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Illustration Example

What are the capital cities of European countries?

France Italy Poland Romania Hungary

Alice Paris Rome Warsaw Bucharest Budapest
Bob ? Rome Warsaw Bucharest Budapest
Charlie Paris Rome Katowice Bucharest Budapest
David Paris Rome Bratislava Budapest Sofia
Eve Paris Florence Warsaw Budapest Sofia
Fred Rome ? ? Budapest Sofia
George Rome ? ? ? Sofia
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Voting

Information: redundance

France Italy Poland Romania Hungary

Alice Paris Rome Warsaw Bucharest Budapest
Bob ? Rome Warsaw Bucharest Budapest
Charlie Paris Rome Katowice Bucharest Budapest
David Paris Rome Bratislava Budapest Sofia
Eve Paris Florence Warsaw Budapest Sofia
Fred Rome ? ? Budapest Sofia
George Rome ? ? ? Sofia

Frequence P. 0.67 R. 0.80 W. 0.60 Buch. 0.50 Bud. 0.43
R. 0.33 F. 0.20 K. 0.20 Bud. 0.50 S. 0.57

B. 0.20
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Evaluating Trustworthiness of Sources

Information: redundance, trustworthiness of sources (= average frequence of
predicted correctness)

France Italy Poland Romania Hungary Trust

Alice Paris Rome Warsaw Bucharest Budapest 0.60
Bob ? Rome Warsaw Bucharest Budapest 0.58
Charlie Paris Rome Katowice Bucharest Budapest 0.52
David Paris Rome Bratislava Budapest Sofia 0.55
Eve Paris Florence Warsaw Budapest Sofia 0.51
Fred Rome ? ? Budapest Sofia 0.47
George Rome ? ? ? Sofia 0.45

Frequence P. 0.70 R. 0.82 W. 0.61 Buch. 0.53 Bud. 0.46
weighted R. 0.30 F. 0.18 K. 0.19 Bud. 0.47 S. 0.54
by trust B 0.20
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Iterative Fixpoint Computation

Information: redundance, trustworthiness of sources with iterative fixpoint
computation

France Italy Poland Romania Hungary Trust

Alice Paris Rome Warsaw Bucharest Budapest 0.65
Bob ? Rome Warsaw Bucharest Budapest 0.63
Charlie Paris Rome Katowice Bucharest Budapest 0.57
David Paris Rome Bratislava Budapest Sofia 0.54
Eve Paris Florence Warsaw Budapest Sofia 0.49
Fred Rome ? ? Budapest Sofia 0.39
George Rome ? ? ? Sofia 0.37

Frequence P. 0.75 R. 0.83 W. 0.62 Buch. 0.57 Bud. 0.51
weighted R. 0.25 F. 0.17 K. 0.20 Bud. 0.43 S. 0.49
by trust B 0.19
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Formal Model

Let f1, . . . , fd be facts/queries.

Each of the r sources inputs their view (vij)i=1...d,j=1...r ∈ {−1, 0, 1}d×r of each
fact.

Truth values (yi)i∈{1,...,d} ∈ [−1, 1]d

Facts:

f1

f2

...
fd

Views from sources:
S1

v11

v21

...
vd1

. . .

Sr

v1r

v2r

...
vdr

Truth-finding

Truth values:

y1

y2

...
yd

What if we want to keep the sources’ views private?
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Truth-finding on Confidential Views
Using MPC (secure multi-party computation) in truth-finding algorithms
protects the views of the sources.

Asking each of the r sources for their view on d facts.

Party 1

Party 2

Sources’ views:

S1 , S2, . . . , Sr

Fact f1:

Fact f2:

...

Fact fd:

v11, v12, . . . , v1r

v21, v22, . . . , v2r

...

vd1, vd2, . . . , vdr

MPC protocols

y1

y2

...

yd

We compute (yi)i ∈ [−1, 1]d using MPC to protect (vij)i,j ∈ {−1, 0, 1}d×r.
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Secure Multi-party Computation (MPC)

Let f be a public function.

P1

P2

Pn

P1

P2

Pn

y

y

y

“Trusted” Third Party

s1

s2

sn Computes y = f(s1, ..., sn)

Without MPC protocols:

With MPC protocols:
P2

P3

P4

P1

Pn

P1

P2

Pn

y

y

y

y = f(s1, ..., sn)
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Two-party Additive Secret-sharing

Let l ∈ N∗, Z/2lZ a finite ring.

Two-party additive secret-sharing Πshare [MGW87]

Input: P1 holds s1

1 P1 generates s12
$←− Z/2lZ

2 s11 ← s1 − s12 mod 2l

3 P1 sends s12 to P2

Notation:
[
s1

]
correspond to the shares s11 and s12 of s1.

Computing mod 2l is crucial to keep the shares uniformly distributed in the ring.
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Addition protocol

Two-party addition protocol Πadd

Input: Pi holds xi,yi for i in {1, 2}
Output: Pi holds zi for i in {1, 2} such that z1 + z2 = x+ y

1 Pi computes zi ← xi + yi for i in {1, 2}

Example of the sum of two secrets modulo 8:

Players:

Secrets:

Secret-sharing:

Addition protocol:

Reveal:

P1 P2

5 7

7 2
6 5

6 + 2 7 + 5

0 4
0 + 4 = 4
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Arithmetic Circuit Evaluation in MPC

With (x1, x2)← [x] and (y1, y2)← [y] we can have:
(z1, z2)← [x+ y] with an addition protocol
(t1, t2)← [xy] with a multiplication protocol [Bea91]

We can privately evaluate the arithmetic circuit of a function
f : (x, y)→ (x+ y) · x :

[x] [y] [x]

[x+ y]

[(x+ y) · x]
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From Real Elements to Finite Ring Elements [MZ17]

Real elements Decimals Finite Ring elements
I = [−2l−p−1, 2l−p−1) Dp,l = {k · 2−p, k ∈ Z} Z2l = [0, 2l) ∩ Z

x x̃ x
round(x) = kx2−p kx mod 2l

Example for l = 2, p = 1:

I = [−1, 1) D1,2 = {−1,−0.5, 0, 0.5} Z/22Z = {0, 1, 2, 3}

−1 −2 · 2−1−1 =−̃1 = −2 mod 22 = 2−1 =

−0.5 −̃0.5 = −0.5 = −1 · 2−1 −0.5 = −1 mod 22 = 3

0.6 1 · 2−1
0.5 =0̃.6 = 1 mod 22 = 10.6 =

For simplicity, we omit the bar.
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Computing Real Functions in the Finite Ring

We compute the arithmetic circuits of real functions using Πadd and Πmult.

Example: For a positive secret [x] compute
[
1
x

]
in MPC [Kno+21].

1 Define the function g(y) = x− 1
y

2 Use Newton-Rapshon iterations to find the root x of g because g( 1
x
) = 0

3 The sequence is defined as follows: yn+1 = −y2nx+ 2yn
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Truth-Finding Security Model

There are d binary facts f1, . . . , fd

For i ∈ {1, ..., d}, j ∈ {1, ..., d}, source j answers vij ∈ {−1, 0, 1} to f i

A truth-finding algorithm returns a truth value yi ∈ [−1, 1] for each fact f i

Party 1

Party 2

Sources’ views:

S1 , S2, . . . , Sr

Fact f1:

Fact f2:

...

Fact fd:

v11, v12, . . . , v1r

v21, v22, . . . , v2r

...

vd1, vd2, . . . , vdr

MPC protocols

y1

y2

...

yd
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A Truth-finding Algorithm: Cosine

Simplified version of Cosine [Gal+10]

Input: The answers (vij)i,j
Output: The truth values (yi)i

1 Initialize truth values (yi)← 1
2 For a number of iterations do:

1 For every source j:

θ
j ←

∑
i,vij=1

y
i −

∑
i,vij=−1

y
i

√√√√√
 ∑

i,vij ̸=0

v
ij

 ∑
i,vij ̸=0

(y
i
)
2


2 For every fact fj :

y
i ←

∑
j,vij=1

(θ
j
)
3 −

∑
j,vij=−1

(θ
j
)
3

∑
j,vij ̸=0

(θ
j
)
3
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Pseudo-Equality Test with Polynomial Evaluation

For a secret [x] and a public element k we need:

[y] = Πequal([x] , k) with y =

{
1 if x = k
0 otherwise.

For truth-finding algorithms, k ∈ K = {−1, 0, 1}.
A classic equality test could be replaced by a degree-two polynomial PK,k.

Examples for k = −1, PK,−1(x) =
1
2
(x2 − x):

−2 −1 1 2

1

2

3

•

•• x

PK,−1
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Alternative for the Secure Inverse Algorithm for Negative Values

Secure inverse algorithm [Kno+21]:

For a secret [x]
If x > 0, the inverse is computed as:

[y] = Πinv([x]) with y =
1

x

If x < 0, the inverse is computed as:

[y] = Πsign([x]) ·Πinv(Πabs([x])) with y =
sign(x)

|x|
=

1

x

If x < 0, we replace the sign computation with two multiplications:

[y] = [x] ·Πinv([x] · [x]) with y =
x

x2
=

1

x
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Results on Confidential Truth-Finding

Cosine on MNIST
120 facts and 15 sources

Non-confidential MPC with
classic inverse

MPC with
optimized inverse

Wall time 10−4 s 0.47 s 0.44 s
Accuracy 90% 90% 90%

3-Estimates on HubDub

Non-confidential MPC with classic
normalization

MPC with optimized
normalization

Wall time 0.02 s 52.85 s 0.58 s
Accuracy 67.59% 67.59% 67.95%
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Conclusion:

Take home message:

Confidential truth-finding can be achieved with secret-sharing-based MPC

Contributions of the paper:
MPC primitives for functions used in truth-finding
Arithmetic MPC protocols for the equality tests on finite sets

Future research:
Truth-finding with differential privacy
Truth-finding algorithm that protects the facts
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Machine Learning and Data

Data Machine Learning Algorithm Model

Examples of federated learning:

Data from cars Vehicle automation

Data from social media
and eCommerce platforms Marketing segmentation

Data from banks Fraud detection
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Federated Learning with Confidential Data

Constraints:
Data is too confidential to be shared.
Rules and regulations prevent sharing sensitive data.

Secure Multi-party Computation (MPC) allows computing the model
output without revealing any participant’s secret data input.

Example of MPC to fight human trafficking by Roseman Labs:

Sensitive data:

NGO

Law enforcement

Real Victims List

Potential Victims List

Stop
human-traficking
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Truth Finding

Truth-finding algorithms aim to know if a statement is correct or not
They involve collecting sources answers to queries, and analyzing the answers
These algorithms could be used to complete missing data

Given the answers to d queries from r sources: (vij)i=1...r,j=1...d

The algorithm outputs y1, . . . , yd the truth value of each of the d queries.

Pierre Senellart Confidential truth-finding with MPC 19 / 19



Supplementary slides
References

MPC-Friendly Normalization Alternative

For a vector of secrets
([
x1

]
, . . . , [xn]

)
we need:

([
y1

]
, . . . , [yn]

)
= Πnorm

([
x1

]
, . . . , [xn]

)
with yi =

xi −mini x
i

maxi xi −mini xi
.

The goal is to scale the elements of the secret vector to [0, 1] with less
communication.

We apply a linear transformation h(x) = 0.5x+ 0.25 instead of Πnorm:

−1 1 2

−0.5

0.5

1

1.5

x

h

Pierre Senellart Confidential truth-finding with MPC 19 / 19



Supplementary slides
References

Related work

Reference Algorithms
[Chi+16; NBK15] Majority Voting

[Mia+15; Zhe+20; ZDW18] Conflict Resolution on
Heterogeneous Data (CRH) [Li+16]

[SSB23] Cosine and 3-Estimates [Gal+10]

Pierre Senellart Confidential truth-finding with MPC 19 / 19



Supplementary slides
References

Bibliography I

[Bea91] Donald Beaver. “Efficient Multiparty Protocols Using Circuit
Randomization”. In: Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1991, Proceedings. Ed. by
Joan Feigenbaum. Vol. 576. Lecture Notes in Computer Science.
Springer, 1991, pp. 420–432. doi: 10.1007/3-540-46766-1\_34
(cit. on p. 12).

[Chi+16] Ilaria Chillotti et al. “A Homomorphic LWE Based E-voting Scheme”.
In: Post-Quantum Cryptography - 7th International Workshop,
PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings.
Ed. by Tsuyoshi Takagi. Vol. 9606. Lecture Notes in Computer
Science. Springer, 2016, pp. 245–265. doi:
10.1007/978-3-319-29360-8\_16 (cit. on p. 26).

[Gal+10] Alban Galland et al. “Corroborating information from disagreeing
views”. In: Proceedings of the Third International Conference on Web
Search and Web Data Mining, WSDM 2010, New York, NY, USA,
February 4-6, 2010. Ed. by Brian D. Davison et al. ACM, 2010,
pp. 131–140. doi: 10.1145/1718487.1718504 (cit. on pp. 16, 26).

Pierre Senellart Confidential truth-finding with MPC 19 / 19

https://doi.org/10.1007/3-540-46766-1\_34
https://doi.org/10.1007/978-3-319-29360-8\_16
https://doi.org/10.1145/1718487.1718504


Supplementary slides
References

Bibliography II

[Kno+21] Brian Knott et al. “CrypTen: Secure Multi-Party Computation Meets
Machine Learning”. In: Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Ed. by
Marc’Aurelio Ranzato et al. 2021, pp. 4961–4973 (cit. on pp. 14, 18).

[Li+16] Yaliang Li et al. “Conflicts to Harmony: A Framework for Resolving
Conflicts in Heterogeneous Data by Truth Discovery”. In: IEEE Trans.
Knowl. Data Eng. 28.8 (2016), pp. 1986–1999. doi:
10.1109/TKDE.2016.2559481 (cit. on p. 26).

[Mia+15] Chenglin Miao et al. “Cloud-Enabled Privacy-Preserving Truth
Discovery in Crowd Sensing Systems”. In: Proceedings of the 13th
ACM Conference on Embedded Networked Sensor Systems, SenSys
2015, Seoul, South Korea, November 1-4, 2015. Ed. by Junehwa Song
et al. ACM, 2015, pp. 183–196. doi: 10.1145/2809695.2809719
(cit. on p. 26).

[MGW87] Silvio Micali et al. “How to play any mental game”. In: Proceedings of
the Nineteenth ACM Symp. on Theory of Computing, STOC. ACM.
1987 (cit. on p. 10).

Pierre Senellart Confidential truth-finding with MPC 19 / 19

https://doi.org/10.1109/TKDE.2016.2559481
https://doi.org/10.1145/2809695.2809719


Supplementary slides
References

Bibliography III

[MZ17] Payman Mohassel et al. “SecureML: A System for Scalable
Privacy-Preserving Machine Learning”. In: 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017. IEEE Computer Society, 2017, pp. 19–38. doi:
10.1109/SP.2017.12 (cit. on p. 13).

[NBK15] Divya G. Nair et al. “An Improved E-voting scheme using Secret
Sharing based Secure Multi-party Computation”. 2015. arXiv:
1502.07469 (cit. on p. 26).

[SSB23] Angelo Saadeh et al. Confidential Truth Finding with Multi-Party
Computation (Extended Version). 2023. arXiv: 2305.14727 [cs.CR]
(cit. on p. 26).

[ZDW18] Yifeng Zheng et al. “Learning the Truth Privately and Confidently:
Encrypted Confidence-Aware Truth Discovery in Mobile
Crowdsensing”. In: IEEE Trans. Inf. Forensics Secur. 13.10 (2018),
pp. 2475–2489. doi: 10.1109/TIFS.2018.2819134 (cit. on p. 26).

[Zhe+20] Yifeng Zheng et al. “Privacy-Aware and Efficient Mobile Crowdsensing
with Truth Discovery”. In: IEEE Trans. Dependable Secur. Comput.
17.1 (2020), pp. 121–133. doi: 10.1109/TDSC.2017.2753245 (cit. on
p. 26).

Pierre Senellart Confidential truth-finding with MPC 19 / 19

https://doi.org/10.1109/SP.2017.12
https://arxiv.org/abs/1502.07469
https://arxiv.org/abs/2305.14727
https://doi.org/10.1109/TIFS.2018.2819134
https://doi.org/10.1109/TDSC.2017.2753245

	Truth Finding
	Initial Example
	Model
	Secure Multi-party Computation

	Background
	MPC with Additive Secret-sharing
	Computing Real Functions in MPC

	Methodology
	Functions for Truth-Finding
	MPC - Equality-Test Optimization
	MPC - Real Inverse Optimization

	Results
	Conclusion
	Appendix
	Supplementary slides
	References


