Confidential Truth Finding with Multi-Party Computation

Angelo Saadeh^{1,6}, **Pierre Senellart**^{1,2,4,5,7}, Stéphane Bressan^{1,3,7}

¹CNRS@CREATE LTD, Singapore

²DI ENS, ENS, PSL University, CNRS, Paris, France

³National University of Singapore, Singapore

⁴Inria, Paris, France

⁵Institut Universitaire de France, Paris, France

⁶LTCI, Télécom Paris, IP Paris, Palaiseau, France

⁷IPAL, CNRS, Singapore, Singapore

BDA 2023, Montpellier, 26 October 2023

	Truth Finding Background Methodology Results Conclusion	Initial Example Model Secure Multi-party Computation
Illustration Example		

What are the capital cities of European countries?

	France	Italy	Poland	Romania	Hungary
Alice	Paris	Rome	Warsaw	Bucharest	Budapest
Bob	?	Rome	Warsaw	Bucharest	Budapest
Charlie	Paris	Rome	Katowice	Bucharest	Budapest
David	Paris	Rome	Bratislava	Budapest	Sofia
Eve	Paris	Florence	Warsaw	Budapest	Sofia
Fred	Rome	?	?	Budapest	Sofia
George	Rome	?	?	?	Sofia

Initial Example Model Secure Multi-party Computation

Voting

Information: redundance

	France	Italy	Poland	Romania	Hungary
Alice	Paris	Rome	Warsaw	Bucharest	Budapest
Bob	?	Rome	Warsaw	Bucharest	Budapest
Charlie	Paris	Rome	Katowice	Bucharest	Budapest
David	Paris	Rome	Bratislava	Budapest	Sofia
Eve	Paris	Florence	Warsaw	Budapest	Sofia
Fred	Rome	?	?	Budapest	Sofia
George	Rome	?	?	?	Sofia
Frequence	P. 0.67	R. 0.80	W. 0.60	Buch. 0.50	Bud. 0.43
	R. 0.33	F. 0.20	K. 0.20	Bud. 0.50	S. 0.57
			B. 0.20		

Initial Example Model Secure Multi-party Computation

Evaluating Trustworthiness of Sources

Information: redundance, trustworthiness of sources (= average frequence of predicted correctness)

	France	Italy	Poland	Romania	Hungary	Trust
Alice	Paris	Rome	Warsaw	Bucharest	Budapest	0.60
Bob	?	Rome	Warsaw	Bucharest	Budapest	0.58
Charlie	Paris	Rome	Katowice	Bucharest	Budapest	0.52
David	Paris	Rome	Bratislava	Budapest	Sofia	0.55
Eve	Paris	Florence	Warsaw	Budapest	Sofia	0.51
Fred	Rome	?	?	Budapest	Sofia	0.47
George	Rome	?	?	?	Sofia	0.45
Frequence	P. 0.70	R. 0.82	W. 0.61	Buch. 0.53	Bud. 0.46	
weighted	R. 0.30	F. 0.18	K. 0.19	Bud. 0.47	S. 0.54	
by trust			B 0.20			

Initial Example Model Secure Multi-party Computation

Iterative Fixpoint Computation

Information: redundance, trustworthiness of sources with iterative fixpoint computation

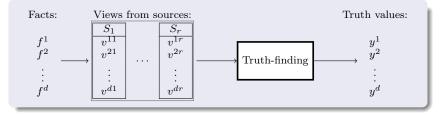
	France	Italy	Poland	Romania	Hungary	Trust
Alice	Paris	Rome	Warsaw	Bucharest	Budapest	0.65
Bob	?	Rome	Warsaw	Bucharest	Budapest	0.63
Charlie	Paris	Rome	Katowice	Bucharest	Budapest	0.57
David	Paris	Rome	Bratislava	Budapest	Sofia	0.54
Eve	Paris	Florence	Warsaw	Budapest	Sofia	0.49
Fred	Rome	?	?	Budapest	Sofia	0.39
George	Rome	?	?	?	Sofia	0.37
Frequence	P. 0.75	R. 0.83	W. 0.62	Buch. 0.57	Bud. 0.51	
weighted	R. 0.25	F. 0.17	K. 0.20	Bud. 0.43	S. 0.49	
by trust			B 0.19			

	Truth Finding Background Methodology Results Conclusion	Initial Example Model Secure Multi-party Computation
Formal Model		

Let f^1, \ldots, f^d be facts/queries.

Each of the r sources inputs their view $(v^{ij})_{i=1...d,j=1...r} \in \{-1,0,1\}^{d \times r}$ of each fact.

Truth values $(y^i)_{i \in \{1,...,d\}} \in [-1,1]^d$

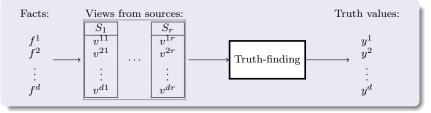


	Truth Finding Background Methodology Results Conclusion	Initial Example Model Secure Multi-party Computation
Formal Model		

Let f^1, \ldots, f^d be facts/queries.

Each of the r sources inputs their view $(v^{ij})_{i=1...d,j=1...r} \in \{-1,0,1\}^{d \times r}$ of each fact.

Truth values $(y^i)_{i\in\{1,...,d\}}\in[-1,1]^d$



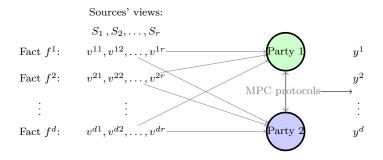
What if we want to keep the sources' views private?

Truth Finding	
Background	
Methodology	Model
Conclusion	

Truth-finding on Confidential Views

Using **MPC** (secure multi-party computation) in truth-finding algorithms protects the views of the sources.

Asking each of the r sources for their view on d facts.



We compute $(y^i)_i \in [-1, 1]^d$ using **MPC** to protect $(v^{ij})_{i,j} \in \{-1, 0, 1\}^{d \times r}$.

 Truth Finding

 Background
 Initial Example

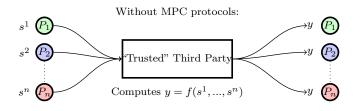
 Methodology
 Model

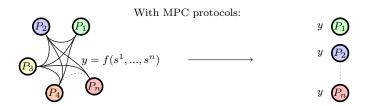
 Results
 Secure Multi-party Computation

 Conclusion
 Conclusion

Secure Multi-party Computation (MPC)

Let f be a public function.





Let $l \in \mathbb{N}^*$, $\mathbb{Z}/2^l\mathbb{Z}$ a finite ring.

Two-party additive secret-sharing Π_{share} [MGW87]

Input: P_1 holds s^1

- $P_1 \text{ generates } s_2^1 \xleftarrow{\$} \mathbb{Z}/2^l \mathbb{Z}$
- $\textcircled{2} \hspace{0.1in} s_{1}^{1} \leftarrow s^{1} s_{2}^{1} \hspace{0.1in} \operatorname{mod} \hspace{0.1in} 2^{l}$
- \bigcirc P_1 sends s_2^1 to P_2

Notation: $[s^1]$ correspond to the shares s_1^1 and s_2^1 of s^1 .

Computing mod 2^l is crucial to keep the shares uniformly distributed in the ring.

MPC with Additive Secret-sharing Computing Real Functions in MPC

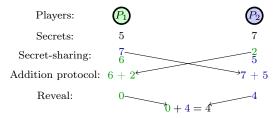
Addition protocol

Two-party addition protocol $\Pi_{\rm add}$

Input: P_i holds x_i, y_i for i in $\{1, 2\}$ **Output:** P_i holds z_i for i in $\{1, 2\}$ such that $z_1 + z_2 = x + y$

 $P_i \text{ computes } z_i \leftarrow x_i + y_i \text{ for } i \text{ in } \{1,2\}$

Example of the sum of two secrets modulo 8:



Truth Finding Background Methodology Results

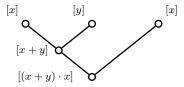
MPC with Additive Secret-sharing Computing Real Functions in MPC

Arithmetic Circuit Evaluation in MPC

With $(x_1, x_2) \leftarrow [x]$ and $(y_1, y_2) \leftarrow [y]$ we can have:

- $(z_1, z_2) \leftarrow [x + y]$ with an addition protocol
- $(t_1, t_2) \leftarrow [xy]$ with a multiplication protocol [Bea91]

We can privately evaluate the arithmetic circuit of a function $f:(x,y) \rightarrow (x+y) \cdot x$:



MPC with Additive Secret-sharing Computing Real Functions in MPC

From Real Elements to Finite Ring Elements [MZ17]

$$\begin{array}{ccc} \textbf{Real elements} & \textbf{Decimals} & \textbf{Finite Ring elements} \\ I = [-2^{l-p-1}, 2^{l-p-1}) & D_{p,l} = \{k \cdot 2^{-p}, k \in \mathbb{Z}\} & \mathbb{Z}_{2^l} = [0, 2^l) \cap \mathbb{Z} \\ & \textbf{x} & & & \\ & & & \\ & & & & \\ & & &$$

Example for l = 2, p = 1:

I = [-1, 1)	$D_{1,2} = \{-1, -0.5, 0, 0.5\}$	$\mathbb{Z}/2^2\mathbb{Z} = \{0, 1, 2, 3\}$
-1	$\widetilde{-1} = -1 = -2 \cdot 2^{-1}$	$\overline{-1} = -2 \mod 2^2 = 2$
-0.5	$\widetilde{-0.5} = -0.5 = -1 \cdot 2^{-1}$	$\overline{-0.5} = -1 \mod 2^2 = 3$
0.6	$\widetilde{0.6} = 0.5 = 1 \cdot 2^{-1}$	$\overline{0.6} = 1 \mod 2^2 = 1$

For simplicity, we omit the bar.

Computing Real Functions in the Finite Ring

We compute the arithmetic circuits of real functions using Π_{add} and Π_{mult} .

Example: For a positive secret [x] compute $\left[\frac{1}{x}\right]$ in MPC [Kno+21].

• Define the function $g(y) = x - \frac{1}{y}$

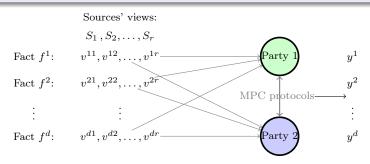
2 Use Newton-Rapshon iterations to find the root x of g because $g(\frac{1}{x}) = 0$

③ The sequence is defined as follows: $y_{n+1} = -y_n^2 x + 2y_n$

Functions for Truth-Finding MPC - Equality-Test Optimization MPC - Real Inverse Optimization

Truth-Finding Security Model

- There are d binary facts f^1, \ldots, f^d
- For $i \in \{1, ..., d\}, j \in \{1, ..., d\}$, source j answers $v^{ij} \in \{-1, 0, 1\}$ to f^i
- A truth-finding algorithm returns a truth value $y^i \in [-1, 1]$ for each fact f^i



Functions for Truth-Finding MPC - Equality-Test Optimization MPC - Real Inverse Optimization

A Truth-finding Algorithm: Cosine

Simplified version of Cosine [Gal+10]

Input: The answers $(v^{ij})_{i,j}$ **Output:** The truth values $(y^i)_i$

- Initialize truth values $(y^i) \leftarrow 1$
- 2 For a number of iterations do:
 - For every source j:

$$y^{j} \leftarrow \frac{\sum_{i,v^{ij}=1} y^{i} - \sum_{i,v^{ij}=-1} y^{i}}{\sqrt{\left(\sum_{i,v^{ij}\neq 0} v^{ij}\right) \left(\sum_{i,v^{ij}\neq 0} (y^{i})^{2}\right)}}$$

2 For every fact f^j :

$$y^{i} \leftarrow \frac{\sum\limits_{j,v^{ij}=1} (\theta^{j})^{3} - \sum\limits_{j,v^{ij}=-1} (\theta^{j})^{3}}{\sum\limits_{j,v^{ij}\neq 0} (\theta^{j})^{3}}$$

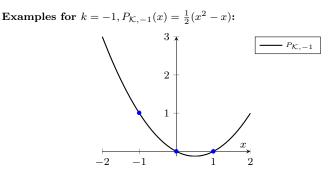
Functions for Truth-Finding MPC - Equality-Test Optimization MPC - Real Inverse Optimization

Pseudo-Equality Test with Polynomial Evaluation

For a secret [x] and a public element k we need:

$$[y] = \Pi_{\text{equal}}([x], k) \text{ with } y = \begin{cases} 1 & \text{ if } x = k \\ 0 & \text{ otherwise.} \end{cases}$$

For truth-finding algorithms, $k \in \mathcal{K} = \{-1, 0, 1\}$. A classic equality test could be replaced by a degree-two polynomial $P_{\mathcal{K},k}$.



Truth Finding Background Methodology Results Conclusion MPC - Real Inverse Optimization

Alternative for the Secure Inverse Algorithm for Negative Values

Secure inverse algorithm [Kno+21]:

For a secret [x]If x > 0, the inverse is computed as:

$$[y] = \Pi_{inv}([x])$$
 with $y = \frac{1}{x}$

If x < 0, the inverse is computed as:

$$[y] = \Pi_{\text{sign}}([x]) \cdot \Pi_{\text{inv}}(\Pi_{\text{abs}}([x])) \text{ with } y = \frac{\text{sign}(x)}{|x|} = \frac{1}{x}$$

If x < 0, we replace the sign computation with two multiplications:

$$[y] = [x] \cdot \Pi_{inv}([x] \cdot [x])$$
 with $y = \frac{x}{x^2} = \frac{1}{x}$

Truth Finding Background Methodology Results

Results on Confidential Truth-Finding

Cosine on MNIST 120 facts and 15 sources

	Non-confidential	MPC with classic inverse	MPC with optimized inverse
Wall time	$10^{-4} \mathrm{s}$	0.47 s	$\begin{array}{c} 0.44 \ \mathrm{s} \\ 90\% \end{array}$
Accuracy	90%	90%	

Truth Finding Background Methodology Results

Results on Confidential Truth-Finding

Cosine on MNIST 120 facts and 15 sources

	Non-confidential	MPC with classic inverse	MPC with optimized inverse
Wall time Accuracy	$10^{-4} \mathrm{s}$ 90%	0.47 s 90%	$\begin{array}{c} 0.44 \text{ s} \\ 90\% \end{array}$

3-Estimates on HubDub

	Non-confidential	MPC with classic normalization	MPC with optimized normalization
Wall time	0.02 s	52.85 s	0.58 s
Accuracy	67.59%	67.59%	67.95%

Truth Finding
Background
Methodology
Results
Conclusion

Conclusion:

Take home message:

Confidential truth-finding can be achieved with secret-sharing-based MPC

Contributions of the paper:

- MPC primitives for functions used in truth-finding
- Arithmetic MPC protocols for the equality tests on finite sets

Future research:

- Truth-finding with differential privacy
- Truth-finding algorithm that protects the facts

Machine Learning and Data

Examples of federated learning:

Federated Learning with Confidential Data

Constraints:

- Data is too confidential to be shared.
- Rules and regulations prevent sharing sensitive data.

Secure Multi-party Computation (MPC) allows computing the model output without revealing any participant's secret data input.

Example of MPC to fight human trafficking by Roseman Labs:

Sensitive data:

Truth Finding

- Truth-finding algorithms aim to know if a statement is correct or not
- They involve collecting sources answers to queries, and analyzing the answers
- These algorithms could be used to complete missing data

Given the answers to d queries from r sources: $(v^{ij})_{i=1\ldots r,j=1\ldots d}$

The algorithm outputs y^1, \ldots, y^d the truth value of each of the *d* queries.

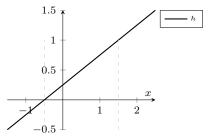
MPC-Friendly Normalization Alternative

For a vector of secrets
$$([x^1], \ldots, [x^n])$$
 we need

$$\left(\begin{bmatrix}y^1\end{bmatrix},\ldots,\begin{bmatrix}y^n\end{bmatrix}\right) = \prod_{\text{norm}}\left(\begin{bmatrix}x^1\end{bmatrix},\ldots,\begin{bmatrix}x^n\end{bmatrix}\right) \text{ with } y^i = \frac{x^i - \min_i x^i}{\max_i x^i - \min_i x^i}.$$

The goal is to scale the elements of the secret vector to $\left[0,1\right]$ with less communication.

We apply a linear transformation h(x) = 0.5x + 0.25 instead of Π_{norm} :



Related work

Reference	Algorithms
[Chi+16; NBK15]	Majority Voting
[Mia+15; Zhe+20; ZDW18]	Conflict Resolution on
	Heterogeneous Data (CRH) [Li+16]
[SSB23]	Cosine and 3-Estimates [Gal+10]

Bibliography I

[Bea91] Donald Beaver. "Efficient Multiparty Protocols Using Circuit Randomization". In: Advances in Cryptology - CRYPTO '91, 11th Annual International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings. Ed. by Joan Feigenbaum. Vol. 576. Lecture Notes in Computer Science. Springer, 1991, pp. 420–432. DOI: 10.1007/3-540-46766-1_34 (cit. on p. 12).

 [Chi+16] Ilaria Chillotti et al. "A Homomorphic LWE Based E-voting Scheme". In: Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings. Ed. by Tsuyoshi Takagi. Vol. 9606. Lecture Notes in Computer Science. Springer, 2016, pp. 245–265. DOI: 10.1007/978-3-319-29360-8_16 (cit. on p. 26).

 [Gal+10] Alban Galland et al. "Corroborating information from disagreeing views". In: Proceedings of the Third International Conference on Web Search and Web Data Mining, WSDM 2010, New York, NY, USA, February 4-6, 2010. Ed. by Brian D. Davison et al. ACM, 2010, pp. 131–140. DOI: 10.1145/1718487.1718504 (cit. on pp. 16, 26).

Bibliography II

- [Kno+21] Brian Knott et al. "CrypTen: Secure Multi-Party Computation Meets Machine Learning". In: Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Ed. by Marc'Aurelio Ranzato et al. 2021, pp. 4961–4973 (cit. on pp. 14, 18).
- [Li+16] Yaliang Li et al. "Conflicts to Harmony: A Framework for Resolving Conflicts in Heterogeneous Data by Truth Discovery". In: *IEEE Trans. Knowl. Data Eng.* 28.8 (2016), pp. 1986–1999. DOI: 10.1109/TKDE.2016.2559481 (cit. on p. 26).
- [Mia+15] Chenglin Miao et al. "Cloud-Enabled Privacy-Preserving Truth Discovery in Crowd Sensing Systems". In: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, SenSys 2015, Seoul, South Korea, November 1-4, 2015. Ed. by Junehwa Song et al. ACM, 2015, pp. 183–196. DOI: 10.1145/2809695.2809719 (cit. on p. 26).
- [MGW87] Silvio Micali et al. "How to play any mental game". In: Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC. ACM. 1987 (cit. on p. 10).

Bibliography III

- [MZ17] Payman Mohassel et al. "SecureML: A System for Scalable Privacy-Preserving Machine Learning". In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 2017, pp. 19–38. DOI: 10.1109/SP.2017.12 (cit. on p. 13).
- [NBK15] Divya G. Nair et al. "An Improved E-voting scheme using Secret Sharing based Secure Multi-party Computation". 2015. arXiv: 1502.07469 (cit. on p. 26).
- [SSB23] Angelo Saadeh et al. Confidential Truth Finding with Multi-Party Computation (Extended Version). 2023. arXiv: 2305.14727 [cs.CR] (cit. on p. 26).
- [ZDW18] Yifeng Zheng et al. "Learning the Truth Privately and Confidently: Encrypted Confidence-Aware Truth Discovery in Mobile Crowdsensing". In: *IEEE Trans. Inf. Forensics Secur.* 13.10 (2018), pp. 2475–2489. DOI: 10.1109/TIFS.2018.2819134 (cit. on p. 26).
- [Zhe+20] Yifeng Zheng et al. "Privacy-Aware and Efficient Mobile Crowdsensing with Truth Discovery". In: *IEEE Trans. Dependable Secur. Comput.* 17.1 (2020), pp. 121–133. DOI: 10.1109/TDSC.2017.2753245 (cit. on p. 26).