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ABSTRACT
In this paper, we show how Web feeds can be used to archive
Web pages that contain temporal data objects, such as blog
posts or news items. We use RSS or Atom feeds to extract
these Web objects and to detect change in the context of an
incremental crawl. We first describe some statistics on Web
feeds, by studying the evolution of a collection of feeds for
a period of time and observing their temporal aspects. For
detecting change on crawled Web pages that have a Web
feed associated, we present an algorithm that extracts the
information of interest (the data object), with the aim of
analyzing changes effectively, without being tricked by possi-
ble changes in the surrounding boilerplate. Our algorithm
applies a bottom-up strategy on the HTML DOM tree and
uses n-grams extracted from the title and the description of
a feed item to match conceptual leaf nodes in the HTML
page. These conceptual nodes will be clustered in function
of their lowest block-level common ancestor. The resulting
block-level nodes will correspond to semantic zones in the
Web page, and by taking the one that is the most seman-
tically dense, the algorithm identifies the node that acts
like a wrapper for the article. We extract then the textual
content and the references of the article from this node and
encapsulate the result in a timely unit. Experiments are
done in order to validate our approach, with good results
even for pages for which the extraction of the main content is
a challenge to other techniques. We finally discuss important
applications based on the extraction and change detection
of Web objects.
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1. INTRODUCTION
Web archiving [10] is the process of repeatedly collecting

the content of parts of the World Wide Web, to ensure its
preservation and to allow access to the information even
after it disappears from the Web. A Web archiving crawler
follows the same basic steps as a search engine crawler does
to construct indexes for Web pages. However, an archive
crawler does not drop indexes to old versions when new ones
are discovered, but instead stores and references versions
in time. The final result is a collection of Web pages that
can be browsed off-line and, in ideal settings, can as well be
temporally and semantically queried.

Performing a coherent crawl of sites that are updating
their supply of information very rapidly it is not an easy
task. The common choice of crawling in snapshots, i.e.,
crawling the entire collection at distant (but frequent enough)
intervals of time, can be quite expensive in terms of network
bandwidth, and in the end, both redundant for some zones
of the site, and incomplete for other zones that are more
dynamic. Additionally, as running an integral crawl takes
time and in the meanwhile the resource might change, it
raises issues of temporal incoherence of a given snapshot [18].

What “frequent enough” means is also to be clarified when
one decides to perform an incremental crawl instead, which
is better adapted to sites that have temporally heterogeneous
parts in their structure. An incremental crawler will crawl
once a full version of the site and, from that point, supposing
the existence of a trigger that informs the crawler which
content of a site has been added or updated, it will crawl only
the modified content and store it as a delta data structure.
The difficulty of performing an incremental crawl is essentially
to determine this dynamics (how often new Web pages are
added or current ones are modified), and to make this change
detection effective, knowing that there are a lot of factors
that can wander the focus of the detection process.

Our contribution is mainly related to techniques that can
be used to improve this detection process, in the particular
case where the Web pages crawled have semantic and tem-
poral information attached to them, in the form of RSS or
Atom Web feeds. We also propose a method that can be
used to attach more semantics to Web archives, through the
extraction of data objects (e.g., blog posts, new items) from
Web pages.

The traditional way of detecting changes between two suc-
cessive versions of a Web page is to perform a comparison
on content, using a similarity metrics, varying from hashes,
content signatures to edit distances for flexibility. What-
ever the way the change is detected, the importance of this



change (regarding the types of content of a Web page) is not
evaluated. Nevertheless, it is crucial to understand whether
changes are relevant to the main content of the Web page
from a semantic point of view, since, in some applications,
changes that only impact boilerplate [7] parts of the page,
such as menus, presentation templates, or advertisements,
might be safely ignored.

Web feeds have been poorly studied, yet are a rapidly
evolving phenomenon. We draw attention to the fact that
they can be used as instruments in the analysis of a Web
site before and during the crawl. In addition to being a
way to advertise content, Web feeds are also used to classify
sources of information and their types of content by search
engines. In a nutshell, from Web feeds important aspects
of a dynamic website can be extracted and exploited in the
context of a Web crawl in order to make it more aware of
the information it treats.

The nature of a feed is:

informative: it synthesizes what and when fresh informa-
tion is published by a channel;

descriptive: it describes what kind of new resources are
added, with the title, description, and other possible
tag elements.

We aim at extracting, with the help of feeds, structured
data from Web pages. The basic intuition behind our ap-
proach is that an item of a channel matches a data object in
a Web page. Therefore, the metadata that we can get about
the item in the feed can be used to recognize and extract the
data object in the Web page.

The notion of data object has different interpretations in
computer science; in order to clarify its signification, in our
context a data object is an instance of a resource referenced
by a feed, and which has some special properties [8].

Even if the object is often a Web article, it can also be
a dictionary entry, a comment, a forum message, a video,
a status, and any other kind of resources that are uniquely
associated with Web feed items. Direct approaches to iden-
tifying the main content of a Web page, such as taking the
elements containing the largest amount of information from
the HTML code after cleaning, studying the density of the
text in specific regions of the page [7], or even identifying
the most prominent visual areas of the page [21], are not
applicable here, since data objects can very well correspond
to small, simple, portions of a page, with one or multiple
data objects per page, depending on the context.

We leverage the semantics that is brought by Web feeds
to dynamic Web pages. Written in a XML-like form, with
standard elements, feeds can be used to capture some im-
portant aspects of the information that we want to extract.
Moreover, a feed captures the dynamics of a data object, and
reveals its nature. We get from the structure of a feed item,
using classical information retrieval techniques, a semantic
descriptor of the object that will be used as an input for the
extraction algorithm. Next, we identify the zone in a Web
page that contains the data object and extract it by means
of semantic density analysis. Having extracted the content in
time and its associated components, complex queries can be
run, from the temporal and semantic point of view. Value-
added applications can be imagined for users and archivists,
services that could exploit the semantics and temporality of
the data objects extracted and incrementally crawled.

We present in the next section some related work, and
describe in Section 3 the results of our studies on Web feeds
done in order to determine the value of these feeds in the
Web archiving process. We explain in Section 4 how the
semantics revealed by specific elements in a feed can be used
to extract data objects. In Section 5, experiments relative
to the extraction of data objects are shown. We conclude by
outlining the importance of feed timestamps and extracted
data objects in the context of an incremental crawl.

2. RELATED WORK
Web archiving, seen as a necessity or duty, is acquiring a

lot of importance lately due to the volatile nature of the Web,
and more specifically due to the value that the lost informa-
tion could have for future generations. Internet Archive [6] is
one of the initiators of the Web archive movement. In spite
of the fact that there are many other actors that actively
run crawls as part of their heritage preservation mission, the
collective effort is not convergent into a unified, global Web
archive collection.

Though Web feeds are typically indexed as other kinds
of Web documents by archive crawlers, limited effort has
been made on exploiting their specificity in the archiving
process. ArchivePress, a blog-archiving project [14] has been
developing a Wordpress plugin that archives posts using Web
feeds. The principal drawback is that only the content that
can be delivered by the RSS feed is captured. In effect,
an RSS feed can have a full coverage of the article and its
media files, but this case is quite rare because a feed is often
just a way of advertising content. The essential difference
with our approach is that we harness the feed clues with
the sole goal of identifying semantic and temporal attributes
of posts and then use this feed data to extract the actual
objects associated. Additionally, we do not limit ourselves
to a blogging platform in particular.

The extraction of data objects is meant to be useful in
the task of Web page change detection. In order to detect
and store only the modified content of a Web page, the
open-source Heritrix archive crawler [16] uses heuristics and
regular expressions to filter irrelevant changes, in the attempt
to fairly estimate the Web page change rate. A more formal
model of prediction is studied by Cho and Garcia-Molina
in [2], where the authors study whether changes of a Web
page follow a Poisson process, and estimate the change rate
using this model. However, accurately identify the change
rate is stated by both approaches as a challenge. In contrast
with our method, none of these techniques takes into account
the semantic of the content that is to be crawled.

Even if we consider the change rate issue solved, the prob-
lem of clearly identifying the fresh content published from a
version to another remains. Supposing they have acquired
two successive versions by using some technique for detecting
Web page change, Pehlivan, Ben Saad, and Gançarski [13]
focus on detecting the changes that have occurred in the new
version, based on the old one. For that purpose, the VIPS [21]
algorithm is used to identify semantically related parts of a
Web page, which are compared in order to detect structural
and content changes. Heuristics on the visual appearance of
a Web page are made to group together content that seems
to have similar importance in the page. These heuristics do
not always work or they are not sufficient, and the algorithm
is computationally expensive. We restrict ourselves to the
context in which feed information is available and, in this



case, are able to identify the data that has been added or
updated. Moreover, we focus our attention on changes that
occur in the area that matches the content of the Web feed
item, without digression to other zones in the Web page.

We can identify the data object by using the feeds, but still
we have to extract it from the HTML code of the associated
Web page. Much work has been done on unsupervised extrac-
tion of structured data from Web pages; many of these are
based on MDR [9], ExAlg [1] or RoadRunner [3]. Basically,
these methods try to automatically generate a wrapper by
inferring a grammar for the HTML code that contains the
content of interest (generally called data records), in such a
way that it does not rely on any a priori knowledge about
the target pages and their contents. Usually, various pages
that have the same template are needed in order to compare
them in pairs and discover shared patterns and code regu-
larities. These regularities are discovered either by studying
the similarities and dissimilarities between pages [3], or by
constructing classes of equivalence [1]. As opposed to the
previous works, MDR [9] considers the DOM tree structure
of the HTML page, and identifies the data region by finding
the node that contains the largest number of children pre-
senting the same patterns according to a similarity measure.
Even though we are concentrating our attention on sites that
contain Web articles, that are not necessarily consecutive
in the way they appear in the Web page, we have a similar
problem of extracting structured data (possibly of a more
complex and isolated nature than in these approaches) and,
as described in Section 4, we use somehow related techniques.

Two other approaches to the problem of extracting the
main article from a Web page have been proposed recently
by Kholschutter, Fankhauser, and Nejdi [7] and Pasternack
and Roth [12]. While [7] uses the text density on the page to
identify the data region, [12] uses a subsequence segmentation
technique on the text in the page to the same effect. Our
algorithm of data object extraction uses, similarly to MDR,
some heuristics on the HTML code in order to identify the
region where the article might be found, but in contrast
with all enumerated approaches, we use additional semantics
retrieved from the feed to extract the data objects. This
is obviously possible only for pages who are linked to a
Web feed. In Section 5, we compare our results to those of
the Boilerpipe [7] algorithm, seen as a baseline of what can
be done without exploiting Web feed information. To our
knowledge, there is no previous work that leverages semantic
information about the data objects present in a Web page
(information that may come from a Web feed or from any
other source) to extract the relevant portion of the Web
page, and this portion only, in a general and unsupervised
manner.

3. WEB FEEDS: STATISTICS AND TRENDS
In order to affirm the value of feeds as analysis tools in

the process of Web change detection, we have crawled over
a period of a little more than one month, twice a day, a
number of 400 Web feeds with all associated Web pages. We
first describe how these feeds were selected and then report
some statistics of interest of our dataset.

3.1 Acquisition
The set of feeds was collected from the Web by passing in

large part through a feed search engine called Search4RSS [15].
This search engine returns a number of feeds and associated

Table 1: Dataset feed types
Type Number Proportion
Atom 21 6.1%
RDF 30 8.8%
RSS 0.91 1 0.2%
RSS 2.0 288 84.7%
Total 340 100.0%

channel pages for a given keyword. We scraped the way the
interface returns the results as records and put all URLs
parsed in a file list to be further analyzed.

The keywords chosen in order to probe the search interface
are names of domains: art, biology, environment, medicine,
science and universe. We have used Wordnet in order to get
hyponyms of these words (for example for art, a hyponym is
photography) and constructed a bag of terms representing
subdomains.

These bags of terms were used to automatically probe the
Search4RSS interface and to construct, for each domain, a
list of feed URLs. Semantics of terms permitted us to focus
the search for feeds and to identify Web pages that were
treating a certain subject. The reflection in the media of
domains of interest can be observed through the eyes of feeds
captured in this way, that may present some specific patterns
and characteristics.

The purpose of this selection was to get an insight into the
diversity of feeds, in terms of formats, update patterns, and
varied structures of the corresponding Web pages. Addition-
ally, to ensure coverage of common blog platforms as well as
the more news-oriented results returned by Search4RSS, a
number of blog sites were manually selected from a list of
“best blogs” [17]. We obtained thus a list of about 400 sites
that were systematically crawled (this number ensures cover-
age of the variety of Web feeds, while remaining manageable
without any involved archiving infrastructure). At the end
of the crawling period, we noticed that some of the feeds had
not been updated at all, some others had disappeared, and
some could not be parsed. Filtering them out, we obtained
an archive of 340 active feeds and their associated pages.

A Web feed refers to a primary Web page, the channel,
which is usually either the home page of the site, or a hub
from which we can find links to information presented in the
form of Web articles. The rest of the feed describes individual
feed items corresponding to new or updated articles. For
each domain, for each followed site, we have stored the feed
and the resources associated, mainly the channel page, and
the Web pages that were referred to by each item. In order
not to lose new items that could be added in the feed, these
crawls were performed twice a day (in addition to the crawls
of the same feeds run daily by European Web Archive).

3.2 Web feed characteristics
For the feed analysis, we have used Eddie [4], a feed parsing

library for Java, based on a SAX-based parser capable of
parsing even (some of) the real-world ill-formed XML. Eddie
supports the standard RSS, Atom, and RDF formats for
feeds. The FeedData structure returned by this parser can
be exploited to extract all kind of useful information about
the channel and the composing items. In particular, for the
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Figure 1: Number of items per feed in the dataset

channel, metadata like language, tagline, description and
title; as well for each item, plus author and categories in
which the article is classed.

Feed type. Let us first look at the types of feed formats
that we encountered in our dataset. As shown on Table 1,
most feeds use the 2.0 dialect of RSS, while a minority use
Atom or RDF. RSS 0.91 was only used once among the 340
feeds, and RSS 1.0 never at all, which might suggest the
coming obsolescence of these two feed formats. However, it
is quite possible that these numbers are also biased by the
use of Search4RSS as our main source for feeds.

Number of items. We have looked at the number of items
that were presented in a given feed. Indeed, though it is
theoretically possible for a feed to refer to all previously
published items, it is rarely done so to limit the size of the
resulting Web feed. In effect, most feeds are truncated and
present only the k most recent items for a given k. We show
in Figure 1 a histogram of the number of items per feed in
the dataset. Roughly 75% of the feeds present information
about less than 30 items at a time. The other peaks observed
in Figure 1 are explained by the “magic” values of k = 50
and k = 100. If a feed only contains 10 items (the most
frequent number), it means that by crawling it twice daily,
we could capture a maximum of 20 new articles per day.
As we shall see, there is a minority of feeds with a higher
update frequency than that, for which some of the updates
were missed in our crawl (basically, these feeds needed to be
crawled more often than twice a day).

Temporal information. In the RSS specification (and simi-
larly in other feed formats) temporal information can be given
through the elements lastBuildDate, ttl, and updateFrequency
for the channel, and pubDate and lastModified for items.
From our experiments, we have observed that although pub-
Date is an optional element, it is present in the vast majority
of feeds. This is not the case for the other types of time-
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Figure 2: Cumulated proportion of feeds with a
given quartile value of interval between updates

related elements mentioned above, though lastBuildDate
can be somehow inferred as the publication date of the most
recent item. This observation is important as it shows that
feeds can be used to determine when new data is added to a
channel and of help in the task of change detection. By doing
the analysis of a feed for a period of time, we can identify
patterns in the publishing strategy and automatically adapt
the crawl to it.

Update intervals. We have collected all publication dates
corresponding to the items appearing during the period
of experiments; as an item has one publication date, the
number of publication dates is equal to that of items. We
are interested in the range of update intervals between two
publications, as well as indications whether a feed has a
regular publishing strategy. In Figure 2, we present the
median update interval between two publications of each
feed as a cumulative plot (in green, in the middle). Note
that the x-axis has logarithmic scale. Figure 2 shows for
instance that 20% of the feeds have a median update interval
of less than an hour, and that around 10% of the feeds
have a median update interval of exactly one day, which
corresponds to feeds having regular, automatic, updates,
every day. Globally, it is important to note that there is no
typical update interval, and that, even disregarding extreme
cases, it can range to less than a hour to more than a week.
Figure 2 also shows other quantities of the update interval of
each feed, which helps to see the diversity of update patterns
for a given feed: thus, even though 60% of the feeds have
a median update interval of a day or less, less than 10% of
them always have at least an update per day, and more than
90% of them have at least had a daily update in the period of
observation. There is actually a big gap between the median
update interval values and minimum and maximum values,
which makes difficult to predict the next update of a given
feed.



Table 2: Feed statistics per domain

Domain Number
of feeds Average mean update interval Pooled standard derivation

of update interval
Art 87 12 days, 14 hours, 12 min 82 days, 6 hours, 32 min
Biology 80 7 days, 13 min 8 days, 17 hours, 43 min
Blogs 29 15 hours, 35 min 8 hours, 39 min
Environment 7 19 hours, 49 min 4 days, 15 hours, 18 min
Medicine 8 3 days, 19 hours, 16 min 1 day , 22 hours, 43 min
Other 13 4 days, 16 hours, 48 min 4 days, 19 hours, 46 min
Science 112 22 days, 12 hours, 45 min 14 days, 21 hours, 35 min
Universe 4 4 hours, 44 min 7 hours, 5 min
Total 340 12 days, 15 hours, 17 min 37 days, 16 hours, 49 min

We show in Table 2 some other statistics on update inter-
vals at the level of domains. For each domain, the average
mean update interval is given, as is the pooled standard devi-
ation of update intervals, which is the statistically-founded
way to summarize the deviation of the union of series of
numbers. As can be seen, there are huge variations among
domains, another indication of the absence of typical update
interval. We also note here the very high standard devia-
tions in some domains1, especially since a given domain can
represent Web sites of very different natures (news items,
blogs, wiki entries, etc.). In the art domain, for instance,
we have observed that there are several sites that publish
small articles about paintings or photographs of the order
of 100 entries per day. So the notion of item varies from
a specialized article, that might contain a lot of text (as
it is the case for news), to an article exclusively composed
of images or videos. The more structurally homogeneous
category of “popular” blogs has a more reasonable deviation
of update intervals.

We conclude here the study of the dataset, that reflects
in a certain measure the status-quo and diversity of Web
feeds, to turn to the discussion to our technique of Web data
objects extraction.

4. DATA OBJECT EXTRACTION
We describe in this section our algorithm for finding the

data object in a given Web page, object that corresponds to
a Web feed item.

4.1 Gathering semantic information
We first construct a semantic context from feed items, that

will serve to extract the corresponding object. Feed items
have three compulsory elements: link, title and description.

Link.
The link gives us the URL of the Web page in which the

data object resides.

Title.
A feed item is required to have a title, which is usually a

short textual description. This title will appear also as the
title of the data object. To identify the data object, trying to

1Note that it is not impossible for a standard deviation to be
much greater than a mean value, it just means that there are
a few values much greater than the mean in the distribution.

search for the exact same title in the Web page can work, but
the effectiveness of this technique is limited, as it represents
a naïve approach, especially when the title is quite short or
the actual sequence of words can be found also in other zones
of the Web page.

Description.
The item’s description can be of great help when the title,

for various reasons, is not enough. Most of the time, the
description does not contain the whole content of the data
object, but only the first few lines of the article, encoded
in HTML for presentation purposes, with a link at the end
(“Read more. . . ”) to the original article. In other cases, the
description contains only a sentence, which summarizes the
article rather than containing the first lines of it. Whatever
the precise case, we can extract some reliable knowledge
about the data object by exploiting this description.

We start by retrieving all textual content from the title and
description; the HTML code of the description is stripped,
only text is kept. The result has the form of sequences of
words that will be used to build the semantic context of a
feed item.

The sequences of words are transformed next into two
kinds of semantic entities: concepts and n-grams.

To obtain the concepts, we tokenize and stem the words,
sort the resulting lexemes according to their frequency (seen
as a measure of their importance) and keep only outstanding
ones. In a sense, a concept will resemble a tag, being a
term that describes a data object. We also retain the terms
that correspond to these concepts (or to a part of them, if
their number is greater than the necessary for extraction),
in the precise way they appear in the title and description.
These terms coming from concepts can indeed be used as
keywords to look for in a Web page, in order to identify the
data object region, but can frequently digress the attention
to other zones that are also rich in concepts, like the ones
that contain comments or tags for a given news article.

This is the reason why we turn our focus to n-grams. A
n-gram represents in our context a sequence of n terms,
taken as they appear, from the title and the description. The
choice for n is a compromise between false positives and false
negatives in the extraction process and it is further discussed.

4.2 Extraction
We present here a bottom-up algorithm that, given a feed

item and the associated Web page, finds the wrapper element



of the data object by matching n-grams of the semantic
context against the textual content of the leaf nodes extracted
from the HTML Web page. This algorithm is summarized
in Algorithm 1. Our algorithm relies on the assumption that
a data object is encoded as a contiguous zone of (partially)
formatted leaf nodes that contain either text or references
(anchors and images).

We first introduce the notion of conceptual node:

Definition 1. A conceptual node is a leaf node (a node
with no children) that contains in its textual content at least
one element (concept or n-gram) from the semantic context.

We extract all leaf nodes of the page and, for each, establish
its semantic density.

Definition 2. The semantic density of a conceptual node
is defined as the number of matched concepts or n-grams,
divided by the length of the textual content of the respective
node.

We classify the conceptual nodes according to the closest
ancestor that is a block-level element. An effective heuristic
is actually to take the closest ancestor that is a div element,
since we have observed in our experiments that data objects
are almost always confined in a div element. After this
analysis, we are able to say which are the conceptual nodes
that share the same ancestor.

The list of ancestors will give us the semantic zones of the
page, modeled at code level by semantic nodes.

Definition 3. A semantic node is the lowest block-level
common ancestor of a set of conceptual nodes.

In order to clarify which of the semantic nodes represents
the wrapper of the article, we calculate the following semantic
density measure for each and take the node that has the
largest value for it.

Definition 4. The wrapper node of the data object is
the semantic node that contains the largest number of dense
conceptual nodes.

In the previous description, we have allowed the use of
either concepts or n-grams for finding conceptual nodes and
computing semantic density. When matching with terms
that correspond to concepts, the number of semantic zones
will increase, while doing the matching with n-grams will
visibly increase the possibility of having just one ancestor as
result, the one that represents the wrapper for the article.

This happens because n-grams are more significant than
concepts, relative to the data objects. Nevertheless, in certain
cases, the choice of n-grams is too restrictive. This happens
quite rarely, when the semantic context is too limited or
when it comes from a description that is summarizing the
article with different words, rather than representing the first
lines of it. Consequently, in order to detect this kind of cases,
we introduce the notion of semantic node consistency.

Definition 5. A node is semantically consistent if its
text contains a large proportion of the concepts acquired from
the semantic context.

We say a “large” proportion (in practice, ≥ 0.5) of concepts
because it is not necessary to check for the presence of all

Input: a URL of a Web feed feedUrl
Output: extracted data objects dobs
feedData = getFeedDataStructure(feedUrl);
items = feedData.getItems();
foreach item in items do
dob.created = item.getPubDate();
semanticInput = item.getTitle() +

cleanHTMLtags(item.getDescription());
tokens = tokenize(semanticInput);
terms = rejectStopWords(tokens);
normalizedTerms = applyStemming(terms);
tags = setFrequencyAndFilter(normalizedTerms);
dob.descripTags = tagConcepts;
3grams =

getSubsequencesOf3Tokens(semanticInput);
articlePage = item.getLink();
cleaned =

getCleanedHTMLCodeFrom(articlePage);
leafTagNames =
cleaned.evaluateXPath(”// ∗ [not(∗)]/name()”);

foreach leafType in leafTagNames do
leafNodes =
cleaned.getElementsByName(leafType);

foreach leafNode in leafNodes do
nbOfSemanticMatches =
leafNode.nbMatches(3grams);

if nbOfSemanticMatches ≥ 1 then
conceptualNodes.put(
leafNode, nbOfSemanticMatches);

end
end

end
foreach cnode in conceptualNodes do

while cnode isNotA block do
ancestor = cnode.getParent();

end
semanticZones.add(ancestor);

end
foreach ancestor in semanticZones do
nbConceptualNodes =

intersectionSize(
ancestor.descendant(),conceptualNodes);

semanticDensitySum[ancestor] =∑nbConceptualNodes
n=1

cnode.nbOfSemanticMatches
cnode.textualLength

;
end
wrapperNode = the ancestor with the biggest value

for semanticDensitySum ;
if wrapperNode != null (matches at least a 3-gram)
then

while wrapperNode
doesNotContainsEnoughConcepts do
wrapperNode = wrapperNode.getParent();
if wrapperNode is the root then
wrapperNode=null;
exit the while;

end
end
if wrapperNode != null then
dob.setFullTextAndReferencesFrom(wrapperNode);

end
end
if dob.object is not set (wrapperNode was null)
then

repeat the operation by using this time random
terms coming from the concepts

end
dobs.add(dob);

end
return dobs

Algorithm 1: Data Object Extraction



of them in order to assert a wrapper node. On the other
hand, when the candidate ancestor node does not contain
half of the semantic context, we might suspect that it is not
the wrapper of the article. If this happens, we conclude that
the n-grams were not appropriate due to imperfection of
the semantic context, and therefore we can diminish the n
of n-grams and repeat the method of getting the wrapper
node. In our experiments, we start with n = 3 which gave
best results, and, in case of failure, directly tried matching
with concepts. In general, data objects (news articles, blog
posts) have comments associated. Our technique aims at not
including the comments in the resulting data object because:

1. from a conceptual point of view, the information of
interest in an article is not the same as comments about
it;

2. the crawl of the article should be separated from the
crawl of the comments: if each time a comment is added,
the article is considered to be changed, a new crawl is
needed and the resulting object can be very redundant
in comparison with its previous version; instead, the
article should have a reference to its comments, tracked
separately and synchronized on update;

3. usually, the webmaster takes care to add in the feed
the URL that can be used to track comments, but
when it is not the case, we can still identify the zone
of comments by using heuristics in our algorithm.

5. EXPERIMENTS
In order to prove the validity of our approach for extracting

data objects, we have fully implemented the system and
performed experiments in order to evaluate its precision.

The experiments were done using the feeds collected as
responses from the Search4RSS engine, the same dataset
mentioned in Section 3. Recall that the dataset was quite
diversified, in terms of structure and types of data objects.

For each feed, we have retrieved the channel data structure
and applied the method of extraction for all of its item
components.

As a first test, we have tried to return the zone of the Web
page associated with the item where the item title could
be found exactly as it appears. This method was giving
poor results, however, for several reasons: the title may not
fully match due to encoding characters, or it may appear
at several different places in the page. Additionally, given
only the location of the title, and its levels of imbrications in
blocks of the HTML code, it is not an easy task to identify
the limits of the whole data object.

We compare now the performance of our algorithm, i.e.,
the precision of extracted data objects, to Boilerpipe [7]
which constitutes a state-of-the-art method for identifying
the main content of a page in the absence of extra semantic
information. We stress that, as we use more information
than Boilerpipe has access to, obtaining a better precision
does not diminish the interest of this approach, which is
more general.

We observe that our result is often more precise, because
we are not simply considering the text density in the Web
page, but rather its semantic coherence according to the
item. There are cases where a node may contain a lot of text
but may be judged as worthless with respect to our semantic
density measure. Moreover, note that when the Web page

Table 3: Experimental results
Method Correctly extracted Precision
Our technique 1038/1314 79.0%
Boilerpipe 821/1314 62.5%

contains various consecutive articles, our method will make
the difference between them and identify the specific article
that corresponds to an item. In contrast, Boilerpipe will take
the textual content of all the articles or just of the densest
one, depending on the case.

The experiments were performed for 60 randomly selected
sites from the dataset in the art domain (the first one), corre-
sponding to a total of 1314 feed items. We manually checked
the Web article, the result of our algorithm of extraction and
that of Boilerpipe [7]. We only compare the textual result of
the extraction because it is the output of the freely usable
Boilerpipe implementation2. Our method actually extracts
the whole content of the identified zone, including links and
images.

Numerical results are given in Table 3. We consider an
object as correctly extracted when its text is exactly that
of the gold standard, obtained by manual annotation of the
Web page. Partial matches are disregarded. The overall
precision of the algorithm reaches the satisfactory number
of around 79%, compared to the 62% precision obtained by
Boilerpipe.

Finally, note that when our technique fails, the algorithm
actually manages to identify a richer conceptual zone that
the one of the data object, which is still relevant to the
article, even though not strictly identifying with it.

6. DISCUSSION OF APPLICATIONS
We conclude this article by discussing a number of appli-

cations that can be integrated in the Web archiving process,
and which use the data object extraction approach we pro-
pose.

Perenniality of Web archives. Time is a particularly im-
portant factor of influence also for interpreting crawled con-
tent. While data might remain intact, the way we understand
it and the rendering of it changes, mostly due to the fact
that the language itself, the culture and the technological
means of expression evolve. One of the most serious problems
encountered in Web archiving is when the format of crawled
data becomes obsolete or not generally used. The solutions
given by the authors of [5], [20] and [19] are software or
hardware emulation, migrating content, or to include a proxy
that will incorporate format translating capabilities and will
do this dynamically, at user request or when the need is
detected. While these works are trying to fight technology
evolution, it is possible to take the opposite approach: adapt
data to existing technology. In order to do this, one can imag-
ine to encapsulate the relevant information of the crawled
Web page, and to store the resulting object independently of
the original encoding format. In this manner, the fact that
technology evolves will not be anymore something to resist
against, instead it will enhance the possibility of rendering
the existing data in new ways, adapting the actual content to

2http://code.google.com/p/boilerpipe/



preferences. The extraction of data objects that we highlight
in this paper is a first step towards storage of information
freed from the specific way of encoding.

While it can be argued that for Web archiving the original
form of a Web page matters, this is more related to the
requirement of placing the actual data in its correct context.
We note that our goal is not to try to change the current
ways of storing the archived content, but for the cases in
which it works (dynamic data with feed associated), some
interesting overlay applications can be created for the people
using the collection or for the archivists themselves. The
extraction of data objects in the context of Web archiving
is closely related to the semantic analysis of content in time
and the possibility of providing value-added services. Indeed,
what can very useful is to be able to run complex queries
over the content, add interactivity and facilities to target
consumers of the information presented as a Web archive.

Reconstruction of Web pages. Recall from Figure 2 that
Web pages associated with Web feeds can have very lively
dynamics, in some cases with update intervals of the order of
the minute. In these conditions, it becomes unreasonable to
try and capture every successive version of the corresponding
channel Web page. However, since the Web feed keeps
reference to a number of items (and, hopefully, a rather
large number for such a lively channel), it is still possible
to regularly crawl and archive it. In the cases where (most
of) the content of each data object is stored in the Web
feed, one application of the data extraction technique can
be the reconstruction the Web page at a given point in time
using the crawled Web feed items and references to template
elements, inferring thus a version of a Web page that had
not actually been crawled in the classical way.

Moreover, using our algorithm (and possibly some heuris-
tics), we can detect not only the DOM node that contains the
article, but also other semantic nodes of the page: the ones
that contain the comments, categories or tags. These zones
can be mined for textual content and references, and stored
independently of the template of the page (that consists
basically of everything that remains after the extraction). A
relation between the resulting components can be recreated
or inferred using the semantics, and used to analyze these
components. We could as reinvent the way information is
rendered by mixing the objects (in mashups) to adapt to
user preferences.

Figure 3 depicts the flow of a demonstration scenario
pertaining to this reconstruction of Web pages from data
objects, as described in [11].

Crawling and semantic exploitation of archives. Finally,
we want to briefly recall two other applications, already men-
tioned earlier in this paper. Firstly, it is possible to use the
data object extraction technique for change detection. Using
a technique of temporal analysis on feeds similar to the one
presented in this paper, we can determine the strategy of
publishing of the channel that represents the dynamic part of
the website. Having this awareness, we can adapt the rate of
crawl to the approximated frequency. Moreover, for already
crawled articles, we can detect if a new version has appeared
in order to crawl it or not. This can be done by applying the
algorithm of data object extraction on the crawled article
and on the possibly new version of it (the current Web page).
By comparing the resulting data objects referring to the
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Figure 3: Application for reconstructing Web pages
from data objects

same URL, we can see if a change in the text or references
has occurred in the intervening period of time. Secondly, a
Web archive that contains data objects (maybe in addition
to Web pages) can be used by analysts more effectively than
just an archive of Web pages. For instance, a linguist could
focus on the new terms that appear in newspaper articles,
without bothering about the terms that appear in the com-
ments. Generally, the aim is to add exploitable meaning and
temporality (at finer-grained levels) to collections of Web
archives, that can become more expressive and adapted to
user needs.
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