
Verifying multipliers with *BMDs and a backward
construction algorithm

Pierre Senellart

May 3rd 2002



Introduction

• BDDs (Bryant, 1986) very powerful tools for veifying arithmetic circuits.

• But exponential on multipliers.

• *BMDs (Bryant, 1994) give a polynomial algorithm but need high-level informa-
tion.

• Backward construction algorithm (Hamaguchi et al, 1995)

1



Moment decomposition of a function

f : {0, 1}n −→ N

fx̄i : {0, 1}n−1 → N

(x1, . . . , xi−1, xi+1, . . . , xn) 7→ f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

fxi : {0, 1}n−1 → N

(x1, . . . , xi−1, xi+1, . . . , xn) 7→ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

2



Moment decomposition of a function (continuing...)

fẋi = fxi − fx̄i

f(x1, . . . , xn) = fx̄i(x1, . . . , xi−1, xi+1, . . . , xn)︸ ︷︷ ︸
constant moment

+xi fẋi(x1, . . . , xi−1, xi+1, . . . , xn)︸ ︷︷ ︸
linear moment

3



BMDs and *BMDs

x

y y

z zz

8 −20 2 4 12 24 15

x

y y

zz

−5 2 1 5

2 3

2 4

BMD *BMD

f(x, y, z) = 8− 20z + 2y + 4yz + 12x+ 24xz + 15xy

4



Arithmetic operations

x2

y2

y1

x0

x1

0 1 4

y0

2

x2

y2

y1

x0

x1

0 1 4

y0

2

4
2

Addition Multiplication

*BMDs of classical arithmetic operations are of linear size.

5



Backward construction algorithm - step 1

3
b

c

2
e

4
d

1 x

y

a

Beginning of the algorithm: the cut crosses all the primary outputs. The *BMD
of the word-level interpretation of the output is constructed.

6



Backward construction algorithm - step 2

3
b

c

2
e

4
d

1 x

y

a

A gate just left to the cut is chosen and its output is substitued in the *BMD by
the corresponding function of its inputs.

7



Backward construction algorithm - step 3

3
b

c

2
e

4
d

1 x

y

a

At any time, the *BMD expresses the word-level representation of the output as
a function of the nets currently crossed by the cut.

8



Backward construction algorithm - step 4 (first try)

3
b

c

2
e

4
d

1 x

y

a

Problem: intermediary results must be kept!

9



Backward construction algorithm - step 4

3
b

c

2
e

4
d

1 x

y

a

Condition: a gate may be chosen only if its output is connected to only the input
of the gates that have been already taken.

10



Backward construction algorithm - step 5

3
b

c

2
e

4
d

1 x

y

a

End of the algorithm: the cut crosses all primary outputs. The *BMD expresses
the word-level representation of the output as a function of the inputs.

11



Add-step and carry-save multiplication

1 1
× 1 1 1

1 1
+ 1 1 ·
+ 1 1 · ·

1 0 0 1
+ 1 1 · ·

1 0 1 0 1

1 1
× 1 1 1

1 1
+ 1 1 ·
+ 1 1 · ·

{110, 11}
+ 1 1 · ·

{1001, 1100}
1 0 1 0 1

Add-step multiplication Carry-save multiplication

12



Experimental results

Number of bits Time Add-step (s) Time Carry-save (s)
4 1 3
8 12 58

16 161 1115
32 2083

O(n3.7) O(n4.3)

(Lava, Hotlips)

13



What now?

• Backward Construction Algorithm: very efficient, in comparison with former
methods

• Still, need of something better: O(n4) is too much!

• Completely different direction?

14


