Introduction to Probabilistic Data Management

Evgeny Kharlamov Pierre Senellart

Bases de données avancées, October 26, 2011

Part I: Uncertainty in the Real World

Numerous sources of uncertain data:

- Measurement errors
- Data integration from contradicting sources
- Imprecise mappings between heterogeneous schemata
- Imprecise automatic process (information extraction, natural language processing, etc.)
- Imperfect human judgment

Numerous sources of uncertain data:

- Measurement errors
- Data integration from contradicting sources
- Imprecise mappings between heterogeneous schemata
- Imprecise automatic process (information extraction, natural language processing, etc.)
- Imperfect human judgment

Use case: Web information extraction

instance	iteration	date learned	confidence
arabic, egypt	406	08-sep-2011	(Seed) 100.0
chinese, republic of china	439	24-oct-2011	100.0
chinese, singapore	421	21-sep-2011	(Seed) 100.0
english, britain	439	24-oct-2011	100.0
english, canada	439	24-oct-2011	(Seed) 100.0
english, england001	439	24-oct-2011	100.0
arabic, morocco	422	23-sep-2011	100.0
cantonese, hong kong	406	08-sep-2011	100.0
english, uk	436	19-oct-2011	100.0
<u>english, south_vietnam</u>	427	27-sep-2011	99.9
french, morocco	422	23-sep-2011	99.9
greek, turkey	430	07-oct-2011	99.9

Never-ending Language Learning (NELL, CMU), http://rtw.ml.cmu.edu/rtw/kbbrowser/

Use case: Web information extraction

G	008	e squared	comedy movies			Square it Add
com	iedy movi	ies				
	Item Nar	ne 🔻	Language	V X	Director	Release Date
×	The Mas	k	English		Chuck Russell	29 July 1994
×	Scary M	language for th	e mask om - all 9 source	<u>s »</u>	Chuck Russell directed by for The www.infibeam.com	
		Other possible values		-	Other possible values	
×	Superba	English Langu language for Ma www.freebase.c		ce	 John R. Dilworth director for The Ma www.freebase.com 	ask
×	Music	english, frencl languages for t www.dvdreview	he mask	-	Fiorella Infascelli directed by for The www.freebase.com	e Mask
×	Knocked	Ianguage for Th		•	Charles Russell directed by for The www.freebase.com	e Mask
		Search for more va	ues »		Search for more values	<u>s »</u>

Google Squared (terminated), screenshot from [Fink et al., 2011]

Subject	Predicate	Object	Confidence
Elvis Presley	diedOnDate	1977-08-16	97.91%
Elvis Presley	isMarriedTo	Priscilla Presley	97.29%
Elvis Presley	influences	Carlo Wolff	96.25%

YAGO, http://www.mpi-inf.mpg.de/yago-naga/yago

Uncertainty in Web information extraction

- The information extraction system is imprecise
- The system has some confidence in the information extracted, which can be:
 - a probability of the information being true (e.g., conditional random fields)
 - an ad-hoc numeric confidence score
 - a discrete level of confidence (low, medium, high)
- What if this uncertain information is not seen as something final, but is used as a source of, e.g., a query answering system?

Two dimensions:

- Different types:
 - Unknown value: NULL in an RDBMS
 - Alternative between several possibilities: either A or B or C
 - Imprecision on a numeric value: a sensor gives a value that is an approximation of the actual value
 - Confidence in a fact as a whole: cf. information extraction
 - Structural uncertainty: the schema of the data itself is uncertain
- Qualitative (NULL) or Quantitative (95%, low-confidence, etc.) uncertainty

Objective

Not to pretend this imprecision does not exist, and manage it as rigorously as possible throughout a long, automatic and human, potentially complex, process.

Objective

Not to pretend this imprecision does not exist, and manage it as rigorously as possible throughout a long, automatic and human, potentially complex, process.

Especially:

- Represent all different forms of uncertainty
- Use probabilities to represent quantitative information on the confidence in the data
- Query data and retrieve uncertain results
- Allow adding, deleting, modifying data in an uncertain way
- Bonus (if possible): Keep as well lineage/provenance information, so as to ensure traceability

- Not the only option: fuzzy set theory [Galindo et al., 2005], Dempster-Shafer theory [Zadeh, 1986]
- Mathematically rich theory, nice semantics with respect to traditional database operations (e.g., joins)
- Some applications already generate probabilities (e.g., statistical information extraction or natural language probabilities)
- In other cases, we "cheat" and pretend that (normalized) confidence scores are probabilities: see this as a first-order approximation

- Present data models for uncertain data management in general, and probabilistic data management in particular:
 - relational
 - XML
- Show how these models can be queried: algorithms, complexity, approximation techniques...
- Discuss the problem of updating a probabilistic database

Part II: Probabilistic Models of Uncertainty

Probabilistic Relational Models

Probabilistic XML

Possible world: A regular (deterministic) relational or XML database Incomplete database: (Compact) representation of a set of possible worlds

Probabilistic database: (Compact) representation of a probability distribution over possible worlds, either:

finite: a set of possible worlds, each with their probability continuous: more complicated, requires defining a σ -algebra, and a measure for the sets of this σ -algebra

Part II: Probabilistic Models of Uncertainty

- Probabilistic Relational Models
- Probabilistic XML

- Data stored into tables
- Every table has a precise schema (type of columns)
- Adapted when the information is very structured

Patient	Examin. I	Examin. 2	Diagnosis
А	23	12	α
В	10	23	eta
С	2	4	γ
D	15	15	lpha
Е	15	17	eta

Patient	Examin. I	Examin. 2	Diagnosis
А	23	12	α
В	10	23	\perp_1
С	2	4	γ
D	15	15	\perp_2
Е	\perp_3	17	eta

- Most simple form of incomplete database
- Widely used in practice, in DBMS since the mid-1970s!
- All NULLs (\perp) are considered distinct
- Possible world semantics: all (infinitely many under the open world assumption) possible completions of the table
- In SQL, three-valued logic, weird semantics: SELECT * FROM Tel WHERE tel_nr = '333' OR tel_nr <> '333'

Patient	Examin. I	Examin. 2	Diagnosis	Condition
Α	23	12	α	
В	10	23	\perp_1	
С	2	4	γ	
D	\perp_2	15	\perp_1	
Е	\perp_3	17	eta	$18 < \bot_3 < \bot_2$

- NULLs are labeled, and can be reused inside and across tuples
- Arbitrary correlations across tuples
- Closed under the relational algebra (Codd tables only closed under projection and union)
- Every set of possible worlds can be represented as a database with c-tables

Patient	Examin. I	Examin. 2	Diagnosis	Probability
Α	23	12	α	0.9
В	10	23	β	0.8
С	2	4	γ	0.2
С	2	14	γ	0.4
D	15	15	α	0.6
D	15	15	eta	0.4
Е	15	17	eta	0.7
Е	15	17	α	0.3

- Allow representation of the confidence in each row of the table
- Impossible to express dependencies across rows
- Very simple model, well understood

Patient	Examin. I	Examin. 2	Diagnosis	Probability
Α	23	12	α	0.9
В	10	23	β	0.8
С	2	4	γ	0.2
С	2	14	γ	0.4 ∫ [⊕]
D	15	15	eta	0.6 Ĵ
D	15	15	α	0.4∫ [⊕]
Е	15	17	eta	0.7 🔪
E	15	17	α	0.3∫ [⊕]

- ► The table has a primary key: tuples sharing a primary key are mutually exclusive (probabilities must sum up to ≤ 1)
- Simple dependencies (exclusion) can be expressed, but not more complex ones

Patient	Examin. I	Examin. 2	Diagnosis	Condition
Α	23	12	α	w ₁
В	10	23	eta	W_2
С	2	4	γ	W ₃
С	2	14	γ	$ eg w_3 \wedge w_4$
D	15	15	eta	W_5
D	15	15	α	$ eg w_5 \wedge w_6$
Е	15	17	β	W_7
Е	15	17	α	$\neg w_7$

- The w_i's are Boolean random variables
- Each w_i has a probability of being true (e.g., $Pr(w_1) = 0.9$)
- The w_i's are independent
- Any finite probability distribution of tables can be represented using probabilistic c-tables

Two main probabilistic relational DBMS:

- Trio [Widom, 2005] Various uncertainty operators: unknown value, uncertain tuple, choice between different possible values, with probabilistic annotations. See example later on.
- MayBMS [Koch, 2009] Implementation of the probabilistic c-tables model. In addition, uncertain tables can be constucted using a REPAIR-KEY operator, similar to BIDs.

Two actual PRDBMS: Trio and MayBMS

```
test=# select * from R;
Two m dummy | weather | ground | p
       dummy |
               rain
                                  0.35
                        wet
                                                               own
       dummy | rain | dry
                                  0.05
                                                               ible
       dummy | no rain | wet
                                   0.1
       dummy | no rain | dry
                                   0.5
                                                               ter on.
       (4 rows)
    Ma
                                                               bles
      test=# create table S as
                                                               d using
       repair key Dummy in R weight by P:
      SELECT
       test=# select Ground, conf() from S group by Ground;
       around | conf
       drv
               0.55
                0.45
       wet
       (2 rows)
```

Part II: Probabilistic Models of Uncertainty

Probabilistic Relational Models

Probabilistic XML

The semistructured model and XML

- Tree-like structuring of data
- No (or less) schema constraints
- Allow mixing tags (structured data) and text (unstructured content)
- Particularly adapted to tagged or heterogeneous content

- Extensive literature about probabilistic relational databases [Dalvi et al., 2009, Widom, 2005, Koch, 2009]
- Different typical querying languages: conjunctive queries vs tree-pattern queries (possibly with joins)
- Cases where a tree-like model might be appropriate:
 - No schema or few constraints on the schema
 - Independent modules annotating freely a content warehouse
 - Inherently tree-like data (e.g., mailing lists, parse trees) with naturally occurring queries involving the descendant axis

Remark

Some results can be transferred from one model to the other. In other cases, connection much trickier!

Incomplete XML [Barceló et al., 2009]

- Models all XML documents where these patterns exist (i.e., this subtree can be matched)
- Can be used for query answering, etc.

Simple probabilistic annotations

- Probabilities associated to tree nodes
- Express parent/child dependencies
- Impossible to express more complex dependencies
- ➤ ⇒ some sets of possible worlds are not expressible this way!

Annotations with event variables

Annotations with event variables

- Expresses arbitrarily complex dependencies
- Obviously, analogous to probabilistic c-tables

A general probabilistic XML model

[Abiteboul et al., 2009]

- e: event "it did not rain" at time I
- mux: mutually exclusive options
- N(70,4): normal distribution

- Compact representation of a set of possible worlds
- Two kinds of dependencies: global (e) and local (mux)
- Generalizes all previously proposed models of the literature

Recursive Markov chains [Benedikt et al., 2010]

<!ELEMENT directory (person*)> <!ELEMENT person (name,phone*)>

- Probabilistic model that extends PXML with local dependencies
- Allows generating documents of unbounded width or depth

Part III: Querying Probabilistic Databases

- Semantics and goals
- Queries over relational probabilistic DBs
- Queries over XML probabilistic DBs

Semantics Of Query Answering: Example

Person

name	city	probability
Ivan	Moscow	0.3
Jean	Paris	0.8
Pedro	Madrid	0.4

Query: SELECT name FROM Person

Semantics Of Query Answering: Example

Person

na

name	city	probability
lvan	Moscow	0.3
Jean	Paris	0.8
Pedro	Madrid	0.4

Pr = 0.3*0.8*0.4

J.3 [~] 0.8	3 [≁] 0.4		
me	ci	ty	

A REAL PROPERTY OF A READ REAL PROPERTY OF A REAL P	
lvan	Moscow
Jean	Paris
Pedro	Madrid

SELECT name FROM Person

Pr = 0.3*0.2*0.4

Query:

name	city
Ivan	Moscow
Pedro	Madrid

 $\bullet \bullet \bullet$

Semantics Of Query Answering: Example

Possible answers: ({Ivan, Juan, Pedro}, 0.3*0.8*0.4), ({Ivan, Pedro}, 0.3*0.2*0.4), ...

Possible tuples:

(Ivan, 0.3), (Jean, 0.8), (Pedro, 0.4)

Possible Answers Semantics

Probabilistic DB:

Possible Tuples Semantics

Possible Answers Semantics

Probabilistic DB:

Possible Tuples Semantics

Probabilistic DB: Ć P = 0.2 P = 0.5 P = 0.3Q {a} {a,b}

Possible Answers Semantics

Answer: $({a}, 0.3); ({a,b}, 0.5)$

Possible Tuples Semantics

Possible Answers Semantics

Probabilistic DB:

Possible Tuples Semantics

Probabilistic DB:

Answer: $({a}, 0.3); ({a,b}, 0.5)$

Probability distribution on sets of tuples

Answer: $({a}, 0.3); ({a,b}, 0.5)$

Probability distribution on sets of tuples

Possible Answer vs Possible Tuple Semantics

[Dalvi,Suciu'09]

- **Possible answers semantics:**
 - Precise
 - Can be used to compose queries
 - Difficult user interface
- Possible tuples semantics:
 - Less precise, but simple; sufficient for most apps
 - Cannot be used to compose queries
 - Simple user interface

Answer: (a, 0.8), (b, 0.5)

- There may be EXP many worlds → naive evaluation is exponential
- Can we do better?

- There may be EXP many worlds \rightarrow naive evaluation is exponential
- Can we do better?

- There may be EXP many worlds -> naive evaluation is exponential
- Can we do better?

- There may be EXP many worlds -> naive evaluation is exponential
- Can we do better?
- Goal: to find out how to query representation system directly

Part III: Querying Probabilistic Databases

- Semantics and goals
- Queries over relational probabilistic DBs
 - Queries in Trio, MayBMS, and Mystiq
 - Query lineage
 - Approximate query evaluation
- Queries over XML probabilistic DBs

Part III: Querying Probabilistic Databases

- Semantics and goals
- Queries over relational probabilistic DBs
 - Queries in Trio, MayBMS, and Mystiq
 - Query lineage
 - Approximate query evaluation
- Queries over XML probabilistic DBs

Saw

ID	witness	car
21	Cathy	Honda Mazda

Suspects = π_{person} (Saw \bowtie Drives)

Drivers

ID	person	car
31	Jimmy	Toyota Mazda
32	Billy Frank	Honda
33	Hank	Honda

Saw

ID	witness	car
21	Cathy	Honda Mazda

Suspects = π_{person} (Saw \bowtie Drives)

Drivers

ID	person	car
31	Jimmy	Toyota Mazda
32	Billy Frank	Honda
33	Hank	Honda

Suspects

41	Jimmy
42	Billy Frank
43	Hank

Saw

ID	witness	car
21	Cathy	Honda Mazda

Suspects = π_{person} (Saw \bowtie Drives)

2

Drivers

ID	person	car
31	Jimmy	Toyota Mazda
32	Billy Frank	Honda
33	Hank	Honda

Suspects

41	Jimmy	
42	Billy Frank	
43	Hank	

Saw

ID	witness	car
21	Cathy	Honda Mazda

Suspects = π_{person} (Saw \bowtie Drives)

Drivers

ID	person	car
31	Jimmy	Toyota Mazda
32	Billy Frank	Honda
33	Hank	Honda

Suspects		
Jimmy	?	
Billy Frank	?	
Hank	?	
	Jimmy Billy Frank	

Correlations are missing. It's a wrong representation

Saw

ID	witness	car
21	Cathy	Honda Mazda

Suspects = π_{person} (Saw \bowtie Drives)

Drivers

ID	person	car	
31	Jimmy	Toyota Mazda	
32	Billy Frank	Honda	
33	Hank	Honda	

Correlations are missing. It's a wrong representation Lineage:

L(41) = (21,2), (31,2)

Saw

ID	witness	car	
21	Cathy	Honda Mazda	

Suspects = π_{person} (Saw \bowtie Drives)

Drivers

ID	person	car	
31	Jimmy	Toyota Mazda	
32	Billy Frank	Honda	
33	Hank	Honda	

Correlations are missing. It's a wrong representation Lineage:

L(41) = (21,2)(31,2)

Saw

ID	witness	car
21	Cathy	Honda Mazda

Suspects = π_{person} (Saw \bowtie Drives)

Drivers

ID	person	car	
31	Jimmy	Toyota Mazda	
32	Billy Frank	Honda	
33	Hank	Honda	

Correlations are missing. It's a wrong representation Lineage:

L(41) = (21,2), (31,2)

Saw

ID	witness	car	
21	Cathy	Honda Mazda	

Suspects = π_{person} (Saw \bowtie Drives)

Drivers

ID	person	car	
31	Jimmy	Toyota Mazda	
32	Billy Frank	Honda	
33	Hank	Honda	

Correlations are missing. It's a wrong representation Lineage:

$$(41) = (21,2), (31,2)$$

L(42,I) = (2I,I)(32,I) L(42,2) = (2I,I), (32,2)L(43) = (2I,I), (33)

Saw

ID	witness	car
21	Cathy	Honda Mazda

Suspects = π_{person} (Saw \bowtie Drives)

Drivers

ID	person	car	
31	Jimmy	Toyota Mazda	
32	Billy Frank	Honda	
33	Hank	Honda	

Correlations are missing. It's a wrong representation Lineage:

L(41) = (21,2), (31,2)

Saw

ID	witness	car	
21	Cathy	Honda Mazda	

Suspects = π_{person} (Saw \bowtie Drives)

Drivers

ID	person	car	
31	Jimmy	Toyota Mazda	
32	Billy Frank	Honda	
33	Hank	Honda	

Suspe	ects		Lineage:
41	Jimmy	?	L(41) = (21,2), (31,2)
42	Billy Frank	?	L(42,I) = (2I,I), (32,I); L(42,2) = (2I,I), (32,2)
43	Hank	?	L(43) = (21,1), (33)

This is the right representation

This is the right representation

Lineage

Suspects					
41	Jimmy	?			
42	Billy Frank	?			
43	Hank	?			

Lineage:

L(41) = (21,2), (31,2)

$$L(42,I) = (2I,I), (32,I); L(42,2) = (2I,I), (32,2)$$

L(43) = (21,1), (33)

- Lineage or provenance:
 - Meat to explain where the data comes from
 - Internal lineage: comes from data itself
 - External lineage: someone tells us
- Without lineage Trio system is not closed under queries (as we saw on the previous example)

Trio Data Model with Lineage

- Uncertainty-Lineage Databases: ULDBs
 - Alternatives
 - '?' (Maybe) Annotations
 - Confidences
 - Lineage

General Lineage: Examples of Operators (1)

Drivers

ID	person	car	Lineage
31	Jimmy	Toyota	x \wedge y
32	Jimmy	Honda	у
33	Hank	Honda	$x \lor z$

Saw

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Project =
$$\pi_{person}$$
 (Drives)

Project

person	Lineage
Jimmy	$(x \land y) \lor y$
Hank	$x \lor z$

Select =
$$\sigma_{car="honda"}$$
 (Drives)

Select

person	car	Lineage
Jimmy	Honda	у
Hank	Honda	$x \lor z$

General Lineage: Examples of Operators (1)

Drivers

ID	person	car	Lineage
31	Jimmy	Toyota	x \wedge y
32	Jimmy	Honda	у
33	Hank	Honda	$x \lor z$

Saw

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Project =
$$\pi_{person}$$
 (Drives)

Project

person	Lineage
Jimmy	$(x \land y) \lor y$
Hank	$x \lor z$

Select =
$$\sigma_{car="honda"}$$
 (Drives)

Select

person	car	Lineage
Jimmy	Honda	у
Hank	Honda	$x \lor z$

General Lineage: Examples of Operators (2)

Drivers

ID	person	car	Lineage
31	Jimmy	Toyota	x \wedge y
32	Jimmy	Honda	у
33	Hank	Honda	$x \lor z$

Saw

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Join = Saw
$$\bowtie_{car}$$
 Drives

Several =
$$\pi_{person}(\sigma_{person="Hank"}(Saw \bowtie_{car} Drives))$$

Join

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

Several

person	Lineage
Hank	$(x \lor z) \land w$

General Lineage: Examples of Operators (2)

Drivers

ID	person	car	Lineage
31	Jimmy	Toyota	x \wedge y
32	Jimmy	Honda	у
33	Hank	Honda	$x \lor z$

Saw

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Join = Saw
$$\bowtie_{car}$$
 Drives

Several =
$$\pi_{person}(\sigma_{person="Hank"}(Saw \bowtie_{car} Drives))$$

Join

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

Several

person	Lineage
Hank	$(x \lor z) \land w$

General Lineage: Examples of Operators (3)

Saw-day

ID	witness	car	Lineage
31	Cathy	Honda	Z
32	Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Saw-night

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Union

witness	car	Lineage
Cathy	Honda	z V w
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Difference

witness	car	Lineage
Cathy	Honda	z ∧ (¬w)
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

General Lineage: Examples of Operators (3)

Saw-day

ID	witness	car	Lineage
31	Cathy	Honda	Z
32	Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Saw-night

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Union

witness	car	Lineage
Cathy	Honda	z V w
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Difference

witness	car	Lineage
Cathy	Honda	z ∧ (¬w)
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

MayBMS

- Since MayBMS is essentially probabilistic c-tables query evaluation is based on
 - computation of lineage
 - computation of the probability that a tuple to be in the answer is the probability of the tuple's lineage

General Lineage

- Types of Lineage:
 - Conjunctive lineage: sufficient for most operations
 - **Disjunctive** lineage: for duplicate-elimination
 - Negative lineage: for difference
 - Boolean formulas: general case after several queries

Join = Saw \bowtie_{car} Drives

 $Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$ $Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$

Join

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

SPJUD-query evaluation over PrRBDs with boolean-formulas lineage is #P-hard, i.e. intractable

Wednesday, October 26, 2011

Join = Saw
$$\bowtie_{car}$$
 Drives

 $Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$ $Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

• $Pr(\text{Jimmy} \in (\text{Saw} \boxtimes_{car} \text{Drives})) = Pr(y \land w) = Pr(y) \times Pr(w) = 0.4 \times 0.5 = 0.2$

Join

Join = Saw
$$\bowtie_{car}$$
 Drives

 $Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$ $Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

• Pr(Jimmy \in (Saw \bowtie_{car} Drives)) = Pr(y \land w) = Pr(y) \times Pr(w) = 0.4 \times 0.5 = 0.2

oin

• $Pr(Hank \in (Saw \bowtie_{car} Drives)) = Pr((x \lor z) \land w))$

=
$$Pr(x \lor z) \times Pr(w)$$

= $[Pr(x) + Pr(z) - Pr(x \land z)] \times 0.5$
= $[Pr(x) + Pr(z) - Pr(x) \times Pr(z)] \times 0.5$
= $[0.2 + 0.8 - 0.2 \times 0.8] \times 0.5 = 0.42$

Theorem:

Join = Saw
$$\bowtie_{car}$$
 Drives

 $Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$ $Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

• $Pr(Jimmy \in (Saw \bowtie_{car} Drives)) = Pr(y \land w) = Pr(y) \times Pr(w) = 0.4 \times 0.5 = 0.2$

oin

• $Pr(Hank \in (Saw \bowtie_{car} Drives)) = Pr((x \lor z) \land w))$

In general: $Pr(lineage) = Pr(\phi)$ where ϕ is a prop. formula = $Pr(x \lor z) \times Pr(w)$ = $[Pr(x) + Pr(z) - Pr(x \land z)] \times 0.5$ = $[Pr(x) + Pr(z) - Pr(x) \times Pr(z)] \times 0.5$ = $[0.2 + 0.8 - 0.2 \times 0.8] \times 0.5 = 0.42$

Theorem:

#P Functions

- Probability computation is a function and not a decision problem
- Usually complexity is studied for decision problems: P(x) = yes/no
- Complexity classes for probability computation are for classes of functions
- #P functions: f(x) = n
 - there is a PTIME non-deterministic Turing machine M_f
 - $n = the number of accepting runs of M_f on x, i.e., of M_f(x)$
- #P functions are counting counterparts of NP decision problems
- Example of #P-complete function: #2DNF: count number of evaluations for 2DNF propositional formulas
- #P-comp. functions are counter counterparts of NP-comp. problems

Can Queries Evaluation be Easy?

Theorem:

- This means that evaluation of SQL queries over PrRDBs cannot be efficient in general
- Practical cases?

[Dalvi&Suciu'04]

• Conjunctive queries (SPJ):

e.g. $Q(x) := Person(x) \land Works_for(x, "Irish Pub") \land Married_to(x,y) \land Nurse(x,y)$

- Conjunctive queries (SPJ):
 e.g. Q(x) :- Person(x) ^ Works_for(x, "Irish Pub") ^ Married_to(x,y) ^ Nurse(x,y)
- Self join: the same predicate occurs more than once:
 Q_Fr(x) :- Friends(x,y) ^ Works_for(x, "Irish Pub") ^ Works_for(y,"Temple Bar")

- [Dalvi&Suciu'04]
- Conjunctive queries (SPJ):
 e.g. Q(x) :- Person(x) ^ Works_for(x, "Irish Pub") ^ Married_to(x,y) ^ Nurse(x,y)
- Self join: the same predicate occurs more than once:
 Q_Fr(x) :- Friends(x,y) ^ Works_for(x, "Irish Pub") ^ Works_for(y,"Temple Bar")
- Hierarchical query: $\Sigma(x)$ predicates where x occur. If x, y occur in Q, then $\Sigma(x) \cap \Sigma(y) = \emptyset$, or $\Sigma(x) \subseteq \Sigma(y)$ or $\Sigma(y) \subseteq \Sigma(x)$

Q_Fr is hierarchical: $\Sigma(x) = \{ Friends, Works_for \} and \Sigma(y) = \{ Friends, Works_for \}$

Conjunctive queries (SPJ):
 e.g. Q(x) :- Person(x) ^ Works_for(x, "Irish Pub") ^ Married_to(x,y) ^ Nurse(x,y)

[Dalvi&Suciu'04]

- Self join: the same predicate occurs more than once:
 Q_Fr(x) :- Friends(x,y) ^ Works_for(x, "Irish Pub") ^ Works_for(y,"Temple Bar")
- Hierarchical query: $\Sigma(x)$ predicates where x occur. If x, y occur in Q, then $\Sigma(x) \cap \Sigma(y) = \emptyset$, or $\Sigma(x) \subseteq \Sigma(y)$ or $\Sigma(y) \subseteq \Sigma(x)$

Q_Fr is hierarchical: $\Sigma(x) = \{ Friends, Works_for \} and \Sigma(y) = \{ Friends, Works_for \}$

Theorem: Computation of probabilities of query answers is polynomial time for queries that are:

- without self-joins, and
- hierarchical

\bullet	Conjuncti	ye queries (SPI).	
	e.g. Q(x)	Hard SPJ query for TIDs:	$(x,y) \land Nurse(x,y)$
•	<mark>Self join:</mark> t Q_Fr(x) :- I	$Q = Person(x) \land Works_For(x,y) \land Company(y)$	'Temple Bar'')
•	Hierarchi	- Q without self-joins - Q is not hierarchical	$\nabla(x) \subset \nabla(x)$
	lf x, y occ	Message: in most of the cases query evaluation is hard	or Σ(y) ⊆ Σ(x)
	Q_Fr is hie Σ(x) = { Fri	even over a simple TID model	J

Theorem:

Computation of probabilities of query answers is polynomial time for queries that are:

- without self-joins, and
- hierarchical

Part III: Querying Probabilistic Databases

- Semantics and goals
- Queries over relational probabilistic DBs
- Queries over XML probabilistic DBs
 - Tree-pattern queries
 - Aggregate queries

Part III: Querying Probabilistic Databases

- Semantics and goals
- Queries over relational probabilistic DBs
- Queries over XML probabilistic DBs
 - Tree-pattern queries
 - Aggregate queries

Querying PrXML: Example

Query: Q: Is there a bonus of 4?

Querying PrXML: Example

Querying PrXML: Example

Query answer over PrXML:

{ (yes, 0.1), (no, 0.9) }

a) Single-Path Queries - SP Are there professors working for some teams?

XPath notation: /root/team/prof

a) Single-Path Queries - SP Are there professors working for some teams?

XPath notation: /root/team/prof

b) Tree-Pattern Queries - TP Return names of professors working for teams involved in EU projects?

XPath notation: /root/team[project//EU]/prof/name/*

c) Tree-Pattern Queries with Joins - TPJ Are there (names of) professors working for both KRDB and DBWeb?

XPath notation:

.//team[id="KRDB"] /prof/name =
.//team[id="DBWeb"]/prof/name

c) Tree-Pattern Queries with Joins - TPJ Are there (names of) professors working for both KRDB and DBWeb?

XPath notation:

.//team[id="KRDB"] /prof/name =
.//team[id="DBWeb"]/prof/name

c) Tree-Pattern Queries with Joins - TPJ Are there (names of) professors working for both KRDB and DBWeb?

XPath notation:

.//team[id="KRDB"] /prof/name =
.//team[id="DBWeb"]/prof/name

c) Tree-Pattern Queries with Joins - TPJ Are there (names of) professors working for both KRDB and DBWeb?

XPath notation:

.//team[id="KRDB"] /prof/name =
.//team[id="DBWeb"]/prof/name

• TP - in navigational XPath

• TPJ - fragment of XPath 2.0

Bottom-up dynamic programming algorithm. Query: /A//B

	A_1	D_2	mux ₃	B_4	C_5	B_6
/B				Ι	0	Ι
//B				Ι	0	I
/A//B				0	0	0
	mux co		ım	•	•	

ordinary inclusion-exclusion

Bottom-up dynamic programming algorithm. Query: /A//B

	A_1	D_2	mux ₃	B_4	C_5	B_6
/B			0.3	I	0	Ι
//B			0.3	I	0	I
/A//B			0	0	0	0

mux convex sum

ordinary inclusion-exclusion

Bottom-up dynamic programming algorithm. Query: /A//B

 $\Pr(D_2 \models //B) = 1 - (1 - 0.8 \times \Pr(\mathsf{mux}_3 \models /B)) \times (1 - 0.6 \times \Pr(B_6 \models /B))$ $= 1 - (1 - 0.8 \times 0.3) \times (1 - 0.6) = 0.696$

Bottom-up dynamic programming algorithm. Query: /A//B

	A_1	D_2	mux_3	B_4	C_5	B_6
/B	0	0	0.3	I	0	Ι
//B	0.696	0.696	0.3	I	0	Ι
/A//B	0.696	0	0	0	0	0

mux convex sum

ordinary inclusion-exclusion

Hard Query with one Join

Encoding of 2DNF formula: $(x \land y) \lor (x \land \neg z) \lor (y \land z)$:

Intuition on encoding:

- one root-subdocument for every variable
- one child of MUX gathers negative occurrences of variables
- another child of MUX negative
- left/0 means left

Theorem: (Reduction from #2DNF) Every 2DNF formula φ can be converted into a PrXML doc D_{φ} s.t. $Pr(\varphi=true) = C \times Pr(Q \text{ matches } D_{\varphi})$

Not all Joins are the Same

• Some joins are fake

Theorem: Let q be a TPJ query with a single join. Then:

- if the join of q is fake, then query evaluation of q over PrXML is PTIME;
- otherwise, it is intractable

Querying PrXML (Data Complexity)

Queries	Single-Path	Tree-Pattern	Tree-Pattern with Joins
Local PrXML	polynomial		intractable
Global PrXML	intractable		intractable

[Kimelfed&al:2007], [Senellart&al:2007]

- Focus on data complexity of functions and not of decision problems
- intractability: #P-hardness = counting counterparts of NP problems.
- **Sources** of intractability:
 - Global probabilistic dependencies in data
 - Joins in queries
- Practical considerations: exact computation only for: local PrXML model + no joins in queries

Aggregate Queries

Aggregate Query:

What is the average of bonuses?

- Extend TPJ queries with aggregate functions
- Aggregate functions: sum, count, min, max, avg, countd

Example of Aggregate Queries over PrXML

Query: What is the average of bonuses?

Example of Aggregate Queries over PrXML

Query: What is the average of bonuses?

Answers over worlds:

avg(w3) = 2.5, Pr(w3)=0.6

$$avg(w4) = 3$$
, $Pr(w4)=0.1$

$$avg(w5) = 3.5, Pr(w5)=0.3$$

Example of Aggregate Queries over PrXML

Query Answer over PrXML: Distribution of aggregate values Query: What is the average of bonuses?

Answers over worlds:

$$avg(w3) = 2.5$$
, $Pr(w3)=0.6$

$$avg(w4) = 3$$
, $Pr(w4)=0.1$

$$avg(w5) = 3.5$$
, $Pr(w5)=0.3$

 $\{ (2.5, 0.6), (3, 0.1), (3.5, 0.3) \}$

Example of Aggregate Queries over PrXML

Query Answer over PrXML: Distribution of aggregate values

Problems to study:

• probability computation: Pr(Q(w)=C)

 $E(Q(w)^{K})$

• moments computation:

Query: What is the average of bonuses?

Answers over worlds:

$$avg(w3) = 2.5, Pr(w3)=0.6$$

$$avg(w4) = 3$$
, $Pr(w4)=0.1$

$$avg(w5) = 3.5, Pr(w5)=0.3$$

 $\{ (2.5, 0.6), (3, 0.1), (3.5, 0.3) \}$

Convex coefficients $P_1,...,P_n$: $P_1+...+P_n = I$

Convex coefficients $P_1,...,P_n$: $P_1+...+P_n = I$

⊕ operation: in our case it is: sum, count, min, topK, ...

Convex Sum: $p \cdot \Delta_1 + q \cdot \Delta_1 =$

Convex coefficients $P_1,...,P_n$: $P_1+...+P_n = I$

Convex coefficients $P_1,...,P_n$: $P_1+...+P_n = I$

Convex coefficients $P_1,...,P_n$: $P_1+...+P_n = I$

Convex coefficients $P_1,...,P_n$: $P_1+...+P_n = I$

- MUX-node = convex sum of distributions from rooted subtrees
- DET-node, regular node = convolution of distrib. from rooted subtrees

- MUX-node = convex sum of distributions from rooted subtrees
- DET-node, regular node = convolution of distrib. from rooted subtrees

- MUX-node = convex sum of distributions from rooted subtrees
- DET-node, regular node = convolution of distrib. from rooted subtrees

- MUX-node = convex sum of distributions from rooted subtrees
- DET-node, regular node = convolution of distrib. from rooted subtrees

- MUX-node = convex sum of distributions from rooted subtrees
- DET-node, regular node = convolution of distrib. from rooted subtrees

- MUX-node = convex sum of distributions from rooted subtrees
- DET-node, regular node = convolution of distrib. from rooted subtrees

- MUX-node = convex sum of distributions from rooted subtrees
- DET-node, regular node = convolution of distrib. from rooted subtrees

- MUX-node = convex sum of distributions from rooted subtrees
- DET-node, regular node = convolution of distrib. from rooted subtrees

• Monoid functions allow for divide-and-conquer strategy:

 $\{|2, 3, 3, 5|\} = \{|2, 3|\} \cup \{|3, 5|\}$ SUM $\{|2, 3, 3, 5|\} = SUM \{|2, 3|\} + SUM \{|3, 5|\}$

• For global PrXML in PTIME only moments of SP w/ count, sum

• Monoid functions allow for divide-and-conquer strategy:

 $\{| 2, 3, 3, 5 |\} = \{| 2, 3 |\} \cup \{| 3, 5 |\}$ SUM $\{| 2, 3, 3, 5 |\} =$ SUM $\{| 2, 3 |\} +$ SUM $\{| 3, 5 |\}$ COUNT, SUM, MIN \checkmark COUNTD, AVG \checkmark

• For global PrXML in PTIME only moments of SP w/ count, sum

• Monoid functions allow for divide-and-conquer strategy:

```
\{|2, 3, 3, 5|\} = \{|2, 3|\} \cup \{|3, 5|\}
```

SUM {| 2, 3, 3, 5 |} = SUM {| 2, 3 |} + SUM {| 3, 5 |}

COUNT, SUM, MIN

COUNTD, AVG

Theorem: For aggregate TP-queries with monoid functions over local PrXML bottom-up algorithm is applicable and

X

- prob. computations is in **PTIME** in output distribution
- moment computation is in PTIME in [input p-document]
- For global PrXML in PTIME only moments of SP w/ count, sum

Conclusion on Queries over PrXML

- Value joins in queries are intrinsically intractable
- Global model is intractable for essentially every query
- Aggregation can be easier than querying
 - moments over global PrXML
- Tractable cases for aggregation
 - Distributions: TP + monoid functions over L-PrXML
 - Moments: SP + every considered function over L-PrXML
 - Moments: SP + *sum*, *count* over G-PrXML
- Sampling is unavoidable in many practical cases

Approximate Query Answering over PrXML

- Use the same sampling idea as in the relation case
- Special case of PrXML:
 - lineage is usually in DNF
 => one can use specialized techniques for probability computation of DNF formulas
- System for query evaluation over PrXML: ProApproX it allows for
 - additive approximation
 - multiplicative approximation
 - exact computation

Approximate Query Answering over PrXML

Select a Data Set: Upload View Data	Settings
choose from proposed Data sets: Mondial_PDB.xml	Computing strategy: Run All Methods
pe your query here:	Multiplicative Approximation Additive Approximation
nondial/mountain/@height [.>5000]	 Run with the suitable number of trials (computed based on Hoeffding's inequality)
	Tolerated error: 0.5
	Confidence interval: 0.95 Reset values
Run Run Next Query Cancel Plot results evolutions (this could relatively degrade the system performances) Run EvalDP Algorithm also.	Run with convergence detection Precision: 0.001 Convergence indicator: 1000 Reset values
lect the "Real-time plottings" tabs to see the results evolutions and details.	Run with a number of trials Number of trials to conduct:
esults: Total number of trials: 5939	
umber of patterns to the query: 22	
alDP: Result: 0.9221245787 Time: 203	
Independent Evaluation: Result: 0.9221245787 Time: 7	

Λ

XorqAorq 🔠

Edit Query Live Results - Chart Live Results - Tables

Approximate	Select an area of the graph to zoom in.	
	Drag to the left on the graph to zoom out.	
ProApproX	1,05	
Edit Query Live Results - Chart Live Results - Tables	1,00	-
	0,85 Munduland	
Select a Data Set: Upload	0,90	
Or choose from proposed Data sets: Mondial_PDB.xml	0,80	
a check non proporte bara sech (monoral) bestin	0,75	
	0,70	Total number of trials:
Type your query here:	0,65	5939
/mondial/mountain/@height [.>5000]	Ajjigeou 0,55 0,50 0,45	
		Stop
	0,40	
	0,35	
	0,30	
	0,25	
	0,20 -	
🚯 Run Next Query	0,15	
Plot results evolutions (this could relatively degrade the system)	0,10	
Run EvalDP Algorithm also.	0,05	
	0,00 ¹ 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 Number of Trials	950
Select the "Real-time plottings" tabs to see the results evolutions ar	-Multiplicative Approximation Values -Additive Approximation Values	
Stop		
Results: Total number of trials: 5939		
Number of patterns to the query: 22		
EvalDP: Result: 0.9221245787 Time	:: 203	
	La	
Independent Evaluation: Result: 0.9221245787 Time	:7	
Additive approximation: Result: 0.9241192412 Time	:: 83	
Interval of error: [8.7413E-01 , 9.7411E-01]		

- 10

Edge	ID	node	node	prob
	Ι	XI	x ₂	I
		X 3	X 4	0.2
	2	X 3	X 5	0.8
			•••	

- PrXML can be encoded in BIDs
- Encoding is of specific form

- Q:- Label(x₁,root), Edge(x₁, x₂), Label(x₂,person), Edge(x₂, x₃), Label(x₃,id), Edge(x₂, x₄), Label(x₄,bon)
- TP queries can be encoded as CQs
- CQs are
 - hierarchical: $\Sigma(x_i) = \{Edge, Label\}$
 - with self joins: same predicate occurs many times

- TP queries are tractable over the whole class Local-PrXML
- N(TP) intractable for the whole class BID
- N(TP) is tractable for a fragment of BID M(L-PrXML)
- Embedding of both TP and L-PrXML is very specific

- TP queries are tractable over the whole class Local-PrXML
- N(TP) intractable for the whole class BID
- N(TP) is tractable for a fragment of BID M(L-PrXML)
- Embedding of both TP and L-PrXML is very specific

Results are not (easily) translatable from L-PrXML to BIDs.

Relationship between BID & CQ vs. L-PrXML & TP is unclear.

- as TP with joins
- TPs of specific shallow form

- Embedding even CQ that are tractable for BIDs gives TPJs that are intractable over the whole L-PrXML
- N(CQ) intractable for the whole class BID
- N(CQ) is tractable for a fragment of L-PrXML M(BID)

- Embedding even CQ that are tractable for BIDs gives TPJs that are intractable over the whole L-PrXML
- N(CQ) intractable for the whole class BID
- N(CQ) is tractable for a fragment of L-PrXML M(BID)

Results are not (easily) translatable from BIDs to L-PrXML.

Relationship between BID & CQ vs. L-PrXML & TP is unclear.

Part IV: Updating Probabilistic Databases

- Updates for relational Probabilistic DBs
- Updates for Pr-XML updates

Saw-day

ID	witness	car	probability
31	Cathy	Honda	0.5
32	Bob	BMW	0.3

Good-witness

ID	witness	car	probability
21	Cathy	Honda	0.8

Saw-day

ID	witness	car	probability
31	Cathy	Honda	0.5
32	Bob	BMW	0.3

Good-witness

ID	witness	car	probability
21	Cathy	Honda	0.8

If a person is a day witness add they to good-witnesses

Good-witness

ID	witness	car	probability
21	Cathy	Honda	0.8
22	Bob	BMW	0.3

Saw-day

ID	witness	car	probability
31	Cathy	Honda	0.5
32	Bob	BMW	0.3

If a person is a day witness add they to good-witnesses

Good-witness

ID	witness	car	probability
21	Cathy	Honda	0.8
22	Bob	BMW	0.3

Good-witness

ID	witness	car	probability
21	Cathy	Honda	0.8

 Is it a good candidate for the update result?

Saw-day

ID	witness	car	probability
31	Cathy	Honda	0.5
32	Bob	BMW	0.3

If a person is a day witness add they to good-witnesses

Good-witness

ID	witness	car	probability
21	Cathy	Honda	0.8
22	Bob	BMW	0.3

Good-witness

ID	witness	car	probability
21	Cathy	Honda	0.8

- Is it a good candidate for the update result?
 - No! the correlation between Saw-day and Good-witness is missing

Saw-day

ID	witness	car	probability
31	Cathy	Honda	0.5
32	Bob	BMW	0.3

If a person is a day witness add they to good-witnesses

Good-witness

ID	witness	car	probability
21	Cathy	Honda	0.8
22	Bob	BMW	0.3

Good-witness

ID	witness	car	probability
21	Cathy	Honda	0.8

- Is it a good candidate for the update result?
 - No! the correlation between Saw-day and Good-witness is missing

Theorem:

BIDs are not closed under updates

Updating in MayBMS

Saw-day

ID	witness	car	Lineage
31	Cathy	Honda	Z
32	Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

y, z, w - ind. bool. rand. variables

If a person is a day witness add her to good-witnesses

Good-witness

ID	witness	car	Lineage
21	Cathy	Honda	w
22	Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Good-witness

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Updating in MayBMS

Saw-day

ID	witness	car	Lineage
31	Cathy	Honda	Z
32	Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

y, z, w - ind. bool. rand. variables

If a person is a day witness add her to good-witnesses

Good-witness

ID	witness	car	Lineage
21	Cathy	Honda	w
22	Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Good-witness

ID	witness	car	Lineage
21	Cathy	Honda	w

 $\begin{array}{ll} \Pr(x \text{ is true}) = & 0.2 & \Pr(z \text{ is true}) = & 0.8 \\ \Pr(y \text{ is true}) = & 0.4 & \Pr(w \text{ is true}) = & 0.5 \end{array}$

 Is it a good candidate for the update result?

Updating in MayBMS

Saw-day

ID	witness	car	Lineage
31	Cathy	Honda	Z
32	Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

y, z, w - ind. bool. rand. variables

If a person is a day witness add her to good-witnesses

Good-witness

ID	witness	car	Lineage
21	Cathy	Honda	w
22	Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Good-witness

and the second se	ID	witness	car	Lineage
	21	Cathy	Honda	w

 $\begin{array}{ll} \Pr(x \text{ is true}) = & 0.2 & \Pr(z \text{ is true}) = & 0.8 \\ \Pr(y \text{ is true}) = & 0.4 & \Pr(w \text{ is true}) = & 0.5 \end{array}$

- Is it a good candidate for the update result?
 - Yes! we keep <mark>correlations</mark> between Saw-day and Good-witness

Theorem:

Prob. C-Tables are closed under updates

Limitations of Updates for Rel ProbDBs

Saw

witness	car	Lineage
Cathy	Honda	Z
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

y, z, w - ind. bool. rand. variables

UPDATE Saw-day SET car='VW' WHERE car = 'Honda' WITH PROB 0.23

Limitations of Updates for Rel ProbDBs

Saw

witness	car	Lineage
Cathy	Honda	Z
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

y, z, w - ind. bool. rand. variables

UPDATE Saw-day SET car='VW' WHERE car = 'Honda' WITH PROB 0.23

Updated table:

Saw

witness	car	Lineage
Cathy	Honda	z ∧ ¬ v
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$
Cathy	VW	z ^ v

v - new bool. rand. variables s.t. Pr(v=true) = 0.23

Limitations of Updates for Rel ProbDBs

Saw

witness	car	Lineage
Cathy	Honda	Z
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

y, z, w - ind. bool. rand. variables

UPDATE Saw-day SET car='VW' WHERE car = 'Honda' WITH PROB 0.23

Updated table:

Saw

witness	car	Lineage
Cathy	Honda	z ∧ ¬ v
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$
Cathy	VW	z \wedge v

v - new bool. rand. variables s.t. Pr(v=true) = 0.23

- Updating single values is problematic
 - value update requires to modify the whole tuple
 - update require tuple duplication
- Value updates are more natural for PrXML

Part IV: Updating Probabilistic Databases

- Updates for relational Probabilistic DBs
- Updates for Pr-XML updates
 - Structure and types
 - Two semantics
 - Updates for continuous PrXML

Part IV: Updating Probabilistic Databases

- Updates for relational Probabilistic DBs
- Updates for Pr-XML updates
 - Structure and types
 - Two semantics
 - Updates for continuous PrXML

Update Operations

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in

⇒ We want to insert (delete) data in PXML.
 We want to do it conditionally.

Update Operations

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in

 \Rightarrow We want to insert (delete) data in PXML.

We want to do it conditionally.

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
- Update operation (q, n, t): q^{n,t}
 - q condition query (formally will be defined later)
 - n locator of the update
 - t the actual new data (tree) to be inserted

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in

Update operation (q, n, t): q^{n,t}

- q condition query (formally will be defined later)
- n locator of the update
- t the actual new data (tree) to be inserted

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
- Update operation (q,n,t): q^{n,t}
 - q condition query (formally will be defined later)
 - n locator of the update
 - t the actual new data (tree) to be inserted

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
- Update operation (q, n,t): q^{n,t}
 - q condition query (formally will be defined later)
 - n locator of the update
 - t the actual new data (tree) to be inserted

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
- Update operation (q, n, t): q^{n,t}
 - q condition query (formally will be defined later)
 - n locator of the update
 - t the actual new data (tree) to be inserted

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
- Update operation (q, n, t): $q^{n,t}$

Inspired by 2 update languages for XML

- XUpdate, based on XPath
- XQuery Update Facility, based on XQuery

- a. (Restricted) Single-Path updates (R)SP
- b. Tree-Pattern updates TP
- c. Tree-Pattern updates with Joins TPJ

- a. (Restricted) Single-Path updates (R)SP
- b. Tree-Pattern updates TP
- c. Tree-Pattern updates with Joins TPJ

- a. (Restricted) Single-Path updates (R)SP
- b. Tree-Pattern updates TP
- c. Tree-Pattern updates with Joins TPJ

- a. (Restricted) Single-Path updates (R)SP
- b. Tree-Pattern updates TP
- c. Tree-Pattern updates with Joins TPJ

- For every professor, insert a bonus of 5 only if her team is in some EU project
 - Only-if semantics: Inserts at most one bonus per professor
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
 - For-all semantics: Inserts possibly many bonuses for professors

- Only-if semantics:
 For every match of n, if there is a match of q, then insert t under n
- For-all semantics:
 For every match of n, for all k matches of q, insert t under n k-times

- Only-if semantics:
 For every match of n, if there is a match of q, then insert t under n
- For-all semantics:
 For every match of n, for all k matches of q, insert t under n k-times

- Only-if semantics:
 For every match of n, if there is a match of q, then insert t under n
- For-all semantics:
 For every match of n, for all k matches of q, insert t under n k-times

- Only-if semantics:
 For every match of n, if there is a match of q, then insert t under n
- For-all semantics:
 For every match of n, for all k matches of q, insert t under n k-times

- Only-if semantics:
 For every match of n, if there is a match of q, then insert t under n
- For-all semantics:
 For every match of n, for all k matches of q, insert t under n k-times

- Fire a professor if her team is in a EU project
- For every match of n, if there is a match of q, then delete n and all its descendants
- There is only one semantics for deletions, that is similar to Only-if semantics

- Fire a professor if her team is in a EU project
- For every match of n, if there is a match of q, then delete n and all its descendants
- There is only one semantics for deletions, that is similar to Only-if semantics

- Fire a professor if her team is in a EU project
- For every match of n,
 if there is a match of q, then
 delete n and all its descendants
- There is only one semantics for deletions, that is similar to Only-if semantics

- Fire a professor if her team is in a EU project
- For every match of n, if there is a match of q, then delete n and all its descendants
- There is only one semantics for deletions, that is similar to Only-if semantics

D: PXML doc

Updated prob. space of docs

Problems to Investigate

- Computation of representations of updates
- Given a p-document D and update operation q^{n,t}
 - Is it possible to compute a p-document D that represents the update?
 - How hard is the computation?

Only-if Insertions: Data Complexity

Only-if	Distr. nodes	Event conjunct	Event formulas
RSP	Linear		
SP	Ρ*	#D hand	Linear
TP	?	#P-hard	Р
TPJ	#P-hard		P

* only for queries without descendent edges

• The same table holds for deletions

Only-if Insertions: Data Complexity

Only-if	Distr. nodes	Event conjunct	Event formulas
RSP	Linear		
SP	Ρ*	#P-hard	Linear
TP	?	#F-nard	D
TPJ	#P-hard		P

* only for queries without descendent edges

• The same table holds for deletions

Only-if Insertions: Data Complexity

Only-if	Distr. nodes	Event conjunct	Event formulas
RSP	Linear		
SP	Ρ*	#D hand	Linear
TP	?	#P-hard	Р
TPJ	#P-hard		P

* only for queries without descendent edges

• The same table holds for deletions

- For every match of n, if there is a match of q, then insert t under n
- in this case only-if and for-all semantics coincide

- For every match of n, if there is a match of q, then insert t under n
- in this case only-if and for-all semantics coincide

- For every match of **n**, if there is a match of **q**, then insert **t** under **n**
- in this case only-if and for-all semantics coincide

- For every match of **n**, if there is a match of **q**, then insert **t** under **n**
- in this case only-if and for-all semantics coincide

- For every match of n, if there is a match of q, then insert t under n
- in this case only-if and for-all semantics coincide

- Only-it semantics:
 For every match of n,
 if there is a match of q,
 then insert t under n
- in this case only-if and for-all semantics coincide

- For every match of n, if there is a match of q, then insert t under n
- in this case only-if and for-all semantics coincide

- Only-it semantics:
 For every match of n,
 if there is a match of q,
 then insert t under n
- in this case only-if and for-all semantics coincide

For-all Insertions: Data Complexity

For-all	Distributional nodes	Event conj	Event formulas
RSP	Linear/P [†]		
SP	not in PTIME	Linear/P [†]	
TP	not in PTIME	Р	
TPJ	not in PTIME, #P-hard	Ρ*	Р

[†] Linear/P: Linear for queries w/o descendent edges, Polynomial otherwise

Continuous PXML

- Probabilistic p-documents with continuous distributions stored on the leaves
- Semantics defined in terms of continuous sets of XML documents

Problems with Updates

 Insert an alerter "increases" for a sensor only-if the second measurement is greater than the first one

- probability of the insertion (event) is 1/2
- the update is not representable with event formulas and distributions on leaves: we need correlations between distributions

Conclusion on PrXML Updates

- Polynomial algorithm for SP update operations without descendent edges
- Results can be generalized to other PXML models and probabilistic updates
- Continuous PXML: problems are highlighted

Trio http://infolab.stanford.edu/trio/, useful to see lineage computation

MayBMS http://maybms.sourceforge.net/, full-fledged probabilistic relational DBMS, on top of PostgreSQL, usable for actual applications.

ProApproX http://www.infres.enst.fr/~souihli/
 Publications.html to play with various
 approximation and exact query evaluation methods for
 probabilistic XML.

- An influential paper on incomplete databases [Imieliński and Lipski, 1984]
- A book on probabilistic relational databases, focused around TIDs/BIDs and MayBMS [Suciu et al., 2011]
- An in-depth presentation of MayBMS [Koch, 2009]
- A gentle presentation of relational and XML probabilistic models [Kharlamov and Senellart, 2011]
- A survey of probabilistic XML [Kimelfeld and Senellart, 2011]

Research directions

- Demonstrating the usefulness of probabilistic databases over ad-hoc approach on concrete applications: Web information extraction, data warehousing, scientific data management, etc.
- Understanding better the connection between probabilistic relational databases and probabilistic XML: why does the picture look so different?
- Understanding under which restrictions on the data (e.g., (hyper)tree-width characteristics) query answering can be tractable.
- Connecting probabilistic databases with probabilistic models in general, e.g., as used in machine learning: Bayesian networks, Makov logic networks, factor graphs, etc.
- Other operations on probabilistic data: mining, deduplication, learning, matching, etc.

Thank you!

ACSI Project

Artifact-Centric Service Interoperation FP 7 grant, agreement n. 257593 http://www.acsi-project.eu/

Webdam Project

Foundations of Web Data Management ERC FP7 grant, agreement n. 226513 <u>http://webdam.inria.fr</u>/

- Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and Pierre Senellart. On the expressiveness of probabilistic XML models. VLDB Journal, 18(5):1041–1064, October 2009.
- Pablo Barceló, Leonid Libkin, Antonella Poggi, and Cristina Sirangelo. XML with incomplete information: models, properties, and query answering. In Proc. Symposium on Principles of Database Systems (PODS), pages 237–246, New York, NY, 2009. ACM.
- Michael Benedikt, Evgeny Kharlamov, Dan Olteanu, and Pierre Senellart. Probabilistic XML via Markov chains. *Proceedings of the VLDB Endowment*, 3(1):770–781, September 2010. Presented at the VLDB 2010 conference, Singapore.
- Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. Uldbs: Databases with uncertainty and lineage. In *VLDB*, pages 953–964, 2006.
- Nilesh Dalvi, Chrisopher Ré, and Dan Suciu. Probabilistic databases: Diamonds in the dirt. *Communications of the ACM*, 52(7), 2009.
- Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In VLDB, pages 864–875, 2004.

- Robert Fink, Andrew Hogue, Dan Olteanu, and Swaroop Rath. SPROUT²: a squared query engine for uncertain web data. In *SIGMOD*, 2011.
- José Galindo, Angelica Urrutia, and Mario Piattini. Fuzzy Databases: Modeling, Design And Implementation. IGI Global, 2005.
- Todd J. Green and Val Tannen. Models for incomplete and probabilistic information. In *Proc. EDBT Workshops, IIDB*, Munich, Germany, March 2006.
- Tomasz Imieliński and Witold Lipski. Incomplete information in relational databases. *Journal of the ACM*, 31(4):761–791, 1984.
- Evgeny Kharlamov and Pierre Senellart. Modeling, querying, and mining uncertain XML data. In Andrea Tagarelli, editor, XML Data Mining: Models, Methods, and Applications. IGI Global, 2011.
- B. Kimelfeld and Y. Sagiv. Matching twigs in probabilistic XML. In *Proc. VLDB*, Vienna, Austria, September 2007.
- Benny Kimelfeld and Pierre Senellart. Probabilistic XML: Models and complexity, September 2011. Preprint.

- Christoph Koch. MayBMS: A system for managing large uncertain and probabilistic databases. In Charu Aggarwal, editor, *Managing and Mining Uncertain Data*. Springer-Verlag, 2009.
- Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Morgan & Claypool, 2011.
- Jennifer Widom. Trio: A system for integrated management of data, accuracy, and lineage. In *Proc. CIDR*, Asilomar, CA, USA, January 2005.
- Lotfi A. Zadeh. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. *Al Magazine*, 7(2), 1986.