
Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Expected Shapley-Like Scores of Boolean
Functions: Complexity and Applications to

Probabilistic Databases

Pratik Karmakar1,3 Mikaël Monet2,5

Pierre Senellart1,2,3,6,7 Stéphane Bressan1,4,7

1CNRS@CREATE LTD, Singapore

2Inria, Lille & Paris, France

3DI ENS, ENS, PSL University, CNRS, Paris, France

4National University of Singapore, Singapore

5CRIStAL, Université de Lille, CNRS, Lille, France

6Institut Universitaire de France, Paris, France

7IPAL, CNRS, Singapore, Singapore

Dagstuhl, 18 January 2024

2/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Motivation
Practical Motivation � Power indices (Shapley, Banzhaf,

etc.) [Laruelle, 1999]: reasonable ways to
quantify the responsibility of a data item for a
complex task such as query evaluation

� Real data: marred with uncertainty, which
may be represented by probability
distributions

� But how to assess responsibility of data items
when they are both uncertain and involved in
a complex task?

Theoretical Motivation � Tractability landscape of Shapley
value computation and probabilistic query
evaluation strikingly similar

� Can we do Shapley value computation on top
of probabilistic databases tractably if we can
do probabilistic query evaluation tractably?

2/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Motivation
Practical Motivation � Power indices (Shapley, Banzhaf,

etc.) [Laruelle, 1999]: reasonable ways to
quantify the responsibility of a data item for a
complex task such as query evaluation

� Real data: marred with uncertainty, which
may be represented by probability
distributions

� But how to assess responsibility of data items
when they are both uncertain and involved in
a complex task?

Theoretical Motivation � Tractability landscape of Shapley
value computation and probabilistic query
evaluation strikingly similar

� Can we do Shapley value computation on top
of probabilistic databases tractably if we can
do probabilistic query evaluation tractably?

2/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Motivation
Practical Motivation � Power indices (Shapley, Banzhaf,

etc.) [Laruelle, 1999]: reasonable ways to
quantify the responsibility of a data item for a
complex task such as query evaluation

� Real data: marred with uncertainty, which
may be represented by probability
distributions

� But how to assess responsibility of data items
when they are both uncertain and involved in
a complex task?

Theoretical Motivation � Tractability landscape of Shapley
value computation and probabilistic query
evaluation strikingly similar

� Can we do Shapley value computation on top
of probabilistic databases tractably if we can
do probabilistic query evaluation tractably?

2/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Motivation
Practical Motivation � Power indices (Shapley, Banzhaf,

etc.) [Laruelle, 1999]: reasonable ways to
quantify the responsibility of a data item for a
complex task such as query evaluation

� Real data: marred with uncertainty, which
may be represented by probability
distributions

� But how to assess responsibility of data items
when they are both uncertain and involved in
a complex task?

Theoretical Motivation � Tractability landscape of Shapley
value computation and probabilistic query
evaluation strikingly similar

� Can we do Shapley value computation on top
of probabilistic databases tractably if we can
do probabilistic query evaluation tractably?

2/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Motivation
Practical Motivation � Power indices (Shapley, Banzhaf,

etc.) [Laruelle, 1999]: reasonable ways to
quantify the responsibility of a data item for a
complex task such as query evaluation

� Real data: marred with uncertainty, which
may be represented by probability
distributions

� But how to assess responsibility of data items
when they are both uncertain and involved in
a complex task?

Theoretical Motivation � Tractability landscape of Shapley
value computation and probabilistic query
evaluation strikingly similar

� Can we do Shapley value computation on top
of probabilistic databases tractably if we can
do probabilistic query evaluation tractably?

3/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Shapley-Like Scores
� V : finite set of Boolean variables
� ' : 2V ! f0; 1g Boolean function over V
� c : N� N ! Q: coefficient function (assumed to have

PTIME evaluation when input in unary)

Scorec('; V; x)
def
=

X
E�V nfxg

c(jV j; jEj)�
�
'(E [fxg)� '(E)

�
:

Example
� cShapley(k; `)

def
= `!(k�l�1)!

k! =
�
k�1
l

��1
k�1: Shapley value

[Shapley et al., 1953]

� cBanzhaf(k; `)
def
= 1: Banzhaf value [Banzhaf III, 1964]

� cPB(k; `)
def
= 2�k+1: Penrose–Banzhaf power [Kirsch and

Langner, 2010]

3/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Shapley-Like Scores
� V : finite set of Boolean variables
� ' : 2V ! f0; 1g Boolean function over V
� c : N� N ! Q: coefficient function (assumed to have

PTIME evaluation when input in unary)

Scorec('; V; x)
def
=

X
E�V nfxg

c(jV j; jEj)�
�
'(E [fxg)� '(E)

�
:

Example
� cShapley(k; `)

def
= `!(k�l�1)!

k! =
�
k�1
l

��1
k�1: Shapley value

[Shapley et al., 1953]

� cBanzhaf(k; `)
def
= 1: Banzhaf value [Banzhaf III, 1964]

� cPB(k; `)
def
= 2�k+1: Penrose–Banzhaf power [Kirsch and

Langner, 2010]

3/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Shapley-Like Scores
� V : finite set of Boolean variables
� ' : 2V ! f0; 1g Boolean function over V
� c : N� N ! Q: coefficient function (assumed to have

PTIME evaluation when input in unary)

Scorec('; V; x)
def
=

X
E�V nfxg

c(jV j; jEj)�
�
'(E [fxg)� '(E)

�
:

Example
� cShapley(k; `)

def
= `!(k�l�1)!

k! =
�
k�1
l

��1
k�1: Shapley value

[Shapley et al., 1953]

� cBanzhaf(k; `)
def
= 1: Banzhaf value [Banzhaf III, 1964]

� cPB(k; `)
def
= 2�k+1: Penrose–Banzhaf power [Kirsch and

Langner, 2010]

4/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Probabilistic Setting

� Product distribution on Boolean variables, Pr(x) 2 [0; 1]

for x 2 V (i.e., every Boolean variable is assumed to be
independent)

� For Z � V ,

Pr(Z)
def
=

�Q
x2Z Pr(x)

�
�

�Q
x2V nZ(1� Pr(x))

�

� Pr(')
def
=
P

Z�V Pr(Z)'(Z): the probability of the Boolean
function ' to be true, aka, the expected value of the
Boolean function

� EScorec('; x)
def
=
P

Z�V
x2Z

(Pr(Z)� Scorec(';Z; x)) the

expected score of x for '

4/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Probabilistic Setting

� Product distribution on Boolean variables, Pr(x) 2 [0; 1]

for x 2 V (i.e., every Boolean variable is assumed to be
independent)

� For Z � V ,

Pr(Z)
def
=

�Q
x2Z Pr(x)

�
�

�Q
x2V nZ(1� Pr(x))

�

� Pr(')
def
=
P

Z�V Pr(Z)'(Z): the probability of the Boolean
function ' to be true, aka, the expected value of the
Boolean function

� EScorec('; x)
def
=
P

Z�V
x2Z

(Pr(Z)� Scorec(';Z; x)) the

expected score of x for '

4/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Probabilistic Setting

� Product distribution on Boolean variables, Pr(x) 2 [0; 1]

for x 2 V (i.e., every Boolean variable is assumed to be
independent)

� For Z � V ,

Pr(Z)
def
=

�Q
x2Z Pr(x)

�
�

�Q
x2V nZ(1� Pr(x))

�

� Pr(')
def
=
P

Z�V Pr(Z)'(Z): the probability of the Boolean
function ' to be true, aka, the expected value of the
Boolean function

� EScorec('; x)
def
=
P

Z�V
x2Z

(Pr(Z)� Scorec(';Z; x)) the

expected score of x for '

4/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Probabilistic Setting

� Product distribution on Boolean variables, Pr(x) 2 [0; 1]

for x 2 V (i.e., every Boolean variable is assumed to be
independent)

� For Z � V ,

Pr(Z)
def
=

�Q
x2Z Pr(x)

�
�

�Q
x2V nZ(1� Pr(x))

�

� Pr(')
def
=
P

Z�V Pr(Z)'(Z): the probability of the Boolean
function ' to be true, aka, the expected value of the
Boolean function

� EScorec('; x)
def
=
P

Z�V
x2Z

(Pr(Z)� Scorec(';Z; x)) the

expected score of x for '

5/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Problems studied

We consider classes of representations of Boolean functions,
e.g., Boolean circuits, d-D circuits. We assume '(;) to be
computable in PTIME.
� EV(F) : ' 2 F 7! Pr(')

� Scorec(F) : (' 2 F ; x 2 V) 7! Scorec('; V; x) for some
coefficient function c

� EScorec(F) : (' 2 F ; x 2 V) 7! EScorec('; x)

We look for the complexity of these problem and for (Turing)
polynomial-time reductions between problems, denoted
A 6P B, for class of Boolean functions (and A �P B for
two-way reductions).

6/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

What is known?

� ScorecShapley(d-D) is PTIME [Deutch et al., 2022]

� ScorecBanzhaf (d-D) is PTIME [Abramovich et al., 2023]

� Scorec(F) 6P EScorec(F) for any F , c: just compute
EScorec with all probabilities set to 1

� ScorecShapley(F) �P EV(F) for any class F closed under
_-substitutions [Kara et al., 2023] and when probabilities are
uniform (unweighted model counting)

6/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

What is known?

� ScorecShapley(d-D) is PTIME [Deutch et al., 2022]

� ScorecBanzhaf (d-D) is PTIME [Abramovich et al., 2023]

� Scorec(F) 6P EScorec(F) for any F , c: just compute
EScorec with all probabilities set to 1

� ScorecShapley(F) �P EV(F) for any class F closed under
_-substitutions [Kara et al., 2023] and when probabilities are
uniform (unweighted model counting)

6/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

What is known?

� ScorecShapley(d-D) is PTIME [Deutch et al., 2022]

� ScorecBanzhaf (d-D) is PTIME [Abramovich et al., 2023]

� Scorec(F) 6P EScorec(F) for any F , c: just compute
EScorec with all probabilities set to 1

� ScorecShapley(F) �P EV(F) for any class F closed under
_-substitutions [Kara et al., 2023] and when probabilities are
uniform (unweighted model counting)

6/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

What is known?

� ScorecShapley(d-D) is PTIME [Deutch et al., 2022]

� ScorecBanzhaf (d-D) is PTIME [Abramovich et al., 2023]

� Scorec(F) 6P EScorec(F) for any F , c: just compute
EScorec with all probabilities set to 1

� ScorecShapley(F) �P EV(F) for any class F closed under
_-substitutions [Kara et al., 2023] and when probabilities are
uniform (unweighted model counting)

7/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Outline

Introduction

Theoretical Results

ProvSQL

Experimental Results

Conclusion

8/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

What have we shown?

Theorem
� EScorec(F) 6P EV(F) for any F , c

� EScorecShapley(F) �P EV(F) for any F
� EScorecBanzhaf (F) �P EV(F) for any F closed under

conditioning and also closed under either conjunctions
or disjunctions with fresh variables (e.g., d-Ds)

Proof techniques: inverting expected values and sums,
decomposing sums by size of sets, polynomial interpolation

) the tractability landscape of EScorecShapley (and EScorecBanzhaf
under a mild condition) is exactly the same as that of EV

8/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

What have we shown?

Theorem
� EScorec(F) 6P EV(F) for any F , c
� EScorecShapley(F) �P EV(F) for any F

� EScorecBanzhaf (F) �P EV(F) for any F closed under
conditioning and also closed under either conjunctions
or disjunctions with fresh variables (e.g., d-Ds)

Proof techniques: inverting expected values and sums,
decomposing sums by size of sets, polynomial interpolation

) the tractability landscape of EScorecShapley (and EScorecBanzhaf
under a mild condition) is exactly the same as that of EV

8/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

What have we shown?

Theorem
� EScorec(F) 6P EV(F) for any F , c
� EScorecShapley(F) �P EV(F) for any F
� EScorecBanzhaf (F) �P EV(F) for any F closed under

conditioning and also closed under either conjunctions
or disjunctions with fresh variables (e.g., d-Ds)

Proof techniques: inverting expected values and sums,
decomposing sums by size of sets, polynomial interpolation

) the tractability landscape of EScorecShapley (and EScorecBanzhaf
under a mild condition) is exactly the same as that of EV

8/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

What have we shown?

Theorem
� EScorec(F) 6P EV(F) for any F , c
� EScorecShapley(F) �P EV(F) for any F
� EScorecBanzhaf (F) �P EV(F) for any F closed under

conditioning and also closed under either conjunctions
or disjunctions with fresh variables (e.g., d-Ds)

Proof techniques: inverting expected values and sums,
decomposing sums by size of sets, polynomial interpolation

) the tractability landscape of EScorecShapley (and EScorecBanzhaf
under a mild condition) is exactly the same as that of EV

8/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

What have we shown?

Theorem
� EScorec(F) 6P EV(F) for any F , c
� EScorecShapley(F) �P EV(F) for any F
� EScorecBanzhaf (F) �P EV(F) for any F closed under

conditioning and also closed under either conjunctions
or disjunctions with fresh variables (e.g., d-Ds)

Proof techniques: inverting expected values and sums,
decomposing sums by size of sets, polynomial interpolation

) the tractability landscape of EScorecShapley (and EScorecBanzhaf
under a mild condition) is exactly the same as that of EV

9/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Concrete algorithms

In the case where we have a d-D C, possible to design specific
algorithms (extending those of [Deutch et al., 2022, Abramovich
et al., 2023]) for EScorec with complexity (ignoring arithmetic
costs):
� O

�
jCj � jV j5 +Tc(jV j)� jV j

2
�

where Tc(�) is the cost of
computing the coefficient function on inputs 6 �

� O
�
jV j2 � (jCjjV j+ jV j2 +Tc(jV j))

�
when all probabilities

are identical
� O(jCj � jV j) for cBanzhaf

9/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Concrete algorithms

In the case where we have a d-D C, possible to design specific
algorithms (extending those of [Deutch et al., 2022, Abramovich
et al., 2023]) for EScorec with complexity (ignoring arithmetic
costs):
� O

�
jCj � jV j5 +Tc(jV j)� jV j

2
�

where Tc(�) is the cost of
computing the coefficient function on inputs 6 �

� O
�
jV j2 � (jCjjV j+ jV j2 +Tc(jV j))

�
when all probabilities

are identical

� O(jCj � jV j) for cBanzhaf

9/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Concrete algorithms

In the case where we have a d-D C, possible to design specific
algorithms (extending those of [Deutch et al., 2022, Abramovich
et al., 2023]) for EScorec with complexity (ignoring arithmetic
costs):
� O

�
jCj � jV j5 +Tc(jV j)� jV j

2
�

where Tc(�) is the cost of
computing the coefficient function on inputs 6 �

� O
�
jV j2 � (jCjjV j+ jV j2 +Tc(jV j))

�
when all probabilities

are identical
� O(jCj � jV j) for cBanzhaf

10/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Application to Probabilistic Databases
� TID database, Boolean query q in some query language
� Define Scorec, EScorec of a tuple for a query as Scorec,

EScorec of the Boolean provenance of the query over the
database

� We compare to PQE (Probabilistic Query Evaluation, i.e.,
computing the probability of a Boolean query)

Theorem
� EScorec(q) 6P PQE(q) for any c, query q (whatever the

query language!)
� EScorecShapley �P PQE(q) for any query q (whatever the

query language!)

) We inherit all tractability and intractability results for PQE,
e.g., dichotomy for UCQs [Dalvi and Suciu, 2012] or queries
closed under homomorphisms [Amarilli, 2023]

10/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Application to Probabilistic Databases
� TID database, Boolean query q in some query language
� Define Scorec, EScorec of a tuple for a query as Scorec,

EScorec of the Boolean provenance of the query over the
database

� We compare to PQE (Probabilistic Query Evaluation, i.e.,
computing the probability of a Boolean query)

Theorem
� EScorec(q) 6P PQE(q) for any c, query q (whatever the

query language!)
� EScorecShapley �P PQE(q) for any query q (whatever the

query language!)

) We inherit all tractability and intractability results for PQE,
e.g., dichotomy for UCQs [Dalvi and Suciu, 2012] or queries
closed under homomorphisms [Amarilli, 2023]

11/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Outline

Introduction

Theoretical Results

ProvSQL

Experimental Results

Conclusion

12/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Desiderata for a provenance-aware DBMS

� Extends a widely used database management system
� Easy to deploy
� Easy to use, transparent for the user
� Provenance automatically maintained as the user interacts

with the database management system
� Provenance computation benefits from query optimization

within the DBMS
� Allow probability computation based on provenance
� Any form of provenance can be computed: Boolean

provenance, semiring provenance in any semiring (possibly,
with monus), aggregate provenance, where-provenance, on
demand

13/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

ProvSQL: Provenance within PostgreSQL (1/2)
[Senellart et al., 2018]

� Lightweight extension/plugin for PostgreSQL > 9:5 (tested
against all versions – upgrade to a new version typically
takes a couple of hours)

� Provenance annotations stored as Universally Unique
Identifiers (UUIDs), in an extra attribute of each
provenance-aware relation

� UUIDs of base tuples randomly generated; UUIDs of query
results generated in a deterministic manner

� A provenance circuit relating UUIDs of elementary
provenance annotations and arithmetic gates stored in
shared memory of the DBMS (or on disk)

� All computations done in the universal semiring (more
precisely, with monus, in the free semiring with monus; for
where-provenance, in a free term algebra)

14/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

ProvSQL: Provenance within PostgreSQL (2/2)
[Senellart et al., 2018]

� Query rewriting (after parsing, before planning) to
automatically compute output provenance attributes in
terms of the query and input provenance attributes:
� Duplicate elimination (DISTINCT, set union) results in

aggregation of provenance values with �
� Cross products, joins results in combination of provenance

values with

� Difference rewritten in a join, with combination of

provenance values with 	
� Additional circuit gates on projection, join for support of

where-provenance
� Probability computation from the provenance circuits, via

various methods (naive, sampling, compilation to d-Ds,
tree decomposition)

� Expected Shapley value computation implemented directly
within ProvSQL

15/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

ProvSQL: Current status

� Supported SQL language features:
� Regular SELECT-FROM-WHERE queries (aka conjunctive

queries with multiset semantics)
� JOIN queries (regular joins and outer joins; semijoins and

antijoins are not currently supported)
� SELECT queries with nested SELECT subqueries in the

FROM clause
� GROUP BY queries
� SELECT DISTINCT queries (i.e., set semantics)
� UNION’s or UNION ALL’s of SELECT queries
� EXCEPT queries
� Aggregate queries (terminal, for simple aggregates)

� Try it (and see a demo) from
https://github.com/PierreSenellart/provsql

https://github.com/PierreSenellart/provsql

16/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Outline

Introduction

Theoretical Results

ProvSQL

Experimental Results

Conclusion

17/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Set-Up

� Complexity of O(n6): is it really feasible?
� Same experiment set-up as in [Deutch et al., 2022]: 1 GB

TPC-H database, 8 TPC-H queries with some adaptations
(e.g., removing aggregates), computation of
Shapley/Banzhaf scores for all input tuples

� Non-Boolean queries: computation for every output tuple
� Proof-of-feasibility rather than in-depth experiments
� Compilation to d-D:

� Check whether Boolean circuit is already an independent
circuit

� Otherwise, try to find a low-treewidth decomposition of the
circuit, and use it to build a d-D

� Otherwise, use an external knowledge compiler (but never
required)

18/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Results

Output Provenance Compilation Shapley time (s) Banzhaf time (s)
tuples time (s) time (s) Determ. Expect.

11620 2:125 1:226 0:762 1:758 0:467

5 1:117 0:044 0:766 40:910 0:191

4 1:215 0:017 0:269 9:381 0:085

1783 1:229 0:018 0:023 0:037 0:015

61 0:174 0:001 0:001 0:002 0:001

466 0:247 0:084 0:159 0:455 0:094

91159 2:711 0:749 0:655 1:008 0:489

56 1:223 0:000 0:000 0:000 0:000

Very encouraging! Shapley value computation does not have
such a huge overhead!

18/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Results

Output Provenance Compilation Shapley time (s) Banzhaf time (s)
tuples time (s) time (s) Determ. Expect.

11620 2:125 1:226 0:762 1:758 0:467

5 1:117 0:044 0:766 40:910 0:191

4 1:215 0:017 0:269 9:381 0:085

1783 1:229 0:018 0:023 0:037 0:015

61 0:174 0:001 0:001 0:002 0:001

466 0:247 0:084 0:159 0:455 0:094

91159 2:711 0:749 0:655 1:008 0:489

56 1:223 0:000 0:000 0:000 0:000

Very encouraging! Shapley value computation does not have
such a huge overhead!

19/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Outline

Introduction

Theoretical Results

ProvSQL

Experimental Results

Conclusion

20/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

Main message

� Expected Shapley value computation is not (much) more
costly than probabilistic query evaluation

� Landscape seems clearer than for deterministic Shapley
value computation

� PQE (and Expected Shapley value computation) is quite
feasible in practice, even on large datasets

� Connection to SHAP-score [Van den Broeck et al., 2022] not
quite clear (there is also a probability distribution, but not
used in the same way)

� Approximations?

21/22

Introduction Theoretical Results ProvSQL Experimental Results Conclusion

On the ProvSQL side: Perspectives
Usability: Support for larger subset of SQL, utility functions,

better interface, documentation, ability to restrict
to specific semirings

Efficiency: Benchmarks, optimizations of provenance and
probability computation, scalability, manipulate
circuit both on disk and in main memory

Knowledge compilation: closer integration with knowledge
compilers

More complete probabilistic query evaluation: implementation
of safe query plans, continuous probability
distributions

Use cases: Work with users, provide semirings that
implement useful behavior (e.g., the semiring of
unions of real intervals for temporal databases)

Collaborators welcome!

ProvSQL tutorial:
https://github.com/PierreSenellart/provsql/tree/master/doc/tutorial

https://github.com/PierreSenellart/provsql/tree/master/doc/tutorial

Bibliography I

Omer Abramovich, Daniel Deutch, Nave Frost, Ahmet Kara,
and Dan Olteanu. Banzhaf Values for Facts in Query
Answering. arXiv preprint arXiv:2308.05588, 2023.

Antoine Amarilli. Uniform reliability for unbounded
homomorphism-closed graph queries. In ICDT, volume 255
of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023. URL
https://arxiv.org/abs/2209.11177.

John F Banzhaf III. Weighted voting doesn’t work: A
mathematical analysis. Rutgers L. Rev., 19:317, 1964.

Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic
inference for unions of conjunctive queries. J. ACM, 59(6),
2012.

https://arxiv.org/abs/2308.05588
https://arxiv.org/abs/2308.05588
https://arxiv.org/abs/2209.11177

Bibliography II

Daniel Deutch, Nave Frost, Benny Kimelfeld, and Mikaël
Monet. Computing the Shapley value of facts in query
answering. In SIGMOD Conference, pages 1570–1583.
ACM, 2022.

Ahmet Kara, Dan Olteanu, and Dan Suciu. From Shapley
Value to Model Counting and Back. arXiv preprint
arXiv:2306.14211, 2023.

Werner Kirsch and Jessica Langner. Power indices and minimal
winning coalitions. Social Choice and Welfare, 34(1):33–46,
2010. ISSN 01761714, 1432217X. URL
http://www.jstor.org/stable/41108037.

Annick Laruelle. On the choice of a power index. Technical
report, Instituto Valenciano de Investigaciones Económicas,
1999.

https://arxiv.org/abs/2112.08874
https://arxiv.org/abs/2112.08874
https://arxiv.org/abs/2306.14211
https://arxiv.org/abs/2306.14211
http://www.jstor.org/stable/41108037
http://www.ivie.es/downloads/docs/wpasad/wpasad-1999-10.pdf

Bibliography III

Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann
Ramusat. ProvSQL: provenance and probability management
in postgresql. In VLDB, 2018. Demonstration.

Lloyd S Shapley et al. A value for n-person games. 1953.

Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and
Dan Suciu. On the tractability of SHAP explanations.
Journal of Artificial Intelligence Research, 74:851–886,
2022.

	Introduction
	Theoretical Results
	ProvSQL
	Experimental Results
	Conclusion
	Appendix
	
	References

