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ABSTRACT
We present an original approach to the automatic induction
of wrappers for sources of the hidden Web that does not need
any human supervision. Our approach only needs domain
knowledge expressed as a set of concept names and concept
instances. There are two parts in extracting valuable data
from hidden-Web sources: understanding the structure of a
given HTML form and relating its fields to concepts of the
domain, and understanding how resulting records are rep-
resented in an HTML result page. For the former problem,
we use a combination of heuristics and of probing with do-
main instances; for the latter, we use a supervised machine
learning technique adapted to tree-like information on an
automatic, imperfect, and imprecise, annotation using the
domain knowledge. We show experiments that demonstrate
the validity and potential of the approach.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services; I.2.6 [Artificial In-
telligence]: Learning

General Terms
Design, Experimentation

Keywords
Hidden Web, deep Web, invisible Web, information extrac-
tion, probing, wrapper, form, Web service

1. INTRODUCTION
Access to Web information today primarily relies on key-

word search engines. These search engines deal with the sur-
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face Web, the set of Web pages directly accessible through
hyperlinks, mostly ignoring the vast amount of information
hidden behind forms, that composes the hidden Web (also
known as deep Web or invisible Web). This information,
often of high quality (think, for instance, of all kinds of Yel-
low Pages directories), cannot easily be dealt with in an
automatic way. A 2001 study [2] estimated that dozens of
thousands of such hidden-Web sources existed (this order of
magnitude was raised to hundreds of thousands in a more
recent work [10]). All such services of the hidden Web have
a different interface—while some are machine-friendly Web
services, most use an HTML form interface with HTML re-
sult pages—and it is a time-intensive task to write wrappers
for each. While supervised machine learning approaches [8,
18] exist for simplifying this wrapper construction step, in
this paper we aim at a fully automatic, unsupervised, ap-
proach for wrapping a service of the hidden Web.

To restrict the scope of this particularly broad problem,
we limit ourselves to services related to a given domain of in-
terest, described by domain knowledge. Clearly, with human
providing feedback, supervised techniques can go further to-
ward a better understanding of the Web. But the kind of
unsupervised approach we propose is (i) useful at least as a
first step, before any human intervention; (ii) often the only
one available for applications when human resources cannot
be used; (iii) essential if we want the system to adapt to the
scale and diversity of the Web, as well as its dynamism.

Consider a service of the hidden Web, say an HTML form,
that is relevant to the particular application domain. To
understand its semantics, a first step is the analysis of the
form, i.e., the structure of the service inputs. We use some
heuristics to associate domain concepts to form fields, and
then probe these fields with domain instances to confirm or
infirm these guesses. We then use clustering techniques for
distinguishing between result pages and error pages. The
next step is to extract information from the results of the
form, i.e., HTML pages. Result pages are annotated with
domain concepts (based on available domain instances that
are recognized). This annotation, which is both imprecise
and incomplete, is used by supervised information extraction
techniques adapted for tree-structured HTML pages, i.e.,
conditional random fields for trees.

We first introduce the type of domain knowledge that we
consider in Section 2. Then we successively present sys-



tems that probe a form in order to understand its input
(Section 3) and that extract information from result pages
(Section 4). We next show how both systems can be used
together in order to wrap a given source of the hidden Web
as a regular Web service in Section 5. We finally present ex-
perimental results on real hidden-Web sources in Section 6.

Before going into the details, let us highlight the main
contributions of this paper with respect to the related work
discussed in Section 7:

1. A system for wrapping a source of the hidden Web as a
Web service in an automatic way, using domain knowl-
edge given in a predefined form, to allow for domain
independence of the approach.

2. A simple yet effective way of clustering result and error
pages, based on terminal paths in the DOM tree.

3. An original application of a supervised machine learn-
ing technique in an unsupervised context, with the help
of an incomplete and imprecise annotation with do-
main knowledge.

4. Experiments that show the viability and potential of
the approach.

More detailed information about the system described in
this paper can be found in [16, 17, 24] (unpublished works).

2. DOMAIN KNOWLEDGE
As understanding services of the hidden Web is a very

broad, difficult, and undoubtedly AI-complete problem, we
limit our interest to a specific application domain, relying
on available domain-specific knowledge. This will be illus-
trated in this paper by the domain of research publication
databases, but the approach proposed here is quite general
and can be applied to any domain, provided that the neces-
sary knowledge described here is given. The needed domain
knowledge can be decomposed into two different parts: do-
main concepts and domain instances.

Domain concepts. The domain concepts are just a set of
concept names that describe the different concepts that may
appear in this specific domain. We shall, for example, con-
sider the following self-describing concepts for the research
publication domain: Title, Author, Date, Journal, Confer-
ence. Additional concepts (e.g., Publisher, Pages, Volume)
could be added in a similar way. Knowledge about each
concept is given next as domain instances.

Domain instances. We deal here with concrete representa-
tions (as strings) of concepts. Observe for instance that the
strings June 2007 and 07/06 may both stand for the same
instance of a Date concept. Domain instances are character
strings that stand for instances of the domain concepts. The
following steps are then carried out. First, a representative
set of words appearing in these strings, with their corre-
sponding frequency, is selected as an approximate frequency
distribution of domain instances. Second, for each given
string s, if s may stand for an instance of concepts c1 . . . cn,
we assign 1/n as the (approximate) probability that s stands
for an instance of each concept ci.

Note that acquiring the domain knowledge is done only
during initialization and once for each domain. The system
is fully unsupervised once the domain knowledge has been
built, and the only other external input that we use in the
following sections is a general ontology for the language that

we consider (Wordnet in this case). So, the system can be
quite easily generalized to services in other languages by
simply changing the ontology, and to other domains by using
the knowledge from some other domain.

Let us describe the domain instances that we use in the
case of the research publication domain. We downloaded
the content of the DBLP database as an XML file from
http://dblp.uni-trier.de/xml/, and we used it to gener-
ate our domain instances. For the concepts Title, Journal,
Conference, we used the basic technique described above.
For the Date concept, we provide a specific entity recog-
nizer (in the form of a set of regular expressions describ-
ing monthly or yearly dates). For the Author concept, we
extracted first and last names from DBLP person names
with some heuristics, and use regular expressions describing
the ways to recombine first names and last names (form-
ing for instance Smith , Smith, John , John Smith , Smith

John , Smith John Jack with various probabilities, from the
last name Smith and the first names John and Jack ).

For the last two cases, probabilities associated with a reg-
ular expression are chosen in a quite ad hoc way. Ideally,
they should come from statistical evaluation on large cor-
pora. Note that the use of the DBLP data results in a
quite computer-science–centric domain knowledge, but this
may not necessarily be a problem for dealing with general
research publication databases, as discussed in Section 6.
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Figure 1: Architecture of a system for probing the
hidden Web

3. PROBING THE HIDDEN WEB
Most hidden-Web services are only accessible through an

HTML form interface, and their results are shown as HTML
result pages. The first step in understanding and indexing
these services is to understand the structure of the form in-
terfaces and their result pages. As discussed in Section 2, we
rely on some domain knowledge to analyze the structure of
HTML forms; in particular, we use here as domain knowl-
edge (i) a list of domain concepts, and (ii) words appearing
in instances of each concept.

Given the URL of an HTML form, the aim of the work
presented in this section is to annotate each relevant field
of the form with the domain concept it maps to, to con-
firm these annotations by probing the form with domain
instances (that is, submitting the form with some filled-in



field), and to retrieve the result pages that are analyzed in
the process described in the subsequent section. We describe
the system using the scientific publications domain, but our
approach is quite general and can be applied to any other
domain for which we have appropriate domain knowledge.

We make some simplifying assumptions on the structure
and semantics of the forms. First, we assume that forms
support partial match queries. For instance, a field for typ-
ing in the title of an article may be queried with a single
word from the title; we never found any form where this
assumption failed to hold in our experiments. Second, we
assume that there are no specifically required fields in the
form, and that each field can be either filled-in or omitted.
This is actually quite a strong assumption, and it would
be a very interesting extension to use probes to distinguish
between required and optional fields.

Our system for probing the hidden Web is shown in Fig-
ure 1. The different modules, which are described next, are
shown as rectangular boxes, while external data and agents
are represented as ellipses. Four different modules consti-
tute the main part of the system, while a fifth one is used
to handle Web-service requests from the user. The syntactic
analyzer processes the HTML code of the form, extracts rel-
evant information, and adds initial annotations. The probing
and response page analyzer modules probe the form with do-
main instances, so as to confirm or refute these annotations.
Finally, the resulting analyzed form is wrapped as a Web
service (WSDL generator) that can be used to provide a
user with an abstract interface to a given form of the hidden
Web. We describe these modules in the following sections.

Structural Analysis of an HTML Form. The role of the
first module of our probing system is to analyze the struc-
ture of the form and to find fields that are relevant to the
domain concepts. The proper (semantic) way to give the
label of a form field is the use of the HTML element label,
whose for attribute must correspond to the id attribute of
a form field [28]. Unfortunately, this tag is rarely used by
Web developers and we thus have to resort to other contex-
tual information, such as the name or id attribute, or the
text appearing before the field (in the source code). An al-
ternative is to use the graphical layout of the form, as in
[22, 32], and rules indicating where the label of a field most
often lies relative to the field.

Algorithm 1 Structural analysis of an HTML form

Input: URL of a form.
Output: List of fields with probabilistic annotations.
(a) Retrieve the Web page at the given URL.
(b) For each form field:

(i) Gather all words of the textual context: name and
id attributes, content of the corresponding label

element, words appearing before the field.
(ii) Remove stop-words and stem all context words

with Porter’s stemming algorithm [20].
(iii) Check whether any resulting stem matches a stem

of concept related words as given by WordNet [21].
(iv) Annotate the fields with matching concepts, with

the associated confidence as the probability that
this field represents this concept.

We present in Algorithm 1 our algorithm for structural
analysis of a form. Once contextual information is retrieved

for each field, some standard preprocessing (stop-word re-
moval, stemming) is applied to words of the context, be-
fore comparison to words related to concept names. Re-
lated words are extracted from WordNet [21] (they could
also come from a domain-specific ontology) by following re-
lations such as synonymy, meronymy, etc. Matches between
the context of a field and words related to a concept corre-
spond to an annotation of the field with the concept name,
subject to a confidence that is computed from the source of
context words and the distance between matched and con-
cept words in the ontology graph. Confidence values are
at the moment chosen a bit arbitrarily. Assigning useful
(probabilistic or statistical) interpretations to these confi-
dence values and making further use of them for interpreting
the probing results is an interesting direction and should be
addressed in future work.

Form Probing. Probabilistic annotations of concepts are
confirmed by probing the form. Specifically, we compare
what happens when we probe a field, annotated (automat-
ically, as described earlier) as concept c, with instances of
this concept, chosen representatively of the frequency dis-
tribution of instances of c in the domain database. If the
result pages we obtain are significantly different from result
pages obtained by probing the field with nonsense words
(e.g., dsqkhzei), we may conclude that the annotation is in-
deed correct. Algorithm 2 describes this confirmation step.

One of the important aspects of this module is to be able
to distinguish between match and no-match pages resulting
from the submission of the form. The distinction between
match and no-match pages can be made using a number of
heuristics (the size of the no-match page is smaller, there
are less outgoing links, presence of keywords like Error or
No match, absence of keywords such as Next or More). We
choose to use a much more robust approach by performing
a clustering of result pages obtained through probing. If a
page is in a different cluster than the no-match page ob-
tained with the submission of a nonsense word, the page is
labeled as a match page.

Algorithm 2 Confirming field annotations with probing

Input: A given field of a form together with its probabilistic
annotations.
Output: A confirmed annotation for this field, or none.
(a) First, identify an error page by probing the field with a

nonsense word.
(b) Let c be the concept with the highest probability the

field is annotated with.
(c) Probe the field with a set of instance words, randomly

chosen according to their frequency distribution, to get
a corresponding set of pages.

(d) Cluster the set of pages obtained by probing with the
error page, using an incremental clustering algorithm on
terminal paths in the DOM tree of the pages.

(e) If some pages obtained by probing are different from
the result page, confirm the annotation; otherwise, retry
with the next best concept annotation.

We use an incremental clustering algorithm, which works
well in our context since we have a small number of docu-
ments to cluster, with significant differences between error
and result pages. The feature vector representing an HTML
page for clustering is built as follows: In the DOM tree of



an HTML document, Terminal paths are the set of paths
from the root to a leaf of the tree. Each distinct sequence
of node labels (that is, HTML element names) along a ter-
minal path forms a dimension of the vector space that we
use for clustering. Each page is then represented in this vec-
tor space with a tf-idf (term frequency / inverse document
frequency) measure, depending on which terminal paths are
present in the DOM tree. Finally, the cosine similarity mea-
sure is used to compare any two vectors during clustering.
The idea is that two result pages share most of their termi-
nal paths, some of them may just be repeated more often
than others; on the other hand, a result page and an error
page have significantly different structures (no list of results
appears in an error page) that leads to a completely different
representation in the vector space of terminal paths in the
DOM tree.

Note that we may get more than two clusters using our
clustering algorithm, if there are two or more significantly
different kinds of result pages. This is the case, for instance,
with the publication database DBLP, where searching for
an ambiguous author name results in a different page than
searching for a name that only appears once in the database.
It is then important to use multiple words for probing, repre-
sentative of their frequency distribution, so as to (i) generate
all possible kinds of result pages; and (ii) be sure to get a
result page, as long as the service probed has similar content
to our domain knowledge.

4. EXTRACTING RESULT PAGE DATA
Each cluster identified in the probing step represents a

specific class of result pages. All pages of a class have a sim-
ilar structure and typically display repetitive sections, such
as items of a list or rows in a table; each such item stands
for one possible query result, or a record of the database.
As our goal is to understand the result pages, and thus to
be able to identify records and their corresponding domain
instances, we need to somehow (i) find the repetitive parts
on a page (e.g., the articles); and (ii) determine the internal
structure of these records that defines the position of the do-
main instances (title, authors, publication date, etc.). The
general process that we propose for this is shown in Figure 2
and detailed in this section. Several approaches exist to rec-
ognize the variable parts of a page (which may correspond
to the records) in an unsupervised way (e.g., [6]), but most
lack the ability to map the extracted fields to the domain
concepts and thus in the end depend on some user input.

We approach the problem from the other side: instead of
first regarding the structure, we rely on our domain knowl-
edge to annotate HTML text nodes with domain concepts.
This is done using a gazetteer, i.e., a dictionary of possible
domain instances created with the domain knowledge (e.g.,
lists of author names, known article titles or journals). This
results in a very raw, incomplete, and faulty, textual anno-
tation.

However, if we interpret the HTML document as its DOM
tree, we can use a probabilistic discriminative model to infer
structural relationships between the annotations, and thus
use the repetitive structure to improve our initial annota-
tion. We have elaborated a flexible model working on XML
documents (XCRFS, [12]) which can easily be applied to
well-formated XHTML documents. It is a special form of
a Conditional Random Field [13] which models dependen-
cies between parent, child and sibling nodes, conditioned
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Figure 2: Result page extraction process

by features possibly ranging over the entire input docu-
ment. The probability of annotation y given input x is

p(y|x) = 1
Z(x)

exp
“P

C

P
k λkfk(x,yC , C)

”
where Z is a

normalization factor, C are the 3-cliques (parent, child and
sibling nodes) of the graph and fk are feature functions eval-
uated on a clique C weighted by λk. They are of the form

fk(x,yC , C) =

8<:1 if yparent = label1, ythis = label2,
ysibling = label3, p(x, C);

0 otherwise.

The predicate p(x, C) is an XPath expression evaluated in
the context of the clique C. We can thus model all kinds
of conditions (e.g., label some node as Title depending on
the annotation of its father, only if it is a <td> node with
attribute class="author"), provided that the information is
accessible via XPath expressions. Luckily, almost all kinds
of information can be introduced into the XHTML model
by adding attributes to tree nodes in a preprocessing step.

As the nature of the input documents is forcedly unknown
in an unsupervised context, these conditions, which refer
directly to the tag names and attributes, cannot be pre-
defined or, even worse, provided by the user. Instead, a
few templates combined with a neighborhood definition are
fixed (e.g., tag name or attribute values of grandparent, par-
ent, siblings) and the explicit values and label conditions are
filled in by observing the training data. For example, if a
node annotated as Author is found, the tag names of its
grandparent, parent and sibling are checked and the corre-
sponding three fk’s are created. This defines a procedure to
generate features in a completely unsupervised way. As this
produces a great magnitude of possible features, a prelimi-
nary sorting out of features with little support is performed.

Once the model is defined by the automatic feature gen-
eration process, it must be trained to determine the feature
weights λk. The input sample is obtained by the gazetteer
annotation. Unfortunately, the annotation is imprecise: pre-
cision as well as recall of the gazetteer annotation are often
below 0.5. To obtain meaningful results, we have to subject
our naively annotated input documents to heuristic algo-
rithms, filtering out very unlikely annotations before using
them as training data for our probabilistic model. We have
implemented a simple algorithm to identify records in the
HTML tree using LCAs (least common ancestors) of an-
notated nodes and suffix trees (more details in [17]). This
allows us to (i) eliminate all annotations not belonging to
a record and (ii) find the annotations belonging together to
define a record, which is necessary for the extraction step
following the annotation. After this heuristic cleanup, we
select those records which contain a significant number of



annotated nodes and use them to train the XCRF. It is
worth noting that the same heuristics used to prepare the
training data can also be applied to the annotations result-
ing from an annotation by the XCRF to improve the overall
quality and to allow for extraction. Results presented in
Section 6 all include this cleanup.

The trained model can then be used to find an anno-
tation ŷ of a new input page x with maximum likelihood
ŷ = arg maxy p(y|x). We obtained annotations of mainly
higher quality than that of the gazetteer and can use them
to extract the data from the pages. We can also use this in-
formation to enhance our domain knowledge, and thus the
gazetteer. This leads to a bootstrapping process, where a
better gazetteer leads to better trained XCRFs and thus
to better information extraction and further enhancement.
Furthermore, if this process is extended to include more than
one result page class (e.g., not only the results of Cite-
Seer, but also of GoogleScholar and ACM), we can use
the inherent redundancy of information to filter out unlikely
data or enhance incomplete data. If our domain knowledge
is not sufficient to allow for a good gazetteer annotation
of one source, we can first enhance it with another source
and then use the additional information to exploit the first
source. However, this requires data integration techniques
and heuristics to determine the quality of the information
extracted from the sources, and thus be able to decide which
data should be used for learning, and which should be re-
jected as uncertain.

5. WRAPPING FORMS AS WEB SERVICES
Once the input fields of a given query form are identi-

fied as well as the output understood, the human-centric
HTML interface can be wrapped as an abstract Web-service,
which communicates its input and output format in some
machine-readable form. One way of describing such a ser-
vice is using a WSDL [29] document, implemented as a Java
servlet. All services wrapping individual query forms are
then integrated in one main service offering relevant domain
concepts as inputs and transmitting the user request to the
selected service. A user (whether human or machine) can
thus query different services such as GoogleScholar or
DBLP with the same well-defined interface, and get back
structured results. This is is done by integrating the two
systems described in Sections 3 and 4 in the following way.
Given the URL of a form, this form is analyzed and probed
as described in Section 3. This also results in the decom-
position into clusters of generated result pages. Inside each
of these clusters, pages are annotated by the gazetteer and
serve as the training set for a separate XCRF wrapper, as
described in Section 4. Then, the user is presented with
the concepts that were found in the form analysis phase.
When submitting a query, the concepts are translated into
the corresponding fields of the original form, the form is sub-
mitted, the cluster of the resulting page is identified, and the
appropriate XCRF wrapper is used to extract the data and
present it to the user.

6. EXPERIMENTS
The components of the system presented in this paper

have been implemented in either Java or Perl, and we re-
port here on the experiments carried out to validate the ap-
proach. A set of ten publication database services of the hid-

den Web were selected by hand (with the help of a classical
search engine), the list of which is given in the first column
of Table 1; these databases are either specific to computer
science or generalist. Each corresponding URL was then fed
to the system, which resulted, after processing by the dif-
ferent modules, into a wrapped service, as described in Sec-
tion 5. Because of the limitations of our system for probing
the hidden Web described in Section 3, a different approach
was followed for two of the sources, namely ACM (the ad-
vanced search form uses complex combinations of fields for
expressing a concept/value relation) and CiteSeer (there
is no advanced search feature). For these two sources, a
few result pages were generated by manual queries, and the
gazetteer annotation and XCRF wrapper induction was per-
formed on these pages, as described in Section 4. Otherwise,
five probes per pair of field and candidate concept annota-
tion were performed and, when found, “Next” links were
followed to retrieve a maximum of five HTML result pages.

The testing process of the induced wrappers was then the
following: For each source, a perfect wrapper of its result
pages was manually written for comparison1. We then arbi-
trarily generated additional result pages and compared the
result of both the gazetteer and the learned XCRF wrapper
with the reference annotation given by the perfect wrapper.

Experimental results are presented in Table 1. Let us first
focus on the columns under the heading Query form, that
are an evaluation of the quality of the analysis of the HTML
form by the heuristics and probing described in Section 3.
For each source, the precision (ratio of fields correctly anno-
tated over all annotated fields) and recall (ratio of fields cor-
rectly annotated over all relevant fields) of both the initial
annotation (cf. Algorithm 1) and the step of confirmation
by probing (cf. Algorithm 2) are given. They are computed
with respect to a perfect annotation of the form, manually
elaborated. The first observation is that, despite the vari-
ous assumptions that we made on the fields of a form, we
still get quite good results; in particular, the average preci-
sion for our dataset is 82 %, while the average recall is 73 %.
Besides, the precision reaches 100 % in a majority of cases.
The other observation that can be made is that the probing
and confirmation step is indeed very useful, since it removes
a large number of incorrect annotations. Indeed, this prob-
ing step has for effect, for all considered sources, to raise
the precision of the annotation while keeping the same re-
call. This may obviously not always be so, the probing step
may very well reduce the recall in some cases, especially if
the database is small, but it is interesting to note that this
did not happen in the experiments. It is a validation of the
probing and clustering approach. Note also that the perfect
annotation of DBLP is not really an artifact of our choice
of DBLP as domain knowledge (since we only use concept
names and no concept instances in our initial form annota-
tion), but rather due to the good structure and simplicity of
the DBLP search form.

The observed quality of form analysis is all the more inter-
esting since the methods that we used are quite basic and
subject to all kinds of refinements. Improving even more
the precision should perhaps be easier than improving re-
call: An idea is to be more cautious and less tolerant during

1This task was actually quite time-consuming, even with the
full expressive power of a programming language; besides,
defining the perfect annotation of a given result page may
be ambiguous.



Table 1: Experimental results of the analysis of the query form and result pages of some publication databases.

Query form Response page

Initial annot. Confirmed annot. Title Author Date

p (%) r (%) p (%) r (%) Fg (%) Fx (%) Fg (%) Fx (%) Fg (%) Fx (%)

ACM 77 100 86 94 97 100
Cambridge 22 67 67 67 75 83 69 63 86 57
CiteSeer 54 79 59 68 78 68
Citebase 100 67 100 67 13 47 49 59 33 44
DBLP 100 100 100 100 87 96 84 95 96 95
DivaPortal 50 50 100 50 4 0 72 92 93 100
Elsevier 25 100 100 100 32 4 56 79 97 100
GoogleScholar 33 73 40 73 51 56 49 32 80 26
IngentaConnect 50 100 100 100 13 80 59 53 91 88
IowaState 11 25 50 25 34 86 54 64 100 83

Average 49 73 82 73 44 63 64 70 85 76

p: precision; r: recall; Fg : F1-measure for the gazetteer annotation; Fx: F1-measure for the XCRF annotation.

the probing step, only probing with words that are unam-
biguously attached to a given concept, while requiring that
most probes return result pages. This might, however, re-
duce the coverage quite a lot. Improving the recall may be
quite hard, in the situation where the textual context of a
field is not descriptive enough to get an annotation. We may
try, however, in these cases, to probe a field with each con-
cept in turn; as the number of fields and concepts are small
enough, this seems feasible. Note finally that the time re-
quired for all this processing is essentially the network access
times required for the probes, all other operations taking a
negligible time.

As explained in Section 3, the feature vector that we use
for clustering is the set of terminal paths in the DOM tree
of the document, with tf-idf weighting. The DOM tree cap-
tures the structure of the document perfectly, and works par-
ticularly well for our experiments. For instance, the cosine
similarities between the result pages from GoogleScholar
are up at around 0.99, whereas the similarities between re-
sult and error pages are of the order of 0.01. To show that
the DOM tree model is an adequate choice, we also experi-
mented with a feature vector based simply on the occurrence
of HTML tags in the document [4]. We simply consider all
tags that occur in the document, compute the tf-idf score
based on the occurrence of tags in the collection and use the
cosine similarity between these vectors for clustering. It was
found that this approach assigns a rather high degree of simi-
larity between result and error pages (for GoogleScholar,
it was of the order of 0.5 to 0.6, for instance, which makes
the clustering process very dependent of the threshold).

Consider now the columns under the heading Response
page of Table 1. For each of the three most occurring con-
cepts in the result pages of publication databases, namely
Title, Author, and Date, the precision p and recall r of
the annotations obtained both by the gazetteer and by the
learned XCRF wrapper over a set of sample pages are sum-
marized with the standard F1-measure defined as F1 = 2·p·r

p+r
.

Here, precision and recall are measured in terms of the num-
bers of tokens whose annotation is the same as with the per-
fect wrapper. When result pages of a single source belonged
to multiple clusters, only the results on the most commonly
occurring cluster are shown.

Note first that absolute values of the F1-measures, be-
tween 60 % and 80 % are quite acceptable, in the absence

of any other fully automatic alternative for assigning con-
cepts to parts of the result pages. With the notable ex-
ception of the concept Date, the structural XCRF wrapper
performs generally better than the gazetteer. This means
that the XCRF wrapper was not only capable of reproduc-
ing the gazetteer annotation (this was not guaranteed, since
the wrapper does not have access to the domain knowledge,
but only to structural features), but also of improving it by
filtering out outliers or adding missing annotations thanks
to a structural generalization. This shows that it is indeed
possible to use supervised machine learning techniques in
an unsupervised way with the help of a noisy annotation, to
induce a structural wrapper that performs better than this
noisy annotation. There are exceptions to this, however,
which are interesting in themselves, as detailed below.

In cases where the gazetteer performs badly (see for ex-
ample, Title for DivaPortal and Elsevier), the XCRF
wrapper performs even more badly, because it is not able
to find any structural generalization of the annotation with
enough support. Recall that the gazetteer only annotates
titles when it finds the same exact title as an article appear-
ing in DBLP records. This is not a very elaborate scheme,
and it fails when the content of the database is significantly
different from that of the domain knowledge : the pages
from Elsevier from which the learning was made were se-
mantically too far away from computer science, while most
publications from DivaPortal have a Swedish title, which
has no chance of appearing in the domain knowledge. How-
ever, even with such a näıve way of recognizing titles, the
structural pattern learned by the wrapper is in all other cases
better (and sometimes much better, see for instance Ingen-
taConnect and IowaState) than the original gazetteer
annotation. The case of the concept Date is special, as the
gazetteer already performs very well due to the relative non-
ambiguity of dates as lexical tokens, while their position in
the document structure is often not easy to isolate. This
means that, for such a concept, there is not much (if any-
thing) to be gained by this structural learning, and that
classical date entity recognizers are often enough. Some re-
sult pages do not make much use of the structuring features
of HTML and basically present the different fields of each
publication in a linear, textual, way. In such conditions,
it can be very difficult to isolate each field in a structural
manner; this was also reflected by the complexity of writing



the corresponding perfect wrappers. In such cases (see, for
instance, Author and Date for GoogleScholar or Cam-
bridge), a simple gazetteer annotation, which already gives
quite good results, is enough. Perhaps a direction for future
work would be to identify in an automatic way such cases in
advance, and not to try any structural generalization then.
On the other hand, on highly structured result pages such as
those from ACM, the generated XCRF is close to perfection.

We would like to stress that one of the major advantages
of the learned XCRF wrapper over the gazetteer is that
it is mostly independent of the considered subdomain; this
means that if such a wrapper has been learned for a general-
ist database such as GoogleScholar on a set of computer-
science–related result pages generated by the prober, it can
then be used on any result page of this source (as long as
it has the same structure and can be handled by the same
structural wrapper), while the gazetteer is utterly unable to
annotate titles of, say, theoretical physics articles.

7. RELATED WORK
An early work on crawling the hidden Web is [22], where

Raghavan and Garcia-Molina present a system that focuses
on analyzing Web forms, automatically generating queries
and extracting information from the response pages thus ob-
tained. There are many similarities between the approach
described in [22] and our initial structural analysis of an
HTML form, though the authors choose to use a method
based on the visual layout of elements to determine the label
of a field, rather than the more structural method that we
use. The MetaQuerier system similarly processes forms
with multiple attributes [33] and uses predicate mapping to
convert user-given queries to specific form queries, and thus
fetches the required response pages hidden behind the form
interface. The focus of this work is on schema mapping and
query rewriting to translate queries to a given interface. The
paper does not address the analysis of forms themselves, but
the same authors describe in [32] a fairly elaborate approach,
based on the notion of hidden grammars that describe the
relation between structure of a query form and its visual
layout. [11] focuses on the sampling of a source of the hid-
den Web, by using domain knowledge to obtain a represen-
tative subset of result documents. [1] is another example
of a system which extracts hidden-Web data from keyword
based interfaces by querying the interface with high cover-
age keywords. The aim of the authors is to extract all the
data from the database, and index it locally, which is quite
a different goal. They exploit the same idea as we do for
distinguishing between result and error pages, citing [7] as
their inspiration, that is, probing the form with nonsense
keywords that we are sure do not exist in the database. Fi-
nally, the idea of using clustering for distinguishing between
result and error pages comes from [4], although we do not
use the same input for the clustering algorithm. In [4], the
authors construct the feature vector for a page by extract-
ing the tags from HTML code and use the cosine similarity
measure with a tf-idf weighting. In practice, we found out
that this tag-signature–based clustering does not work very
well in comparison to our scheme of clustering based on the
terminal paths in the DOM tree.

Early works on machine learning approaches to Web infor-
mation extraction deal with the supervised approach. It is
supposed that domain instances of a target domain concept
are first manually annotated by an expert. Then machine

learning techniques are applied to generate an extraction
program. Several systems explicitly consider the tree struc-
ture of Web documents with different machine learning tech-
niques, e.g., Stalker [18], Squirrel [3], Lipx [27]. Later
on, the unsupervised approach was introduced, systemati-
cally trying to avoid manual labeling [31]. However, they
are less accurate than supervised systems. Moreover a man-
ual post-processing is needed to map the extracted fields to
the domain concepts because of the inability of the extrac-
tion programs to understand the semantic of extracted data.
In the Natural Language Processing (NLP) community, dis-
criminative probabilistic models have been successfully ap-
plied to a number of information extraction tasks in super-
vised systems [25, 15, 19, 23]. Most approaches use models
for sequences whereas we use models for trees in order to take
profit of the tree structure of result pages. For instance, a
generative model of sequences is used in [9] whereas a dis-
criminative model is used in [14]. In the latter, a small set
of labeled sentences is required whereas in the former the
domain is restricted and labeled sequences are constructed
by using many heuristics. It was recently proposed to use
gazetteers in a discriminative model [26] containing user-
defined features. Gazetteers are used to define additional
features. We follow this approach but we use gazetteers to
define an initial approximate annotation which replaces the
manual annotation, i.e., we use gazetteers to use discrim-
inative models in an unsupervised context. Moreover, we
use a discriminative model for tree-structured documents
rather than for text. Two aspects of our work on informa-
tion extraction have some similarities with papers about the
MetaQuerier system. In [30], bootstrapping a knowledge
base by extracting information on result pages and injecting
them back on subsequent probing is discussed. Bootstrap-
ping across different sources, in order to benefit from their
different coverage, is the topic of [5]. Our main idea of using
supervised techniques on the structure of a document to gen-
eralize an annotation by a gazetteer has not been explored
in either of these works.

8. CONCLUSIONS
We have presented an original, standalone, approach to

automatic wrapper induction from sources of the hidden
Web, with the help of domain knowledge. It does not need
any human supervision and relies on a combination of heuris-
tics, clustering, gazetteer annotation and machine learning.
Experiments show that this approach is able to understand
quite well the structure of a form, and that there is potential
in the use of machine learning to obtain a structural gener-
alization and correction of an imperfect, imprecise, annota-
tion. It is our belief that, as illustrated here in the case of
hidden-Web services, exploiting the structure of content to
help correct or disambiguate a purely linear text-based anal-
ysis is a fruitful idea. Another important pattern is shown in
the two-step process of our form analysis and probing mod-
ule, the first step with high recall but possibly low precision,
and the second step raising precision without hurting recall.

There are a number of directions that can be followed in
relation to this work. First, this system is to be thought
as part of a general framework for the understanding of the
hidden Web, that would include service discovery, semantic
analysis of the relations between input and output concepts
of a service, and indexing and high-level querying of seman-
tically analyzed services. We are already working on some of



these problems. Second, a number of improvements could be
made to our system: a number of the assumptions made on
the structure of the forms could be removed by more elabo-
rate structural analysis, or the gazetteer could be improved
to recognize titles as linguistic entities of a certain form,
rather than as fixed strings. Finally, a perhaps deeper issue
would be to improve the learning step itself, that is at the
moment partially hindered by the fact that conditional ran-
dom fields, as all supervised machine learnings techniques
that we know of, assume that the original annotation is per-
fect and try to fit it as much as possible. An adapted ma-
chine learning model would consider the description length
of the corresponding wrapper as something as important to
minimize as the fitting to the annotated dataset.
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