Verifying multipliers with *BMDs and a backward
construction algorithm

May 3rd 2002



Introduction

BDDs (Bryant, 1986) very powerful tools for veifying arithmetic circuits.

But exponential on multipliers.

*BMDs (Bryant, 1994) give a polynomial algorithm but need high-level informa-
tion.

Backward construction algorithm (Hamaguchi et al, 1995)
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Moment decomposition of a function (continuing...)
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BMDs and *BMDs
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Arithmetic operations
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Addition Multiplication

*BMDs of classical arithmetic operations are of linear size.



Backward construction algorithm - step 1
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Beginning of the algorithm: the cut crosses all the primary outputs. The *BMD
of the word-level interpretation of the output is constructed.




Backward construction algorithm - step 2
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A gate just left to the cut is chosen and its output is substitued in the *BMD by
the corresponding function of its inputs.




Backward construction algorithm - step 3
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At any time, the *BMD expresses the word-level representation of the output as
a function of the nets currently crossed by the cut.




Backward construction algorithm - step 4 (first try)
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Problem: intermediary results must be kept!




Backward construction algorithm - step 4
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Condition: a gate may be chosen only if its output is connected to only the input
of the gates that have been already taken.
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Backward construction algorithm - step 5
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End of the algorithm: the cut crosses all primary outputs. The *BMD expresses
the word-level representation of the output as a function of the inputs.
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Add-step and carry-save multiplication
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Add-step multiplication
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x 1 1 1
1 1

+ 1 1
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{110, 11}
+ 11 - -
{1001, 1100}
1 0 1 0 1

Carry-save multiplication
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Experimental results

Number of bits | Time Add-step (s) | Time Carry-save (s)
4 1 3
3 12 58
16 161 1115
32 20383
O(n3.7) O(n4'3)

(Lava, Hotlips)
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What now?

e Backward Construction Algorithm: very efficient, in comparison with former
methods

e Still, need of something better: O(n?) is too much!

e Completely different direction?
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