Verifying multipliers with *BMDs and a backward
construction algorithm

May 3rd 2002

Introduction

BDDs (Bryant, 1986) very powerful tools for veifying arithmetic circuits.

But exponential on multipliers.

*BMDs (Bryant, 1994) give a polynomial algorithm but need high-level informa-
tion.

Backward construction algorithm (Hamaguchi et al, 1995)

o,

xT; °

Moment decomposition of a function

f:{0,1}" — N

{0, 13" — N
(T1y- oy i1, Tija 1y - - -,) — fl21,
{0,1}" " — N
(961,---,337:—1,3?z+1,---,Cl?n) = f(xla

.. .,33¢_1,0,£8i+1,. ..,iIZn)

s T, L, T, L, X))

Moment decomposition of a function (continuing...)

ak 73777,) — \f.fz-(ajla vy Li—1y Lit1y - - 7xnl+xifséi(xla vy Li—1, Li41y - - - 7:En)1

NV . NV
constant moment linear moment

BMDs and *BMDs

=20 2 4 12 24 15 -5 2 1

BMD *BMD

flx,y,z) =8 =20z + 2y + dyz + 12z + 24xz + 15zy

Arithmetic operations

-
-
-
-
-
/
/

/

M

0 1 2 4 0 1 2

Addition Multiplication

*BMDs of classical arithmetic operations are of linear size.

Backward construction algorithm - step 1

a o
E—
| -
e B

Beginning of the algorithm: the cut crosses all the primary outputs. The *BMD
of the word-level interpretation of the output is constructed.

Backward construction algorithm - step 2
gl
d B
e gl

A gate just left to the cut is chosen and its output is substitued in the *BMD by
the corresponding function of its inputs.

Backward construction algorithm - step 3
gl
d Es

At any time, the *BMD expresses the word-level representation of the output as
a function of the nets currently crossed by the cut.

Backward construction algorithm - step 4 (first try)

a }X
gl S
d -

Problem: intermediary results must be kept!

Backward construction algorithm - step 4
)
d -

Condition: a gate may be chosen only if its output is connected to only the input
of the gates that have been already taken.

10

Backward construction algorithm - step 5

a }X
Tk
d B

End of the algorithm: the cut crosses all primary outputs. The *BMD expresses
the word-level representation of the output as a function of the inputs.

11

Add-step and carry-save multiplication

1 1
X 1 1 1
1 1

+ 1 1
+ 1 1 :
1 0 0 1
+ r1r - -
1 01 0 1

Add-step multiplication

1 1
x 1 1 1
1 1

+ 1 1
+ 1 1 -
{110, 11}
+ 11 - -
{1001, 1100}
1 0 1 0 1

Carry-save multiplication

12

Experimental results

Number of bits | Time Add-step (s) | Time Carry-save (s)
4 1 3
3 12 58
16 161 1115
32 20383
O(n3.7) O(n4'3)

(Lava, Hotlips)

13

What now?

e Backward Construction Algorithm: very efficient, in comparison with former
methods

e Still, need of something better: O(n?) is too much!

e Completely different direction?

14

