
Demonstrating ProApproX 2.0:
A Predictive Query Engine for Probabilistic XML

Asma Souihli Pierre Senellart
Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI

75634 Paris Cedex 13, France
first.last@telecom-paristech.fr

ABSTRACT
ProApproX 2.0 allows users to query uncertain tree-structured
data in the form of probabilistic XML documents. The
demonstrated version integrates a fully redesigned query
engine that, first, produces a propositional formula that
represents the probabilistic lineage of a given answer over
the probabilistic XML document, and, second, searches for
an optimal strategy to approximate the probability of the
lineage. This latter part relies on a query-optimizer–like
approach: exploring different evaluation plans for different
parts of the formula and predicting the cost of each plan,
using a cost model for the various evaluation algorithms.
The demonstration presents the graphical user interface of
ProApproX 2.0, that allows a user to input an XPath query
and approximation parameters, and lists query results with
their probabilities; the interface also gives insight into the
way the computation is performed, by displaying the compila-
tion of the query lineage as a tree annotated with evaluation
operators.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases;
G.3 [Probability and Statistics]: Probabilistic algorithms
(including Monte Carlo)

General Terms
Algorithms, Design

Keywords
Approximation algorithm, cost model, probabilistic data,
query processing, XML

1. CONTEXT AND CHALLENGES
Probabilistic XML suggested itself as a natural represen-

tation choice in many applications that require uncertainty
management [6] and where data is already semi-structured,
such as uncertain data integration, XML warehousing, un-
certain version control, or Web information extraction. An
example probabilistic XML document is shown in Figure 1,
as an excerpt from the probabilistic movies database, real-life
uncertain data obtained from a probabilistic data integration
application [2, 3].

Copyright is held by the author/owner(s).
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
ACM 978-1-4503-1156-4/12/10.

movies

movie

title

movie

Cheesecake

e1

actor

e2 ¬e2

Pr (e1) = .9
Pr (e2) = .8
Pr (e4) = .6
Pr (e10) = .7
Pr (e7) = .3
Pr (e6) = .8

title

The Namesake

year

2004

year

2001

actors

actor

name role

Kal Penn Gogol

¬e2 e4 e2

e6 e7 ¬e10

Figure 1: Abstract tree representation of an excerpt
of the probabilistic movies database, produced by
IMPrECISE [2], and translated by ProApproX into
the PrXMLcie model

The document in Figure 1 uses a representation system
with long-distance dependencies (PrXMLcie in [1, 6]), where
probabilistic choices are denoted by annotating nodes of an
XML tree with conjunctions of (possibly negated) Boolean
random variables 𝑒1 . . . 𝑒𝑚 called events; each event has a
global and independent probability Pr(𝑒𝑖) that 𝑒𝑖 is true.
This probabilistic XML data model, more general [1] than
others used elsewhere in the literature, allows correlation
of choices in different parts of the tree, by reusing event
variables.

As noted in [5], there is a trade-off between strong expres-
sive power and efficiency of query evaluation. ProApproX
queries PrXMLcie , a more expressive model that allows de-
pendency between nodes all over the tree, whereas other
probabilistic XML systems [3, 5] consider that distant nodes
in XML trees have to be independent. Our target for Pro-
ApproX was generality and wide applicability, resorting to
approximation algorithms for evaluating query results, which
turned out to yield competitive performance especially when
it comes to scalability issues, along with a high accuracy of
results.

The original data of the example in Figure 1 used a sim-
pler, local depeendency probabilistic XML representation
system (PrXMLmux ,ind). ProApproX performs a tractable
translation [1] to obtain the resulting tree of the figure, where
uncertainty is henceforth captured by the event conjunctions.

The distributions of the event variables are stored elsewhere,
and are gathered from the original document.

Our query language is tree-pattern queries extended with
joins [6] and the major challenge behind query processing is
the confidence computation of a given answer. This problem
turns out to be that of evaluating the probability of a propo-
sitional formula. This is because ProApproX constructs for
each query match the conjunction of all probabilistic literals
on the path from the root to one of the node matched by
the query. The obtained formula happens to be always in a
disjunctive normal form (DNF). The problem computing its
probability of a formula in DNF is known to be #P-hard in
general, even when all events have the same distributions [11].
This problem, however, admits a fully-polynomial random-
ized approximation scheme [4], as does that of querying a
PrXMLcie document [5].

We briefly describe next the design of the approach im-
plemented in ProApproX 2.0, for answering a query over an
PrXMLcie document (for more detail, see the full description
in [10]), before moving to the presentation of the demon-
strated interface.

A companion video for this demonstration, as well as
the full code of ProApproX 2.0, is freely available at http:

//www.infres.enst.fr/~souihli/ProApproX2.0.html.

2. MAIN FEATURES OF THE SYSTEM
ProApproX implements a number of exact and approx-

imate algorithms for computing the probability of a DNF
formula, each associated with a cost model [10]. This cost
model was established in order to predict the best compu-
tation method for a given input formula. The second key
principle behind the ProApproX 2.0 query engine relies on a
simplification of the computation process via a decomposition
of the probabilistic lineage into independent computational
units [10].

Figure 2 illustrates the architecture of the system: (1) The
user XPath query is translated into a different query ex-
pressed in ithe XQuery language, used to extract the proba-
bilistic lineage. (2,3) The lineage queries are evaluated over
the XML dataset through the XML::DB API for BaseX1, the
native XML DBMS. (4) The gathered probabilistic lineage
is compiled by ProApproX:
Lineage preprocessing: optimizations over the DNF (re-

moving subsumed or invalid clauses, etc.);
Compilation: repeated application of a number of oper-

ators (inconsistency, factorization, independency be-
tween clauses of the formula) to decompose the DNF
into independent parts, represented as nodes of a com-
pilation tree;

Exploration: construction of possible evaluation plans by
propagation of approximation parameters down the tree
under well-grounded rules and choice of (approximate
or exact) evaluation algorithms at each node of the
tree, the cost model being used to select the best plan
found;

Computation: execution of the computation at each node
and aggregation of the final result.

(5) The probability of the user query is then displayed.
We note that, with respect to the first version of Pro-

ApproX [9], in addition to adding numerous features (more
complete set of evaluation algorithms, better XPath support,

1http://basex.org/

Query
Translation Lineage

Extraction

PrXML
database

Lineage
preprocessing Compilation Exploration (best

execution plan)
Computation

User input :
Xpath Query

Q

5 Result Pr(Q) Answer

1 2 3

4

User
Interface (Lineage Processing Phase)

Figure 2: The architecture of ProApproX 2.0

use of a native DBMS, support of non-Boolean queries), the
optimizer of ProApproX 2.0 (cost model, lineage compilation,
exploration of execution plans, evaluation on sub-formulas)
is completely novel.

For a glance at the evaluation performance, let us consider
the most complicated query (𝑄3) in the workload on the
movies database used in [3], over the largest of the consid-
ered datasets. The DNF lineage has a total size of 47,011
literals, with 334 clauses. Run on the same desktop PC
and with the same approximation precisions (multiplicative
approximation, 𝜀 = 0.1, 𝛿 = 0.05), ProApproX evaluates
the probability of this query in less than half of a second,
while SPROUT, the query engine of the MayBMS proba-
bilistic relational DBMS [8], when given a query with the
same lineage, went over the allocated time limit of one hour.
For the same query, the running time of Trio [7], another
probabilistic relational DBMS, taken directly from [3], was
more than 40 seconds. We note that, for a larger workload,
the performance of ProApproX 2.0 also compares favorably
to that of EvalDP [5], an exact probabilistic XML query
engine; indeed, this particular query cannot be evaluated
using EvalDP, because of the existence of a join.

3. DEMONSTRATION
ProApproX is implemented in Java and is accompanied

by a visual interface that graphically displays information
about results as well as processing and computation details.
The user can load a PrXMLmux ,ind or a PrXMLcie database.

Figure 3 illustrates the system interface that consists of
seven main panels, and an additional interface: (1) The
query editor is used to input XPath queries on a loaded
database, or on the preloaded movies [3] and mondial [5]
probabilistic databases, both kindly provided by the respec-
tive authors. For example, the movies database features
an integration of different instances of a same movie found
in more than one source, stored with their respective confi-
dences. One example query is to ask for a movie that features
a given actor. (2) The approximation settings section allows
to customize parameters for a possible approximation on the
result. A combo box offers to choose between an additive or
multiplicative approximation, for which an error precision 𝜀
and a confidence on the approximated result 1 − 𝛿 can be
customized. These parameters will only be used when the sys-
tem resorts to a more efficient plan that uses approximations.
(3) In the result panel, the query information table displays
details about the total time for executing the Boolean pro-
jection of the query, and for listing different answers with
their computed probabilities. The timing details report slices

Figure 3: The user interface of ProApproX 2.0

of time spent at different steps of the evaluation process,
namely: the query translation, the BaseX lineage extraction
time, performance of optimizations (pre-computation phase),
the compilation time, and what was spend on finding and
executing the best evaluation plan. (4) The lineage query
panel in the result section, displays the translations of the
input XPath query into lineage queries. The first one is
related to the Boolean projection of the query, and returns
a DNF composed of a disjunction between lineages of every
matching path in the tree. The second translation produces
the list of result items, grouped by their values, each with its
DNF lineage. (5) The item list table is then displayed with
omputed probability values, most probable results appearing
first. (6) The evaluation tree panel plots a graphical repre-
sentation of the evaluation tree where the root node holds
the DNF lineage of the query. Inner nodes store independent
parts of the initial formula at that given compilation stage,
with a logic operator that links the further decompositions
at the children level. Ultimately, the leaves will store the
last possible decomposition of a previous-level formula. The
subtree shown in red is the most efficient execution plan for
this query, where red nodes are assigned with computation
algorithms. The evaluation of this plan gives the desired
probability result. (7) By picking a node from the graphical
representation, its related information will be displayed in
the node info panel: the propositional formula and logical
operator, for internal nodes, or assigned algorithm name,
for leaves of the best execution plan. (8) The database view
simply displays the currently selected XML database.

Acknowledgment
This work has been partly supported by the Dataring project
of the French ANR.

4. REFERENCES
[1] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart.

On the expressiveness of probabilistic XML models.
VLDB J., 18(5), 2009.

[2] A. de Keijzer and M. van Keulen. IMPrECISE:
good-is-good-enough data integration. In ICDE, pages
1548–1551, 2008.

[3] E. Hollander and M. van Keulen. Storing and querying
probabilistic XML using a probabilistic relational
DBMS. In Proc. MUD, 2010.

[4] R. M. Karp, M. Luby, and N. Madras. Monte-Carlo
approximation algorithms for enumeration problems. J.
Algorithms, 10(3), 1989.

[5] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query
evaluation over probabilistic XML. VLDB J., 18(5),
2009.

[6] B. Kimelfeld and P. Senellart. Probabilistic XML:
Models and complexity. In Z. Ma, editor, Advances in
Probabilistic Databases for Uncertain Information
Management. Springer-Verlag, 2012. To appear.

[7] M. Mutsuzaki, M. Theobald, A. de Keijzer, J. Widom,
P. Agrawal, O. Benjelloun, A. D. Sarma, R. Murthy,
and T. Sugihara. Trio-One: Layering uncertainty and
lineage on a conventional DBMS. In Proc. CIDR, 2007.

[8] D. Olteanu, J. Huang, and C. Koch. Approximate
confidence computation in probabilistic databases. In
Proc. ICDE, 2010.

[9] P. Senellart and A. Souihli. ProApproX: a lightweight
approximation query processor over probabilistic trees.
In Proc. SIGMOD, 2011. Demonstration.

[10] A. Souihli and P. Senellart. Optimizing approximations
of DNF query lineage in probabilistic XML, 2012.
Preprint available at http://pierre.senellart.com/

publications/souihli2012optimizing.pdf.

[11] L. G. Valiant. The complexity of computing the
permanent. Theor. Comput. Sci., 8:189–201, 1979.

