordered Binary Decision Diagrams [Bryant, 1986]
 - d-D: deterministic (= \lor children are mutually exclusive) Decomposable (= \land children are on disjoint variables) circuits
- OBDDs can be obtained in PTIME data complexity on bounded-treewidth databases [Amarilli et al., 2016]
- d-Ds can be obtained in linear-time data complexity on bounded-treewidth databases [Amarilli et al., 2016]
- d-Ds can be obtained in polynomial-time for *some* monotone first-order queries on arbitrary databases [Monet, 2020]

Outline

Probabilistic Databases

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

Probabilistic databases [Green and Tannen, 2006, Suciu et al., 2011]

- Tuple-independent database: each tuple t in a database is annotated with independent probability Pr(t) of existing
- Probability of a possible world $D' \subset D$:

$$\Pr(D') = \prod_{t \in D'} \Pr(t) imes \prod_{t \in D' \setminus D} (1 - \Pr(t'))$$

• Probability of a tuple for a query q over D:

$$\Pr(t \in q(D)) = \sum_{\substack{D' \subseteq D \\ t \in q(D')}} \Pr(D')$$

- If $Pr(x_i) := Pr(x_i)$ where x_i is the provenance annotation of tuple x_i then $\Pr(t \in q(D)) = \Pr(\operatorname{prov}_{q,D}(t))$
- Computing the probability of a query in probabilistic databases thus amounts to computing Boolean provenance, and then computing the probability of a Boolean function
- Also works for more complex probabilistic models

Example of probability computation

	name position		city	prov	prob
	John	Director	New York	x_1	0.5
	Paul	Janitor	New York	x_2	0.7
	Dave	Analyst	Paris	x_3	0.3
	Ellen	Field agent	Berlin	x_4	0.2
	Magdalen	Double agent	Paris	x_5	1.0
	Nancy	HR director	Paris	x_6	0.8
	Susan	Analyst	Berlin	x_7	0.2
city	7	prov			
New York $x_1 \lor x_2$					
Paris $x_3 \lor x_5 \lor x_6$					
Beı	rlin	$x_4 \lor x_7$			

Example of probability computation

	name	position	city	prov	prob
	John	Director	New York	x_1	0.5
	Paul	Janitor	New York	x_2	0.7
	Dave	Analyst	Paris	x_3	0.3
	Ellen	Field agent	Berlin	x_4	0.2
	Magdalen	Double agent	Paris	x_5	1.0
	Nancy	HR director	Paris	x_6	0.8
-	Susan	Analyst	Berlin	x_7	0.2
ci	ty	prov	pr	ob	
Ne	ew York	$x_1 ee x_2$ 1 -	$-(1-0.5) \times$	(1 – 0.	7) = 0.85
Pa	aris :	$x_3 \lor x_5 \lor x_6$			1.00
Be	erlin	$x_4 \lor x_7$ 1 -	$-(1 - 0.2) \times$	(1 – 0.	2) = 0.36

- Computing the probability of a query result (or of a Boolean function) is a #P-hard problem (as hard as counting the number of accepting paths of a non-deterministic polynomial-time Turing machine)
- Dichotomy result for UCQs [Dalvi and Suciu, 2012]: there is a (PTIME) algorithm that, given a UCQ, decides whether probabilistic query evaluation of this UCQ is PTIME; if not, it is #P-hard
- Computing the probability of an OBDD or a d-D representation is linear-time (ignoring the cost of arithmetic operations, PTIME otherwise)!

•00000000

Outline

Power Indices

00000000

Motivation

• Power indices (Shapley, Banzhaf, etc.) [Laruelle, 1999]: reasonable ways to quantify the responsibility of an individual in a complex task (e.g., a variable in a Boolean function, a tuple in query evaluation)

00000000

Motivation

- Power indices (Shapley, Banzhaf, etc.) [Laruelle, 1999]: reasonable ways to quantify the responsibility of an individual in a complex task (e.g., a variable in a Boolean function, a tuple in query evaluation)
- Real data: marred with uncertainty, which may be represented by probability distributions

00000000

Motivation

- Power indices (Shapley, Banzhaf, etc.) [Laruelle, 1999]: reasonable ways to quantify the responsibility of an individual in a complex task (e.g., a variable in a Boolean function, a tuple in query evaluation)
- Real data: marred with uncertainty, which may be represented by probability distributions
- But how to assess responsibility of data items when they are both uncertain and involved in a complex task?

00000000

Shapley-Like Scores

- V: finite set of Boolean variables
- $\varphi: 2^V \to \{0, 1\}$ Boolean function over V
- $c: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}$: coefficient function (assumed to have PTIME evaluation when input in unary)

00000000

Shapley-Like Scores

- V: finite set of Boolean variables
- $\varphi: 2^V \to \{0, 1\}$ Boolean function over V
- $c: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}$: coefficient function (assumed to have PTIME evaluation when input in unary)

 $\mathsf{Score}_c(arphi, V, x) \stackrel{ ext{def}}{=} \sum c(|V|, |E|) imes [arphi(E \cup \{x\}) - arphi(E)].$ $E \subseteq V \setminus \{x\}$

00000000

Shapley-Like Scores

- V: finite set of Boolean variables
- $\varphi: 2^V \to \{0, 1\}$ Boolean function over V
- $c: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}$: coefficient function (assumed to have PTIME evaluation when input in unary)

$$\mathsf{Score}_c(arphi, V, x) \stackrel{ ext{def}}{=} \sum_{E \subseteq V \setminus \{x\}} c(|V|, |E|) imes ig[arphi(E \cup \{x\}) - arphi(E) ig].$$

Example

- $c_{\text{Shapley}}(k, \ell) \stackrel{\text{def}}{=} \frac{\ell!(k-l-1)!}{k!} = {\binom{k-1}{l}}^{-1} k^{-1}$: Shapley value [Shapley et al., 1953]
- $c_{\text{Banghaf}}(k, \ell) \stackrel{\text{def}}{=} 1$: Banghaf value [Banghaf III, 1964]
- $c_{PR}(k, \ell) \stackrel{\text{def}}{=} 2^{-k+1}$: Penrose-Banzhaf power [Kirsch and Langner, 2010]

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

000000000

 Product distribution on Boolean variables, Pr(x) ∈ [0, 1] for x ∈ V (i.e., every Boolean variable is assumed to be independent)

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices Conclusion

000000000

 Product distribution on Boolean variables, Pr(x) ∈ [0, 1] for x ∈ V (i.e., every Boolean variable is assumed to be independent)

• For
$$Z \subseteq V$$
,
 $\Pr(Z) \stackrel{\mathsf{def}}{=} \left(\prod_{x \in Z} \Pr(x)\right) imes \left(\prod_{x \in V \setminus Z} (1 - \Pr(x))\right)$

000000000

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices

- Product distribution on Boolean variables, Pr(x) ∈ [0, 1] for x ∈ V (i.e., every Boolean variable is assumed to be independent)
- For $Z \subseteq V$, $\Pr(Z) \stackrel{\text{def}}{=} \left(\prod_{x \in Z} \Pr(x)\right) imes \left(\prod_{x \in V \setminus Z} (1 - \Pr(x))\right)$
- Pr(φ) ^{def} = Σ_{Z⊆V} Pr(Z)φ(Z): the probability of the Boolean function φ to be true, aka, the expected value of the Boolean function

000000000

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices

- Product distribution on Boolean variables, Pr(x) ∈ [0, 1] for x ∈ V (i.e., every Boolean variable is assumed to be independent)
- For $Z \subseteq V$, $\Pr(Z) \stackrel{\text{def}}{=} \left(\prod_{x \in Z} \Pr(x)\right) imes \left(\prod_{x \in V \setminus Z} (1 - \Pr(x))\right)$
- Pr(φ) ^{def} = Σ_{Z⊆V} Pr(Z)φ(Z): the probability of the Boolean function φ to be true, aka, the expected value of the Boolean function
- $\operatorname{\mathsf{EScore}}_c(\varphi, x) \stackrel{\operatorname{\mathsf{def}}}{=} \sum_{\substack{Z \subseteq V \\ x \in Z}} (\operatorname{\mathsf{Pr}}(Z) \times \operatorname{\mathsf{Score}}_c(\varphi, Z, x)) \text{ the expected score of } x \text{ for } \varphi$

Problems studied

Representations Probabilistic Databases Power Indices

000000000

We consider classes of representations of Boolean functions, e.g., Boolean circuits, d-D circuits. We assume $\varphi(\emptyset)$ to be computable in PTIME.

• $\mathsf{EV}(\mathcal{F}): \varphi \in \mathcal{F} \mapsto \Pr(\varphi)$

Who am I? Boolean Provenance

- $\operatorname{Score}_c(\mathcal{F}): (\varphi \in \mathcal{F}, x \in V) \mapsto \operatorname{Score}_c(\varphi, V, x)$ for some coefficient function c
- $\mathsf{EScore}_c(\mathcal{F}): (arphi \in \mathcal{F}, x \in V) \mapsto \mathsf{EScore}_c(arphi, x)$

We look for the complexity of these problem and for (Turing) polynomial-time reductions between problems, denoted $A \leq_{\mathsf{P}} B$, for class of Boolean functions (and $A \equiv_{\mathsf{P}} B$ for two-way reductions).

000000000

What is known?

• Score_{cShapley}(d-D) is PTIME [Deutch et al., 2022]

000000000

What is known?

- Score_{cShapley}(d-D) is PTIME [Deutch et al., 2022]
- Score_{CBanghaf}(d-D) is PTIME [Abramovich et al., 2023]

000000000

What is known?

- Score_{cshapley}(d-D) is PTIME [Deutch et al., 2022]
- Score_{CBaughaf} (d-D) is PTIME [Abramovich et al., 2023]
- Score_c(\mathcal{F}) \leq_{P} EScore_c(\mathcal{F}) for any \mathcal{F} , c: just compute EScore_c with all probabilities set to 1

000000000

What is known?

- Score_{cshapley}(d-D) is PTIME [Deutch et al., 2022]
- Score_{CBaughaf} (d-D) is PTIME [Abramovich et al., 2023]
- Score_c(\mathcal{F}) \leq_{P} EScore_c(\mathcal{F}) for any \mathcal{F} , c: just compute EScore, with all probabilities set to 1
- Score_{CShapley} $(\mathcal{F}) \equiv_{\mathsf{P}} \mathsf{EV}(\mathcal{F})$ for any class \mathcal{F} closed under V-substitutions [Kara et al., 2023] and when probabilities are uniform (unweighted model counting)

Recent results [Karmakar et al., 2024]

Theorem

• $\mathsf{EScore}_c(\mathcal{F}) \leq_{\mathsf{P}} \mathsf{EV}(\mathcal{F})$ for any \mathcal{F} , c

Theorem

- $\mathsf{EScore}_c(\mathcal{F}) \leq_{\mathsf{P}} \mathsf{EV}(\mathcal{F})$ for any \mathcal{F} , c
- $\mathsf{EScore}_{c_{\mathsf{Shapley}}}(\mathcal{F}) \equiv_{\mathsf{P}} \mathsf{EV}(\mathcal{F}) \text{ for any } \mathcal{F}$

0000000000

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices

Theorem

- $\mathsf{EScore}_c(\mathcal{F}) \leq_{\mathsf{P}} \mathsf{EV}(\mathcal{F}) \text{ for any } \mathcal{F}, c$
- $\mathsf{EScore}_{c_{\mathsf{Shapley}}}(\mathcal{F}) \equiv_{\mathsf{P}} \mathsf{EV}(\mathcal{F}) \text{ for any } \mathcal{F}$
- EScore_{CBanzhaf}(F) ≡_P EV(F) for any F closed under conditioning and also closed under either conjunctions or disjunctions with fresh variables (e.g., d-Ds)

0000000000

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices

Theorem

- $\mathsf{EScore}_c(\mathcal{F}) \leq_{\mathsf{P}} \mathsf{EV}(\mathcal{F}) \text{ for any } \mathcal{F}, c$
- $\mathsf{EScore}_{c_{\mathsf{Shapley}}}(\mathcal{F}) \equiv_{\mathsf{P}} \mathsf{EV}(\mathcal{F}) \text{ for any } \mathcal{F}$
- EScore_{cBanzhaf}(F) ≡_P EV(F) for any F closed under conditioning and also closed under either conjunctions or disjunctions with fresh variables (e.g., d-Ds)

Proof techniques: inverting expected values and sums, decomposing sums by size of sets, polynomial interpolation

Theorem

Who am I? Boolean Provenance

- $\mathsf{EScore}_c(\mathcal{F}) \leq_{\mathsf{P}} \mathsf{EV}(\mathcal{F}) \text{ for any } \mathcal{F}, c$
- $\mathsf{EScore}_{c_{\mathsf{Shapley}}}(\mathcal{F}) \equiv_{\mathsf{P}} \mathsf{EV}(\mathcal{F}) \text{ for any } \mathcal{F}$
- EScore_{cBanshaf}(F) ≡_P EV(F) for any F closed under conditioning and also closed under either conjunctions or disjunctions with fresh variables (e.g., d-Ds)

Proof techniques: inverting expected values and sums, decomposing sums by size of sets, polynomial interpolation

 \Rightarrow the tractability landscape of $\mathsf{EScore}_{c_{\mathsf{Shapley}}}$ (and $\mathsf{EScore}_{c_{\mathsf{Banzhaf}}}$ under a mild condition) is exactly the same as that of EV

Power Indices

Expected Power Indices in Probabilistic Databases

- TID database, Boolean query q in some query language
- Define Score_c, EScore_c of a tuple for a query as Score_c, EScore_c of the Boolean provenance of the query over the database
- We compare to PQE (Probabilistic Query Evaluation, i.e., computing the probability of a Boolean query)

Theorem

- EScore_c(q) ≤_P PQE(q) for any c, query q (whatever the query language!)
- EScore_{cShapley} ≡_P PQE(q) for any query q (whatever the query language!)

Expected Power Indices in Probabilistic Databases

- TID database, Boolean query q in some query language
- Define Score_c, EScore_c of a tuple for a query as Score_c, EScore_c of the Boolean provenance of the query over the database
- We compare to PQE (Probabilistic Query Evaluation, i.e., computing the probability of a Boolean query)

Theorem

- EScore_c(q) ≤_P PQE(q) for any c, query q (whatever the query language!)
- EScore_{cShapley} ≡_P PQE(q) for any query q (whatever the query language!)

 \Rightarrow We inherit all tractability and intractability results for PQE, e.g., dichotomy for UCQs [Dalvi and Suciu, 2012] or queries closed under homomorphisms [Amarilli, 2023]

Example computation of (expected) Shapley value

Query: there exists a city with at least two persons.

name	city	Shapley value	prob	Exp. Shapley value
John	New York	0.114	0.5	0.090
Paul	New York	0.114	0.7	0.090
Dave	Paris	0.181	0.3	0.095
Ellen	Berlin	0.114	0.2	0.009
Magdalen	Paris	0.181	1.0	0.322
Nancy	Paris	0.181	0.8	0.298
Susan	Berlin	0.114	0.2	0.009

Who am I 00000 Boolean Provenance

Representations

Probabilistic Database

Power Indices

Conclusion

Outline

Who am I?

Boolean Provenance

Representations

Probabilistic Databases

Power Indices

Conclusion

Main message

Who am I? Boolean Provenance Representations Probabilistic Databases Power Indices

- Rich foundations of provenance management
- Connection to problems in logics, complexity theory, graph theory, algebra, knowledge compilation, game theory, etc.
- Representations matter, efficient representations are important
- Wide variety of applications are made possible by possible: probabilistic query evaluation, computation of power indices, but also enumeration of query results, sampling of results...
- Implementable! See

https://github.com/PierreSenellart/provsql

Conclusion

Bibliography I

Omer Abramovich, Daniel Deutch, Nave Frost, Ahmet Kara, and Dan Olteanu. Banzhaf Values for Facts in Query Answering. arXiv preprint arXiv:2308.05588, 2023.

Antoine Amarilli. Uniform reliability for unbounded homomorphism-closed graph queries. In *ICDT*, volume 255 of *LIPIcs*, pages 14:1-14:17. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2023. URL https://arxiv.org/abs/2209.11177.

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart.Provenance circuits for trees and treelike instances. In *Proc. ICALP*, pages 56–68, Kyoto, Japan, July 2015.

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable lineages on treelike instances: Limits and extensions. In *Proc. PODS*, pages 355–370, San Francisco, USA, June 2016.

Bibliography II

- Yael Amsterdamer, Daniel Deutch, and Val Tannen. On the limitations of provenance for queries with difference. In TaPP, 2011a.
- Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for aggregate queries. In *PODS*, 2011b.
- Mats Attnäs, Pierre Senellart, and Jean Senellart. Integration of SYSTRAN MT systems in an open workflow. In *Proc. MT Summit*, Phuket, Thailand, September 2005.
- John F Banzhaf III. Weighted voting doesn't work: A mathematical analysis. Rutgers L. Rev., 19:317, 1964.
- Vincent D. Blondel, Anahí Gajardo, Maureen Heymans, Pierre Senellart, and Paul Van Dooren. A measure of similarity between graph vertices: applications to synonym extraction and Web searching. SIAM Review, 46(4):647-666, 2004.

Bibliography III

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. *IEEE Trans. Computers*, 35(8):677-691, 1986. doi: 10.1109/TC.1986.1676819. URL https://doi.org/10.1109/TC.1986.1676819.

- Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of conjunctive queries. J. ACM, 59(6), 2012.
- Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res., 17:229-264, 2002. doi: 10.1613/JAIR.989. URL https://doi.org/10.1613/jair.989.
- Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits for Datalog provenance. In *ICDT*, 2014.

Bibliography IV

- Daniel Deutch, Nave Frost, Benny Kimelfeld, and Mikaël Monet. Computing the Shapley value of facts in query answering. In SIGMOD Conference, pages 1570–1583. ACM, 2022.
- Floris Geerts and Antonella Poggi. On database query languages for k-relations. J. Applied Logic, 8(2), 2010.
- Todd J. Green and Val Tannen. Models for incomplete and probabilistic information. *IEEE Data Eng. Bull.*, 29(1), 2006.
- Tomasz Imieliński and Jr. Lipski, Witold. Incomplete information in relational databases. J. ACM, 31(4), 1984.
- Ahmet Kara, Dan Olteanu, and Dan Suciu. From Shapley Value to Model Counting and Back. arXiv preprint arXiv:2306.14211, 2023.

Bibliography V

Pratik Karmakar, Mikaël Monet, Pierre Senellart, and Stéphane Bressan. Expected shapley-like scores of boolean functions: Complexity and applications to probabilistic databases. CoRR, abs/2401.06493, 2024. doi: 10.48550/ARXIV.2401.06493. URL https://doi.org/10.48550/arXiv.2401.06493.

- Werner Kirsch and Jessica Langner. Power indices and minimal winning coalitions. Social Choice and Welfare, 34(1):33-46, 2010. ISSN 01761714, 1432217X. URL http://www.jstor.org/stable/41108037.
- Annick Laruelle. On the choice of a power index. Technical report, Instituto Valenciano de Investigaciones Económicas, 1999.

Bibliography VI

- Mikaël Monet. Solving a special case of the intensional vs extensional conjecture in probabilistic databases. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pages 149-163. ACM, 2020. doi: 10.1145/3375395.3387642. URL https://doi.org/10.1145/3375395.3387642.
- Yann Ramusat. The Semiring-Based Provenance Framework for Graph Databases. Theses, Ecole normale supérieure -ENS PARIS ; PSL University, April 2022. URL https://inria.hal.science/tel-03896482.
- Pierre Senellart. Identifying Websites with Flow Simulation. In Proc. ICWE, pages 124–129, Sydney, Australia, July 2005.

Bibliography VII

Pierre Senellart. Comprendre le Web caché. Understanding the Hidden Web. PhD thesis, Université Paris-Sud, Orsay, France, December 2007.

Pierre Senellart and Jean Senellart. SYSTRAN Translation Stylesheets: Machine Translation driven by XSLT. In Proc. XML Conference & Exposition, Atlanta, USA, November 2005.

Lloyd S Shapley et al. A value for n-person games. 1953.

- Marc Spaniol, Dimitar Denev, Arturas Mazeika, Pierre Senellart, and Gerhard Weikum. Data Quality in Web Archiving. In *Proc. WICOW*, pages 19–26, Madrid, Spain, April 2009.
- Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Morgan & Claypool, 2011.

Ingo Wegener. The Complexity of Boolean Functions. Wiley, 1987.