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Motivation
Practical Motivation � Power indices (Shapley, Banzhaf,

etc.) [Laruelle, 1999]: reasonable ways to
quantify the responsibility of a data item for a
complex task such as query evaluation

� Real data: marred with uncertainty, which
may be represented by probability
distributions

� But how to assess responsibility of data items
when they are both uncertain and involved in
a complex task?

Theoretical Motivation � Tractability landscape of Shapley
value computation and probabilistic query
evaluation strikingly similar

� Can we do Shapley value computation on top
of probabilistic databases tractably if we can
do probabilistic query evaluation tractably?
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Shapley-Like Scores
� V : finite set of Boolean variables
� ' : 2V ! f0; 1g Boolean function over V
� c : N� N ! Q: coefficient function (assumed to have

PTIME evaluation when input in unary)

Scorec('; V; x)
def
=

X
E�V nfxg

c(jV j; jEj)�
�
'(E [ fxg)� '(E)

�
:

Example
� cShapley(k; `)

def
= `!(k�l�1)!

k! =
�
k�1
l

��1
k�1: Shapley value

[Shapley et al., 1953]

� cBanzhaf(k; `)
def
= 1: Banzhaf value [Banzhaf III, 1964]

� cPB(k; `)
def
= 2�k+1: Penrose–Banzhaf power [Kirsch and

Langner, 2010]
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Probabilistic Setting

� Product distribution on Boolean variables, Pr(x) 2 [0; 1]

for x 2 V (i.e., every Boolean variable is assumed to be
independent)

� For Z � V ,

Pr(Z)
def
=

�Q
x2Z Pr(x)

�
�

�Q
x2V nZ(1� Pr(x))

�

� Pr(')
def
=
P

Z�V Pr(Z)'(Z): the probability of the Boolean
function ' to be true, aka, the expected value of the
Boolean function

� EScorec('; x)
def
=
P

Z�V
x2Z

(Pr(Z)� Scorec(';Z; x)) the

expected score of x for '



4/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Probabilistic Setting

� Product distribution on Boolean variables, Pr(x) 2 [0; 1]

for x 2 V (i.e., every Boolean variable is assumed to be
independent)

� For Z � V ,

Pr(Z)
def
=

�Q
x2Z Pr(x)

�
�

�Q
x2V nZ(1� Pr(x))

�

� Pr(')
def
=
P

Z�V Pr(Z)'(Z): the probability of the Boolean
function ' to be true, aka, the expected value of the
Boolean function

� EScorec('; x)
def
=
P

Z�V
x2Z

(Pr(Z)� Scorec(';Z; x)) the

expected score of x for '



4/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Probabilistic Setting

� Product distribution on Boolean variables, Pr(x) 2 [0; 1]

for x 2 V (i.e., every Boolean variable is assumed to be
independent)

� For Z � V ,

Pr(Z)
def
=

�Q
x2Z Pr(x)

�
�

�Q
x2V nZ(1� Pr(x))

�

� Pr(')
def
=
P

Z�V Pr(Z)'(Z): the probability of the Boolean
function ' to be true, aka, the expected value of the
Boolean function

� EScorec('; x)
def
=
P

Z�V
x2Z

(Pr(Z)� Scorec(';Z; x)) the

expected score of x for '



4/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Probabilistic Setting

� Product distribution on Boolean variables, Pr(x) 2 [0; 1]

for x 2 V (i.e., every Boolean variable is assumed to be
independent)

� For Z � V ,

Pr(Z)
def
=

�Q
x2Z Pr(x)

�
�

�Q
x2V nZ(1� Pr(x))

�

� Pr(')
def
=
P

Z�V Pr(Z)'(Z): the probability of the Boolean
function ' to be true, aka, the expected value of the
Boolean function

� EScorec('; x)
def
=
P

Z�V
x2Z

(Pr(Z)� Scorec(';Z; x)) the

expected score of x for '



5/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Problems studied

We consider classes of representations of Boolean functions,
e.g., Boolean circuits, d-D circuits. We assume '(;) to be
computable in PTIME.
� EV(F) : ' 2 F 7! Pr(')

� Scorec(F) : (' 2 F ; x 2 V ) 7! Scorec('; V; x) for some
coefficient function c

� EScorec(F) : (' 2 F ; x 2 V ) 7! EScorec('; x)

We look for the complexity of these problem and for (Turing)
polynomial-time reductions between problems, denoted
A 6P B, for class of Boolean functions (and A �P B for
two-way reductions).
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What is known?

� ScorecShapley(d-D) is PTIME [Deutch et al., 2022]

� ScorecBanzhaf (d-D) is PTIME [Abramovich et al., 2023]

� Scorec(F) 6P EScorec(F) for any F , c: just compute
EScorec with all probabilities set to 1

� ScorecShapley(F) �P EV(F) for any class F closed under
_-substitutions [Kara et al., 2023] and when probabilities are
uniform (unweighted model counting)
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What have we shown?

Theorem
� EScorec(F) 6P EV(F) for any F , c

� EScorecShapley(F) �P EV(F) for any F
� EScorecBanzhaf (F) �P EV(F) for any F closed under

conditioning and also closed under either conjunctions
or disjunctions with fresh variables (e.g., d-Ds)

Proof techniques: inverting expected values and sums,
decomposing sums by size of sets, polynomial interpolation

) the tractability landscape of EScorecShapley (and EScorecBanzhaf
under a mild condition) is exactly the same as that of EV
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Concrete algorithms

In the case where we have a d-D C, possible to design specific
algorithms (extending those of [Deutch et al., 2022, Abramovich
et al., 2023]) for EScorec with complexity (ignoring arithmetic
costs):
� O

�
jCj � jV j5 +Tc(jV j)� jV j

2
�

where Tc(�) is the cost of
computing the coefficient function on inputs 6 �

� O
�
jV j2 � (jCjjV j+ jV j2 +Tc(jV j))

�
when all probabilities

are identical
� O(jCj � jV j) for cBanzhaf
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Application to Probabilistic Databases
� TID database, Boolean query q in some query language
� Define Scorec, EScorec of a tuple for a query as Scorec,

EScorec of the Boolean provenance of the query over the
database

� We compare to PQE (Probabilistic Query Evaluation, i.e.,
computing the probability of a Boolean query)

Theorem
� EScorec(q) 6P PQE(q) for any c, query q (whatever the

query language!)
� EScorecShapley �P PQE(q) for any query q (whatever the

query language!)

) We inherit all tractability and intractability results for PQE,
e.g., dichotomy for UCQs [Dalvi and Suciu, 2012] or queries
closed under homomorphisms [Amarilli, 2023]
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Desiderata for a provenance-aware DBMS

� Extends a widely used database management system
� Easy to deploy
� Easy to use, transparent for the user
� Provenance automatically maintained as the user interacts

with the database management system
� Provenance computation benefits from query optimization

within the DBMS
� Allow probability computation based on provenance
� Any form of provenance can be computed: Boolean

provenance, semiring provenance in any semiring (possibly,
with monus), aggregate provenance, where-provenance, on
demand
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ProvSQL: Provenance within PostgreSQL (1/2)
[Senellart et al., 2018]

� Lightweight extension/plugin for PostgreSQL > 9:5 (tested
against all versions – upgrade to a new version typically
takes a couple of hours)

� Provenance annotations stored as Universally Unique
Identifiers (UUIDs), in an extra attribute of each
provenance-aware relation

� UUIDs of base tuples randomly generated; UUIDs of query
results generated in a deterministic manner

� A provenance circuit relating UUIDs of elementary
provenance annotations and arithmetic gates stored in
shared memory of the DBMS (or on disk)

� All computations done in the universal semiring (more
precisely, with monus, in the free semiring with monus; for
where-provenance, in a free term algebra)
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ProvSQL: Provenance within PostgreSQL (2/2)
[Senellart et al., 2018]

� Query rewriting (after parsing, before planning) to
automatically compute output provenance attributes in
terms of the query and input provenance attributes:
� Duplicate elimination (DISTINCT, set union) results in

aggregation of provenance values with �
� Cross products, joins results in combination of provenance

values with 

� Difference rewritten in a join, with combination of

provenance values with 	
� Additional circuit gates on projection, join for support of

where-provenance
� Probability computation from the provenance circuits, via

various methods (naive, sampling, compilation to d-Ds,
tree decomposition)

� Expected Shapley value computation implemented directly
within ProvSQL
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ProvSQL: Current status

� Supported SQL language features:
� Regular SELECT-FROM-WHERE queries (aka conjunctive

queries with multiset semantics)
� JOIN queries (regular joins and outer joins; semijoins and

antijoins are not currently supported)
� SELECT queries with nested SELECT subqueries in the

FROM clause
� GROUP BY queries
� SELECT DISTINCT queries (i.e., set semantics)
� UNION’s or UNION ALL’s of SELECT queries
� EXCEPT queries
� Aggregate queries (terminal, for simple aggregates)

� Try it (and see a demo) from
https://github.com/PierreSenellart/provsql

https://github.com/PierreSenellart/provsql
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Set-Up

� Complexity of O(n6): is it really feasible?
� Same experiment set-up as in [Deutch et al., 2022]: 1 GB

TPC-H database, 8 TPC-H queries with some adaptations
(e.g., removing aggregates), computation of
Shapley/Banzhaf scores for all input tuples

� Non-Boolean queries: computation for every output tuple
� Proof-of-feasibility rather than in-depth experiments
� Compilation to d-D:

� Check whether Boolean circuit is already an independent
circuit

� Otherwise, try to find a low-treewidth decomposition of the
circuit, and use it to build a d-D

� Otherwise, use an external knowledge compiler (but never
required)
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Results

# Output Provenance Compilation Shapley time (s) Banzhaf time (s)
tuples time (s) time (s) Determ. Expect.

11620 2:125 1:226 0:762 1:758 0:467

5 1:117 0:044 0:766 40:910 0:191

4 1:215 0:017 0:269 9:381 0:085

1783 1:229 0:018 0:023 0:037 0:015

61 0:174 0:001 0:001 0:002 0:001

466 0:247 0:084 0:159 0:455 0:094

91159 2:711 0:749 0:655 1:008 0:489

56 1:223 0:000 0:000 0:000 0:000

Very encouraging! Shapley value computation does not have
such a huge overhead!
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Main message

� Expected Shapley value computation is not (much) more
costly than probabilistic query evaluation

� Landscape seems clearer than for deterministic Shapley
value computation

� PQE (and Expected Shapley value computation) is quite
feasible in practice, even on large datasets

� Connection to SHAP-score [Van den Broeck et al., 2022] not
quite clear (there is also a probability distribution, but not
used in the same way)

� Approximations?
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On the ProvSQL side: Perspectives
Usability: Support for larger subset of SQL, utility functions,

better interface, documentation, ability to restrict
to specific semirings

Efficiency: Benchmarks, optimizations of provenance and
probability computation, scalability, manipulate
circuit both on disk and in main memory

Knowledge compilation: closer integration with knowledge
compilers

More complete probabilistic query evaluation: implementation
of safe query plans, continuous probability
distributions

Use cases: Work with users, provide semirings that
implement useful behavior (e.g., the semiring of
unions of real intervals for temporal databases)



Collaborators welcome!

ProvSQL tutorial:
https://github.com/PierreSenellart/provsql/tree/master/doc/tutorial

https://github.com/PierreSenellart/provsql/tree/master/doc/tutorial
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