
Masters Internship Report

Extraction of information in large graphs;

Automatic search for synonyms

Pierre Senellart

Pierre.Senellart@ens.fr

June 5th 2001 - August 3rd 2001

1 Extraction of the graph of the dictionary

I used the Online Plain Text English Dictionary (OPT 2000) which is based on
the "Project Gutenberg Etext of Webster’s Unabridged Dictionary" which is in
turn based on the 1913 US Webster’s Unabridged Dictionary. It consists in 27
HTML files (one for each letter of the alphabet, and one for several additions).
The problem was to parse these files in order to build the graph of the dictionary:
there is a vertex for every word and an arc from vertex i to vertex j if j appears
in the definition of i. I encountered several problems in this operation:

• Some words defined in the Webster’s dictionary were in fact multi-words
(e.g. All Saints’, Surinam toad). I decided not to include them into
the graph, since there is no simple way, when you see two words side-by-
side, to decide whether they should be interpreted as single words or as a
multi-word.

• Some head words of definitions were prefixes or suffixes (e.g. un-, -ous),
which I also excluded from the graph.

• Many words have several meanings and are head words of multiple defini-
tions. For, once more, it is not possible to determine which meaning of a
word is employed in a definition, I gathered the definitions of a word into
a single one.

• The recognition of derived forms of a word in a definition is also a problem.
I dealt with the cases of regular and semi-regular plurals (e.g. daisies,
albatrosses) and regular verbs, assuming that irregular forms of nouns
or verbs (e.g. oxen, sought) had entries in the dictionary.

• All accentuated characters were replaced in the HTML file I used by a ///
(e.g proven///al, cr///che). I included these words, keeping the ///.

• There are many misspelled words in the dictionary, since it has been built
by scanning the paper edition and processing it with an OCR software. I
didn’t take these mistakes into account.

1

The resulting graph has 112, 169 vertices and 1, 398, 424 arcs, but because of
these remarks, it is far from being a precise graph of semantic relationships. For
example, 13, 396 lexical units are used in the definitions and not defined. These
are of course numbers (e.g. 14159265, 14th), mathematical and chemical
symbols (e.g. x3, fe3o4). But when this kind of lexems, which are not real
words, are excluded, it remains 12, 461 words: proper nouns (e.g. California,
Aaron), misspelled words (e.g. aligator, abudance), existing but undefined
words (e.g. snakelike, unwound) or abbreviations (e.g. adj, etc).

The graph is available for download at http://www.eleves.ens.fr:8080/
home/senellar/stage_maitrise/graphe

2 Brief analysis of the graph

Several interesting computations may be carried out on the graph. The first
natural question is of its connectivity. When dealing with oriented graphs, there
are two different notions of connectivity: a graph is strongly connected if there is
a path from any vertex to any other one and a graph is just said to be connected
if the underlying undirected graph is connected. We can derive therefrom the
notions of strongly connected components and connected components of a graph
which are the equivalence classes of, respectively, the relations R1 and R2, where
iR1j means that there is a path from i to j and a path from j to i and iR2j
means that there is a path from i to j in the underlying undirected graph.

2.1 Connectivity

One could expect the graph of a dictionary to be connected. However, there are
185 different connected components: a large one with 111, 982 vertices, 3 two-
vertex components and 181 one-vertex components (see list in appendix). This
is either due to misspelling or to words not defined in the dictionary: for ex-
ample, anguineal is defined with the single word anguineous which is in turn
defined as snakelike, the definition of which does not exist. Another example is
indissolvableness, defined as indissolubleness, defined as indissolubility.
But indissolubility is not defined, because of a misspelling: indisdolubility
is defined.

Thus, it appears that the graph is not connected because of small, not very
important, details. It just could be use to search the lacks and mistakes of the
dictionary. The issue of strong connectivity is much more interesting.

2.2 Strong connectivity

There are 79, 348 strongly connected components. Table 1 shows their classifi-
cation according to their size and Figure 1 how they are connected to each other
(additional arrows may exist, as long as they go from top to bottom).

The dictionary may thus be split into two parts: the largest connected com-
ponent, which is a kind of "core" of the English language, and the peripheral
words. As for small components with more than one vertex, they form the
semantic field of a specific domain. For example, here are the ten-vertex com-
ponent and one of the seven-vertex component:

2

1. bezpopovtsy, dukhobors, dukhobortsy, judaizers, molokane, mo-
lokany, popovtsy, raskolnik, raskolniki, skoptsy: several Russian
dissident churches from the Greek faith or their members. The word
"raskolnik" is how the Russian government (before the Revolution) called
them all. It is interesting to note that all these words appeared in the
"addition file" of the Webster’s Dictionary.

2. theosophy, theurgy, theurgic, theurgical, neoplatonic, neoplaton-
ist, neoplatonism: the Neoplatonists developed the theurgy, which is a
kind of theosophy.

I said above that the largest connected component C could be seen as the
core of the language. If this is true, you could understand the definition of any
word in the dictionary if you only knew the meanings of the words in C, that
is, in the graph where the directions of the arrows are inverted, all vertices are
accessible from the vertices in C. Of course, it can’t be true since the graph
is not connected. But when you exclude the other connected components, you
notice that all vertices except 12 of them are accessible. Once more, the reason
of these 12 words lies in misspellings, undefined words or such (for example,
dyscrasy is defined as dycrasia instead of dyscrasia). The denomination of
"core" is therefore valid.

An interesting issue would be to determine the minimum number of words
which generate the dictionary, that is the minimum number of words you have
to know if you want to be able to understand the meaning of all headwords
of the dictionary. More formally, this is the minimum number of vertices of
a subgraph containing at least one vertex from every directed cycle in G and
such that every path in the graph may be prolongated in a path containing a
vertex of the subgraph (a subgraph with these two properties will be called a
core subgraph). Let’s call this number the independence degree of the graph.

Theorem 1 Let G be a strongly connected graph and V a subgraph of G. V is
a core subgraph if and only if V contains at least one vertex from every directed
cycle in G.

Proof
Let’s assume that V contains at least one vertex from every directed cycle

in G. Let k0 → k1 → . . . → kl be a path in G. Since G is strongly connected,
there exists a path kl → kl+1 → . . .→ km → k0.

k0 → . . . → km → k0 is a path prolongating the initial path and contains a
vertex of V since it is also a directed cycle, which concludes the proof.

2

Thus, the independence degree of a strongly connected graph is the minimal
size of a subgraph containing at least one vertex from every directed cycle.
The computation of this value is a NP-complete problem (cf (Garey & Johnson
1983)) so the computation of the independence degree of any graph is a NP-
complete problem (the fact that it is NP is clear enough).

There remains to find a good approximation algorithm. I can naturally give
the upper bound of 30, 595 + 187 + 12 = 30, 794 for the graph of the dictionary.

Another issue I looked at is the diameter of C (i.e. the maximal minimum
distance between two vertices). An exact computation would be far too much

3

time-consuming, but I was able to find it was between 14 and 16: there are
two vertices i and j such that d(i, j) = 14 (d(i, j) is the minimum length of
a path from i to j) and there is a vertex x (a or for for instance) such that
∀y,∀z, d(y, x) + d(x, z) ≤ 16.

2.3 A small world

There is truth in the popular expression: "It’s a small world!". In fact, in the
graph of human relationships, the minimal distance between any two vertices is
always very small: the diameter of the graph is probably not much greater than
the number six advanced in John Guare’s play Six Degrees of Separation. This
phenomenon arises in graphs that are called "small worlds".

We will need to know what a random graph is prior to defining small world
graphs. There are two classical definitions of random graphs:

1. A random graph M(n,m) is a graph of n vertices and m edges being
chosen uniformately out of all possible edges

2. A random graph M(n, p) is a graph of n vertices whose each pair of points
is the support of an edge with the probability p

In practice, the properties of the two kinds of random graphs are very similar,
when p = 2m

n(n−1) . We will call a random graph indifferently either of these sorts

of graphs.
In (Watts 1999), Duncan J. Watts proposes the following definition of small

world graph:
A small world graph is an undirected, unweighted, sparse and connected

graph of n vertices and average degree k verifying the two following conditions:

1. The mean minimal length of a path between any two vertices (which is
called the characteristic path length) L is close to that of a random graph
with same n and k.

2. The mean over all vertices of the ratio of the number of edges in the
neighborhood graph by the number of possible edges in the same subgraph
(which is called the clustering coefficient) γ is much greater than that of
a random graph of same n and k.

Small world graphs are very frequent in very various fields. The Kevin Bacon
graph, for instance is a small world: each vertex is an actor and there is an edge
between two actors if they appeared in the same movie. Other examples of
small worlds are the Web, power distribution graphs or the nervous system of
some worm.

Is our graph of the dictionary a small world? Our graph is directed and not
connected. In order to give some sense to this question, we took the underlying
undirected graph and we kept only the members of the largest connected com-
ponent, in order to have an undirected, unweighted, sparse (because k ≈ 24.6)
and connected graph. Then, we computed the values of L and γ and compared
them to the values for a random graph, using the approximative equations given
by Duncan J. Watts:

1. L ≈ 2, 40 ∼ 3.61 ≈ Lrandom

4

2. γ ≈ 0.45 � 2.19 10−4 ≈ γrandom

It seems then that the graph of the dictionnary is a small world. The charac-
teristic path length is even impressive, since it is smaller than that of a random
graph. This is due to the simple fact that some words (of, a. . .) connect
together most words.

However, the graph of the dictionary does not fit the model proposed by
Duncan J. Watts. He constructs an infinite family of graphs, indexed by a
parameter φ (the percentage of edges which are shortcut, that is which bind
edges otherwise at a distance strictly greater than two), which is supposed to
model small worlds. But, for the value of φ for the graph of the dictionary
(φ ≈ 0.16), the model predicts γ ≈ 0.70 and L ≈ 4.45. There remains thus to
find another model which may describe the graph of the dictionary as a small
world.

One should not forget either that this graph is a directed graph and that
we lose much information when we do not take into account "the direction of
arrows". It would be perhaps necessarily for a precise description of this graph
to construct models of directed small worlds.

2.4 Degree distributions

The indegree and outdegree distributions of the vertices in the Web graph follows
a Zipfian distribution ((Kleinberg, Kumar, Raghavan, Rajagopalan & Tomkins
1999)): the probability that a node has indegree or outdegree i is proportional
to 1

iα
for some α.

Figure 2 and 3 show the indegree and outdegree distribution of the vertices
in the dictionary graph on a log-log scale. We notice the same kind of Zipfian
distribution. α ≈ 1.6 for the indegrees and α ≈ 3.1 for the outdegrees. However,
there is a difference between these two graphs. Unlike the indegree distribution,
the outdegree distribution show two discrepancies from the Zipfian model. First,
the outdegree is bounded by a rather small ammount, which was also true
for the Web graph. This is logical: there cannot be too many words in a
definition (whereas there is no a priori limit to the number of words that use
some fixed word in their definition) as there cannot be too many links in a
webpage. Secondly, the plot is not linear in the range of small outdegrees. This
inflection is also present for the Web graph but is less visible.

The similitude between the degree distributions of the Web and of our graph
which are two small world directed graphs may mean that a small world directed
model should take into account these degree distributions.

All these parameters (the number of strongly connected components, their
size and diameter, whether the largest one is a core, the small-world parameters,
degree distributions, etc) could possibly be interesting tools to compare graphs
of different dictionaries, for example in different languages. One could for in-
stance imagine that there are invariants for dictionaries of a given language.
Unfortunately, I was unable to find another full-text dictionary in electronic
format and cannot thus make use of this remark.

5

Number of vertices Number of components
30, 595 1

10 1
7 3
6 13
5 21
4 50
3 222
2 1, 457
1 77, 580

Table 1: Distribution of the size of strongly connected components

feminality
↓

1, 191 SCC
↓

4 SCC ←− 77, 956 SCC Other connected components
(4 words) ↓ (187 SCC)

Largest SCC (30,595 words)
↓

8 SCC (8 words)

Figure 1: Graph resulting of the contraction of each Strongly Connected Com-
ponent in one single vertex

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

N
um

be
r

of
 v

er
tic

es

Indegree

Indegree distribution

Figure 2: Indegree distribution

6

3 Three methods for discovering near-synonyms

The problem of searching near-synonyms, that is "similar words", may seem
close to that of searching similar pages on the Web, which has been dealt rather
satisfactorily for instance in (Kleinberg 1999) or (Dean & Henzinger 1999).
However, this is definitely not the same problem: in these two articles, similar
pages were in fact authoritative pages in a subgraph focused on the original page,
which was implicitly supposed to be authoritative enough. This is completely
different for near-synonyms. The words we start from have no reason to be
authorities of their neighborhood. Yet these methods are a good starting point
for developing dictionary-specific methods.

In this section, I describe three different methods for extracting near-synonyms
from the dictionary graph. In section 4, I compare these three methods on sev-
eral examples.

The near-synonyms algorithms described below will be applied on a subgraph
of the graph of the dictionary, depending on a fixed vertex (i.e. word) i, and
consisting of i, all parents of i and all children of i. However, I decided to
exclude from the selection too frequent words, that is words who appeared in
more than L definitions (best results were obtained for L ≈ 1, 000). The 20
most often occurring words are given in appendix.

The graph obtained this way will be called the neighborhood graph of vertex
i. In the following, we assume that i is fixed and that the neighboring graph of
i is represented by its transition matrix A = (ai,j)i,j=1...n.

3.1 The vectors method: a rather elementary one

A rather natural way to define near-synonyms is to say that two words are
semantically close if they appear in the definition of the same words and have
the same words in their definition.

The principle is to compute some distance between lines and columns of
the transition matrix: if the jth and kth lines are "close" and if the jth and
kth columns are "close", j and k point to and are pointed by about the same
vertices, and they are thus near-synonyms.

It gives an immediate algorithm for discovering near-synonyms of a word i:

1. For each 1 ≤ j ≤ n, j 6= i, compute:

‖(Ai,· −Aj,·)‖+ ‖(A·,i −A·,j)
T ‖

(where ‖ ‖ is some vector norm, Ai,· and A·,i are respectively the ith line
and the ith column of A).

For instance, if we choose the Euclidean norm, we compute:

(

n
∑

k=1

(Ai,k −Aj,k)2

)
1

2

+

(

n
∑

k=1

(Ak,i −Ak,j)
2

)
1

2

2. Sort the different words according to the computed value and return the
k first ones.

7

Unlike the two other algorithms described below, one could try to apply this
algorithm directly on the entire graph. But this gives very bad results: the first
two near-synonyms of sugar are pigwidgeon and ivoride. However, we’ll see
that pretty good results are achieved if we use the neighborhood graph.

3.2 A variation of Kleinberg’s algorithm

In (Kleinberg 1999), Jon Kleinberg proposes an algorithm for identifying among
Web pages hubs and authorities concerning a given query in a search engine.
For example, for the query "automobile makers", the home page of Ford,
Toyota or other car makers are good authorities, whereas sites which give
a list of these home pages (such as http://dir.yahoo.com/Business_and_

Economy/Shopping_and_Services/Automotive/Makers/Vehicles/) are good
hubs. The fundamental idea is that of a mutually reinforcing relationships: good
hubs are pages that point to good authorities and good authorities are pages
pointed by good hubs.

He starts on building "a focused subgraph" which is the analogous of our
neighborhood graph, and then he tries to determine which vertices of this sub-
graph "look like" vertex 1 and vertex 2 of the following graph:

1 −→ 2

For this purpose, he compute the principal eigenvector (which is assumed to
exist) of AT A and AAT which give respectively the authority weights and hub
weights of the vertices of the graph. Vertices with highest authority weights are
best authorities, that is they look like vertex 2 in the above graph; vertices with
highest hub weights are best hubs, that is they look like vertex 1 in the above
graph.

Because of the way we built the neighborhood graph, vertex i look very much
like the second vertex of the graph:

1 −→ 2 −→ 3

. The idea of this method is to look for other vertices with the same resemblance.
We use for this purpose the generalization of Kleinberg’s algorithm proposed by
Vincent Blondel and Maureen Heymans in (Heymans 2001):

Let M(m,m) and N(n, n) be the transition matrices of two oriented graphs.
Let C = M ⊗N + MT ⊗NT where ⊗ is the Kronecker tensorial product. We
assume that the greatest eigenvalue of C is strictly greater than the absolute
value of all other eigenvalues. Then, the normalized principal eigenvector X of
C gives the "similarity" between a vertex of M and a vertex of N : Xi×n+j char-
acterizes the similarity between vertex i of M and vertex j of N . In particular,

if M =

(

0 1
0 0

)

, the result is that of Kleinberg’s algorithm.

We may thus apply this extension of Kleinberg’s algorithm with M =





0 1 0
0 0 1
0 0 0



,

which is the transition matrix of the graph mentioned above. This is precisely
our second method for discovering near-synonyms.

8

3.3 ArcRank

In (Jannink & Wiederhold 1999), Jan Jannink and Gio Wiederhold propose
an algorithm for building a thesaurus starting from a word. They also worked
on the 1913 Webster’s Dictionary and their algorithm can be tested at http:

//skeptic.stanford.edu/data/. For these reason, I did not implement their
algorithm but directly used their results. Moreover, their intent was not to find
near-synonyms but related words.

ArcRank is based on the PageRank algorithm, used by Google and described
in (Brin & Page 1998). PageRank assigns a ranking to each vertex of the graph
in the following way: all vertices begin with a constant initial ranking and they
iteratively distribute it to the vertices they point to, while receiving rank from
vertices they are pointed by. This process converges to a stationary distribution
corresponding to the principal eigenvector of the adjacency matrix. ArcRank
assigns a ranking to each arc according to the ranking of vertices. If |as| is the
number of outgoing arcs from vertex s and pt is the page rank of vertex t, then
the arc relevance of arc (s, t) is defined by:

rs,t =
ps/|as|

pt

Arc relevances are then converted into rankings.
Those rankings are computed only once. When you are looking for words

related to some word x, you select those of the arc starting from or arriving to
x which have the best rankings and you get the corresponding vertices.

3.4 Selection by the part of speech

Words of the English language belong to different parts of speech: nouns,
verbs, adjectives, adverbs, prepositions. . . It is natural, when looking for a near-
synonym of a word, to get only words of the same type. The Websters’s Dic-
tionary provide for each headword its part of speech. But it has not been
standardized and we have counted not less than 305 different categories. I chose
to select 5 types: nouns, adjectives, adverbs, verbs, others (including articles,
conjunctions and interjections) and tried to transform the 305 categories into
combinations of these types. A word may of course belong to different types.

Thus, when looking for near-synonyms, we can exclude from the list all words
that do not have a common part of speech whith out word. This technique
may be applied with all near-synonym algorithms, but as I did not implement
ArcRank, I only used it on the first two described above.

In fact, the gain is not huge, because many words in English have several
grammatical natures. For instance, adagio or tete-a-tete are at the same time
nouns, adjectives and adverbs.

4 Results

In order to be able to compare the different methods and to judge their relevance,
we will examine the first ten results given by each of them for 4 words, chosen
for their variety:

9

1. disappear: a word with various synonyms or near-synonyms such as
vanish.

2. parallelogram: a very specific word with no true synonyms but with
some similar words: quadrilateral, square, rectangle, rhomb. . .

3. sugar: a common word with different meaning (in chemistry, cooking,
dietetics...). One can expect glucose for instance to be a good quasi-
synonym.

4. science: a very common and vague word. It is hard to say what to expect
as for a near-synonym of this word. Perhaps knowledge is the best one.

Tables 2, 3, 4 and 5 give the corresponding results. I also included lists of
synonyms coming from two hand-made sources: WordNet (Wor 1998) and the
dictionary of synonyms of Microsoft Word 97. The order of appearance of the
words for these two last sources is rather arbitrary, whereas it is well defined
for the Vectors and Kleinberg algorithms. As for the ArcRank Algorithm, the
results given by the Web interface are two rankings, one for words pointed by
and one for words pointed to. I interleaved them into one ranking.

I chose not to keep the query word in the list of near-synonyms, since this
has not much sense for all methods but the variation of Kleinberg’s algorithm,
where it is really interesting to note that in every example I experimented, the
original word appeared as the first word of the list (a point that tends to give
credit to the method).

Vectors Kleinberg ArcRank Wordnet Microsoft Word
1 vanish vanish epidemic vanish vanish
2 wear pass disappearing go away cease to exist
3 die die port end fade away
4 sail wear dissipate finish die out
5 faint faint cease terminate go
6 light fade eat cease evaporate
7 port sail gradually wane
8 absorb light instrumental expire
9 appear dissipate darkness withdraw
10 cease cease efface pass away

Table 2: Near-synonyms for disappear

Concerning disappear, the Vectors method and the variation of Kleinberg’s
algorithm do pretty well: most of the words given by hand-made dictionaries
(vanish, cease, fade, die, pass) appear (one must not forget that verbs neces-
sarily appear without their postposition). Other words like dissipate or faint
are relevant too. However, some words like light or port are completely irrele-
vant, but they appear only in 6th, 7th or 8th position. If we compare these two
methods, we observe that Kleinberg’s seems better: an important near-synonym
like pass takes a good ranking, whereas port or appear go out of the top ten
words. It is hard to explain this phenomenon, but we can say that the mutually
reinforcing aspect of Kleinberg’s method is apparently a positive point: Because
pass is pointed by good hubs and point to good authorities, this word is chosen

10

by the method. On the contrary, ArcRank gives rather poor results with out of
the point words like eat, instrumental or epidemic.

Vectors Kleinberg ArcRank Wordnet Microsoft Word
1 square square quadrilateral quadrilateral diamond
2 parallel rhomb gnomon quadrangle lozenge
3 rhomb parallel right-lined tetragon rhomb
4 prism figure rectangle
5 figure prism consequently
6 equal equal parallelopiped
7 quadrilateral opposite parallel
8 opposite angles cylinder
9 altitude quadrilateral popular
10 parallelopiped rectangle prism

Table 3: Near-synonyms for parallelogram

Because the niegborhood graph of parallelogram is rather small (30 ver-
tices), the first two algorithms give similar results, which are not absurd: square,
rhomb, quadrilateral,rectangle, figure are rather interesting. Other words
are less relevant but still are in the semantic domain of a parallelogram. Ar-
cRank which also works on the same subgraph does not give as interesting words,
although gnomon makes its appearance, since consequently or popular are
irrelevant. It is interesting to note that hand-made dictionaries are less rich,
because they focus on a particular aspect (quadrilateral for Wordnet, rhomb
for Microsoft Word)

Vectors Kleinberg ArcRank Wordnet Microsoft Word
1 juice cane granulation sweetening darling
2 starch starch shrub sweetener baby
2 cane sucrose sucrose carbohydrate honey
4 milk milk preserve saccharide dear
5 molasses sweet honeyed organic compound love
6 sucrose dextrose property saccarify dearest
7 wax molasses sorghum sweeten beloved
8 root juice grocer dulcify precious
9 crystalline glucose acetate edulcorate pet
10 confection lactose saccharine dulcorate babe

Table 4: Near-synonyms for sugar

Once more, the results given by ArcRank for sugar are mainly irrelevant
(property, grocer...). Kleinbers’s algorithm is again better than the Vectors
one: starch, sucrose, sweet, dextrose, glucose, lactose are highly relevant
words, even if the first given near-synonym (cane) is not as good. The dictionary
of synonyms of Microsoft Word amusingly focuses on a very specific aspect of
the word.

The results for science are perhaps the most difficult to analyse. The Vec-
tors and Kleinberg’s algorithms are comparable. ArcRank gives perhaps better

11

1

10

100

1000

10000

100000

1 10 100 1000

N
um

be
r

of
 v

er
tic

es

Outdegree

Outdegree distribution

1

10

100

1000

10000

100000

1 10 100 1000

N
um

be
r

of
 v

er
tic

es

Outdegree

Outdegree distribution

Figure 3: Outdegree distribution

Vectors Kleinberg ArcRank Wordnet Microsoft Word
1 art art formulate knowledge domain discipline
2 branch branch arithmetic knowledge base knowledge
3 nature law systematize discipline skill
4 law study scientific subject art
5 knowledge practice knowledge subject area
6 principle natural geometry subject field
7 life knowledge philosophical field
8 natural learning learning field of study
9 electricity theory expertness ability
10 biology principle mathematics power

Table 5: Near-synonyms for science

12

results than for other words but still seems poorer than the two other methods.
Once again, the dictionary of synonyms of Word gives very few words.

As a conclusion, our first two algorithms give interesting and relevant words,
whereas it is clear that ArcRank is not adapted to the search for near-synonyms.
The variation of Kleinberg’s algorithm and its mutually reinforcing relationship
demonstrates its superiority on the basic Vectors method, even if the difference
is not obvious for all words. Of course, the obtained relevance cannot be rea-
sonably compared with those of hand-made list of near-synonyms. Still, these
automatic techniques show their interest, since they present more complete as-
pects of a word than hand-made dictionaries. They could profitably be used
to broaden a topic (see the example of parallelogram) and to help with the
compilation of synonyms dictionaries.

5 Future perspectives

A first immediate improvement of our algorithms would be to work on a larger
subgraph than the neighborhood subgraph which may be rather small, and thus
not include important near-synonyms. A good example is ox. cow seems to
be a rather good near-synonym of it. Unfortunately, ox does not appear in
the definition of cow, neither does the latter appear in the definition of the
former. Thus, the algorithms described above, and in particular the variation
of Kleinberg’s algorithm, cannot find this word. The first idea would be to
extend our neigborhood graph, either as Kleinberg does in (Kleinberg 1999)
for searching similar pages on the Web or as Dean and Henziger do in (Dean
& Henzinger 1999) for the same purpose. However, such subgraphs are not
any longer focused on the original word. That implies that our variation of
Kleinberg’s algorithm forgets the original word and produces irrelevant results.
Nevertheless, when we use the vicinity graph of Dean and Henziger, we obtain a
few interesting results with specific words: for example, trapezoid appears as
a near-synonym of parallelogram or cow as a near-synonym of ox. Yet there
are also many degradations of performance for more general words. Perhaps
a choice of the subgraph depending on the word itself would be appropriate.
For instance, the extended vicinity graph may either be used for words whose
neighborhood graph has less than a fixed number of vertices, or for words whose
indegree is small, or for words who do not belong to the largest connected
component. I did not investigate this idea.

One may wonder whether the results we obtained were specific to the Web-
ster’s dictionary or whether the same methods could work on other dictionaries,
in English or in other languages. Although the latter is most likely since our
techniques were not chosen in function of the graph we worked on, there will
undoubtedly be differences with other languages. For example, in French, post-
positions do not exist and thus verbs have not as many different meanings as in
English. Besides, it is much rarer in French to have the same word for the noun
and for the verb than in English. Furthermore, linguistics teach us that the way
words are defined vary from one language to another. Anyway, and even if it
would certainly be a most interesting topic, we are limited to speculations, since
it has not been possible to get another full-text dictionary in electronic format.

Another interesting question is to know what other kind of applications the
variation of Kleinberg’s agorithm described above may have. The fact to be

13

able to compare vertices of a large graph to vertices of any small reference
graph seems promising. The most immediate other application would be to
the recognition of similar pages on the Web by keeping our near-synonymy
algorithm. However, the results are very disappointing, simply because pages
which are pointed to by many websites (that is mostly home pages of a site)
seldom point to another site: outgoing links of a website are seldom in its home
page. The level which should be considered here would be the entire websites
pointing to and pointed by other sites. But this raises a problem: how to identify
which pages belong to some site? Moreover, the recursive browsing of websites
in order to identify all outgoing links is a very resource-consuming task.

Other questions I already evoked are the problems of finding a model of
directed small worlds graphs (or even, more specifically, models of dictionary
graphs) and of discovering invariants for languages in the graph of the dictionary.

References

Brin, S. & Page, L. (1998), ‘The anatomy of a large-scale hypertextual Web
search engine’, Computer Networks and ISDN Systems 30(1–7), 107–117.

Dean, J. & Henzinger, M. R. (1999), ‘Finding related pages in the world wide
web’, WWW8 / Computer Networks 31(11-16), 1467–1479.
*http://citeseer.nj.nec.com/dean99finding.html

Garey, M. R. & Johnson, D. S. (1983), Computers and intractability: a guide to
the theory of NP-completeness, Freeman, New York, NY.

Heymans, M. (2001), ‘Extraction d’information dans les graphes, et application
aux moteurs de recherche sur internet’. Travail de fin d’étude, Univer-
sité Catholique de Louvain, Faculté des Sciences Appliquées, Département
d’Ingénierie Mathématique.

Jannink, J. & Wiederhold, G. (1999), Thesaurus entry extraction from an on-
line dictionary, in ‘Proceedings of Fusion ’99, Sunnyvale CA’.
*http://citeseer.nj.nec.com/315100.html

Kleinberg, J. M. (1999), ‘Authoritative sources in a hyperlinked environment’,
Journal of the ACM 46(5), 604–632.
*http://citeseer.nj.nec.com/kleinberg97authoritative.html

Kleinberg, J. M., Kumar, R., Raghavan, P., Rajagopalan, S. & Tomkins, A. S.
(1999), The Web as a graph: Measurements, models, and methods, in
T. Asano, H. Imai, D. T. Lee, S. Nakano & T. Tokuyama, eds, ‘Proc. 5th
Annual Int. Conf. Computing and Combinatorics, COCOON’, Springer-
Verlag.
*citeseer.nj.nec.com/kleinberg99web.html

OPT (2000), ‘The online plain text english dictionary’.
*http://msowww.anu.edu.au/ ralph/OPTED/

Watts, D. J. (1999), Small Worlds, Princeton University Press.

Wor (1998), ‘Wordnet 1.6’.
*http://www.cogsci.princeton.edu/ wn/

14

A Connected components

A.1 One-vertex components

1. abandonedly

2. acronyctous

3. advantageousness

4. affrontedly

5. amability

6. amorphy

7. anchoretish

8. aslug

9. attently

10. barrenly

11. bawdily

12. brillance

13. cancellarean

14. canicule

15. cankeredly

16. chincherie

17. consumedly

18. cullibility

19. culpe

20. customably

21. daintrel

22. dejectly

23. deploredly

24. depper

25. derre

26. desertlessly

27. deservedness

28. despiteously

29. disasterly

30. disdainishly

31. disdainously

32. disfavorably

33. disingenuity

34. disinhabited

35. disinteresting

36. disordinately

37. disperseness

38. disprofitable

39. domableness

40. doubtlessly

41. electorial

42. epicurely

43. erke

44. evanescently

45. fantasticness

46. fastidiosity

47. festally

48. feverously

49. fightingly

50. fresh-new

51. frication

52. funambulation

53. gurts

54. habitability

55. harddihead

56. hemicrany

57. highmost

58. horsly

59. hypocritely

60. immarcescibly

61. immerited

62. immixed

63. immundicity

64. immutate

65. impalatable

66. impeccancy

67. improfitable

68. impune

69. incedingly

70. inchangeability

71. incicurable

72. incidently

73. incito-motory

74. incivilly

75. inconsumptible

76. incontracted

77. incultivated

78. indepravate

79. indesirable

80. indetermined

81. indignly

82. indisputability

83. indisputed

15

84. ineptly

85. inequable

86. inexpectedly

87. inexpectedness

88. infashionable

89. influxious

90. ingrately

91. innocuity

92. inquietness

93. insociably

94. insomnolence

95. insuitable

96. intaminated

97. intempestively

98. intranquillity

99. intumulated

100. invious

101. irefulness

102. irrelavance

103. jemminess

104. joyancy

105. loathliness

106. manageless

107. mistakenness

108. mistakingly

109. molliently

110. mononomial

111. narre

112. neer

113. nemertian

114. nemertid

115. ner

116. nerre

117. nocently

118. nourishingly

119. operosity

120. parcity

121. perplexly

122. pertinately

123. physnomy

124. plumbage

125. polylogy

126. populosity

127. prisonment

128. prosodiacally

129. proteinous

130. proventricle

131. quartzous

132. quibblingly

133. redempture

134. repentless

135. restiffness

136. revengeless

137. rh/tian

138. romanticly

139. roomily

140. salutiferously

141. sappare

142. scathless

143. sleightly

144. sortment

145. spaky

146. spastically

147. sperage

148. spitously

149. sportability

150. submissness

151. supermaxillary

152. superspinous

153. supinity

154. syndactylic

155. synonymally

156. tediosity

157. temporaneous

158. tentifly

159. thankly

160. thereology

161. tickleness

162. tireless

163. unafiled

164. unaquit

165. unartistic

166. uncautiously

167. uncharity

168. uncontrovertibly

169. undampned

170. undwellable

171. unkindliness

172. unperishably

173. unshaked

174. unsisting

175. untangibly

176. unusuality

177. urceolar

178. vinolency

179. volupty

180. wistly

181. wonderly

16

A.2 Two-vertex components

1. anguineal anguineous

2. indissolubleness indissolvableness

3. intempestivity untimeliness

B Most frequent words

Word Indegree
of 68187
a 47500

the 43760
or 41496
to 31957
in 23999
as 22529

and 16781
an 14027
by 12468
one 12216
with 10944
which 10446

is 8488
for 8188
see 8067

from 7964
being 6683
who 6163
that 6090

17

