Probabilistic XML: Models and Complexity

Benny Kimelfeld and Pierre Senellart

Abstract. Uncertainty in data naturally arises in various applications, such as data
integration and Web information extraction. Probabilistic XML is one of the con-
cepts that have been proposed to model and manage various kinds of uncertain data.
In essence, a probabilistic XML document is a compact representation of a proba-
bility distribution over ordinary XML documents. Various models of probabilistic
XML provide different languages, with various degrees of expressiveness, for such
compact representations. Beyond representation, probabilistic XML systems are ex-
pected to support data management in a way that properly reflects the uncertainty.
For instance, query evaluation entails probabilistic inference, and update operations
need to properly change the entire probability space. Efficiently and effectively ac-
complishing data-management tasks in that manner is a major technical challenge.
This chapter reviews the literature on probabilistic XML. Specifically, this chapter
discusses the probabilistic XML models that have been proposed, and the complex-
ity of query evaluation therein. Also discussed are other data-management tasks like
updates and compression, as well as systemic and implementation aspects.

1 Introduction

Data managed by modern database applications are often uncertain. A few ex-
amples are the following. When information from different sources is conflicting,

Benny Kimelfeld

IBM Research—Almaden

San Jose, CA 95120, USA

e-mail: kimel feld@us.ibm.com

Pierre Senellart

Institut Télécom; Télécom ParisTech; CNRS LTCI

Paris, France

e-mail: plerre.senellart@telecom-paristech. fr

Z.Ma & L. Yan (Eds.): Advances in Probabilistic Databases, STUDFUZZ 304, pp. 39-[66
DOI: 10.1007/978-3-642-37509-5 3 (© Springer-Verlag Berlin Heidelberg 2013

kimelfeld@us.ibm.com
pierre.senellart@telecom-paristech.fr

40 B. Kimelfeld and P. Senellart

inconsistent, or simply presented in incompatible forms, the result of integrating
these sources necessarily involves uncertainty as to which fact is correct or which
is the best mapping to a global schema. When data result from automatic and im-
precise tasks, such as information extraction, data mining, or computer vision, it is
commonly annotated by a score representing the confidence of the system in the
correctness of the data. When data are gathered from sensor networks, they come
with the inherent imprecision in the measurement of sensors. Even when data is gen-
erated by humans, they are not necessarily certain: diagnostics of diseases stored in
a hospital database are affected by the imprecision of human judgment (in addition
to that of the diagnostics themselves). This ubiquity of uncertain data is all the truer
when one deals with the World Wide Web, which is a heterogeneous collection of
data that is constantly updated by individuals and automated processes.

Data uncertainty is often ignored, or modeled in a specific, per-application man-
ner. This may be an unsatisfying solution in the long run, especially when the uncer-
tainty needs to be retained throughout complex and potentially imprecise processing
of the data. As an example, consider sensor data being gathered in a database, mined
to extract interesting patterns, annotated by human experts, then integrated together
with the result of other such analyses, independently made. Each of these steps, from
the initial collection to the final integration, should be aware of the uncertain char-
acter of handled data; furthermore, each of these steps may even introduce further
uncertainty. The goal of uncertain data management is to provide a unifying frame-
work and a unifying system to handle the semantics of uncertainty, in the database
itself. This goal is in line with the motivation behind DBMSs themselves, which
were proposed in the 1970s as a uniform solution to the problem of managing data,
while replacing previous systems that were tied to particular applications (e.g., ac-
counting, cataloging, etc.).

Naturally, there are various ways to model uncertainty. Examples include repre-
sentation of missing information (from SQL NULLs to more elaborate models of
incomplete data (34]), fuzzy logic and fuzzy sets [@], and the Dempster-Shafer
theory [IE]. In this chapter, we consider probabilistic models that represent prob-
ability distributions over ordinary databases, and are based on the rich mathemat-
ical formalism of probability theory. Of course, quite a few real-life applications
provide data that are probabilistic in nature. Examples include conditional random
fields] (used in information extraction) and statistics-based tasks involved in
natural-language processing [@]. But even when applications do not provide obvi-
ous probabilistic data, they often provide confidence scores that can be mapped to
probability values.

Representing and Querying Probabilistic Databases
A probabilistic database is, conceptually, a probability space over ordinary databases,

each of which is called a possible world [22]. In practice, such a probability space
is obtained by introducing uncertainty about the value (or existence) of individual

Probabilistic XML: Models and Complexity 41

data items. If there are many such uncertain data items, then the number of pos-
sible worlds may be too large to manage or even to store. However, applications
usually make assumptions on the correlation among the uncertain items (e.g., inde-
pendence), and such assumptions typically allow for a substantially smaller (e.g.,
logarithmic-size) representation of the probability space. Hence, from a database
point of view, the goal is to provide a proper language and underlying data model to
specify and represent probabilistic databases in a compact manner (e.g., by building
in the model assumptions of independence).

But a database is not just about storage. A central role of a database is to provide
a clean, easy, and general way of accessing its data (while abstracting away from
the actual implementation). In particular, a database supports a high-level language
like SQL or XQuery. In the context of probabilistic databases, the correspondent
of querying is that of finding events and inferring their probabilities. Hence, we
would like the database not just to “store probabilities,” but to actually understand
their semantics and support inference tasks. The common realization of that [Iﬂ, 31,
, @] is to allow the user to phrase ordinary queries (of the kind she would pose
to an ordinary database), while the database associates each query answer with its
computed probability (i.e., the probability that the answer holds true in a random
possible world).

Finally, another central task of a database is to provide high performance for
the operations it supports (e.g., query evaluation). This aspect is particularly chal-
lenging in the case of a probabilistic database, due to the magnitude of the actual
probability space that such a database can (compactly) represent. As an example,
for query evaluation (under the semantics mentioned in the previous paragraph), the
baseline way of computing the probabilities is through the enumeration of all possi-
ble worlds, which is prohibitively intractable. Hence, we would like the operations
to be performed on the compact representation itself rather than on the possible
worlds. From the theoretical-complexity point of view, we require efficiency to be
under the assumption that the input consists of the database in its compact form;
in particular, “polynomial-time” is in the size of the compact representation, and
not in that of the implied probability space. Not surprisingly, this requirement leads
very quickly to computational hardness [@] (and sometimes even hardness of ap-
proximation [@,]). However, as we discuss throughout the chapter, in the case
of probabilistic XML there are a few important settings where querying is tractable.

There is a rich literature on probabilistic relational databases ﬂﬁ: Eﬁ, @, @, @,
|El|, @]. In contrast, here we discuss probabilistic XML models, which represent
probabilistic spaces over labeled trees. XML is naturally adapted to a number of
applications where data is tree-like, including Web data or natural language parsing,
and we give next specific examples of applications of probabilistic XML models.
Later in this chapter (Section[6.3), we discuss the connection between probabilistic
relational models and probabilistic XML models.

42 B. Kimelfeld and P. Senellart

Probabilistic XML Applications

Following are concrete examples of applications or application areas where proba-
bilistic XML is a natural data model and, moreover, the need to query probabilistic
XML arises.

e XML data integration. Assume that a number of sources on the Web export
XML information in potentially different schemas. To represent the result of the
integration, we need a way to capture the uncertainty in the schema mappings,
in deduplication, or in resolving conflicting information. This uncertainty can be
characterized by probabilistic mappings [26] and probabilistic data integration
rules [@,]. The outcome of the integration process can naturally be viewed as
probabilistic XML (which is useful to query, update, and so on).

e Web information extraction. Extracting information from Web data means
detecting, in a Web page, instances of concepts, or relations between these in-
stances, based on the content or structure of these Web pages. A typical out-
put is therefore a tree-like document, with local annotations about extracted in-
formation. Current extraction techniques, whether they are unsupervised or rely
on training examples, are by nature imprecise, and several possible annotations
might be produced for the same part of the Web page, with confidence scores.
This is for instance the case with conditional random fields for XML [@] that
produce probabilistic labels for part of the original HTML document; probabilis-
tic XML is a natural way to represent that.

e Natural language parsing. Parsing natural language consists in building syntax
trees out of sentences. This is an uncertain operation, because of the complexity
of the natural language, and its inherent ambiguity. Indeed, some sentences like
“I saw her duck” have several possible syntax trees. A parser will typically rely
on statistics gathered from corpora to assign probabilities to the different possible
parse trees of a sentence [@]. This probability space of parse trees can then be
seen as probabilistic XML data [IE].

e Uncertainty in collaborative editing. Consider users collaborating to edit doc-
umentation structured in sections, subsections, paragraphs and so on, as in the
online encyclopedia Wikipedia. In an open environment, some of these contri-
butions may be incorrect, or even spam and vandalism. If we have some way to
estimate the trustworthiness of a contributor, we can represent each individual
edit as an uncertain operation on a probabilistic XML document that represents
the integration of all previous edits ﬂth.

e Probabilistic summaries of XML corpora. Querying and mining a large cor-
pus of XML documents (e.g., the content of the DBLP bibliography) can be
time-consuming. If we are able to summarize this corpus as a compact proba-
bilistic model [6], namely probabilistic XML, we can then use this model to get
(approximations of) the result of querying or mining operations on the original
corpus.

Probabilistic XML: Models and Complexity 43

Organization

The remaining of this chapter is organized as follows. We first introduce the basic
concepts, mainly XML, probabilistic XML, p-documents, and ProTDB as our main
example of a concrete p-document model (Section2)). Next, we talk about querying
probabilistic documents in general, and within ProTDB in particular (Section [3)).
We then review and discuss additional models (Section [4) and additional problems
of interest (Section [3). Finally, we discuss practical aspects of probabilistic XML
systems (Section[@) and conclude (Section 7).

As a complement to this chapter, we maintain an updated list of resources (es-
pecially, a hyperlinked bibliography) pertaining to probabilistic XML online at
http://www.probabilistic-xml.org/.

2 Probabilistic XML

In this section, we describe the formal setting of this chapter, and in particular give
the formal definitions of our basic concepts: an (ordinary) XML document, a proba-
bilistic XML space, and the p-document representation of probabilistic XML.

2.1 XML Documents

We assume an infinite set X of labels, where a label in X can represent an XML tag,
an XML attribute, a textual value embedded within an XML element, or the value
of an attribute. The assumption that X is infinite is done for the sake of complexity
analysis. An XML document (or just document for short) is a (finite) directed and
ordered tree, where each node has a label from X. The label of a document node v is
denoted by label(v). We denote by Dy the (infinite) set of all documents.

As an example, the bottom part of Figure [Tl shows a document d. In this figure,
as well as in other figures, labels that represent textual values (e.g., “car financing”)
are written in italic font, as opposed to labels that represent tags (e.g., “title”), which
are written in normal font. Note that the direction of edges is not explicitly specified,
and is assumed to be downward. Similarly, order among siblings is assumed to be
left-to-right.

2.2 px-Spaces

A probabilistic XML space, abbreviated px-space, is a probability space over doc-
uments. Although we will briefly discuss continuous px-spaces (Section [£.3)), our
focus is mainly on discrete px-spaces. So, unless stated otherwise, we will im-
plicitly assume that a px-space is discrete. Specifically, we view a px-space as a
pair 2" = (D, p), where D is a finite or countably infinite set of documents, and
p: D —[0,1] is a probability function satisfying Y 4cp p(d) = 1. The support of a

http://www.probabilistic-xml.org/

44 B. Kimelfeld and P. Senellart

px-space 2 = (D, p) is the set of documents d € D, such that p(d) > 0. We say that
the px-space 2 is finite if 2" has a finite support; otherwise, 2 is infinite.

When there is no risk of ambiguity, we may abuse our notation and identify a px-
space 2~ by the random variable that gets a document chosen according to the distri-
bution of 2". So, for example, if 2" = (D, p) and d is a document, then Pr (2" = d)
(in words, the probability that 2 is equal to d) is p(d) if d € D, and 0 otherwise.

2.3 p-Documents

A px-space is encoded by means of a compact representation. Later in this chap-
ter, we will discuss the plethora of representation models proposed and studied
in the literature. The basic notion underlying most of those models is that of a p-
document [@,].

Formally, a p-document is a tree & that is similar to an XML document, except
that & has a distinguished set of distributional nodes in addition to the ordinary
nodes (that have labels from X). The ordinary nodes of & may belong to docu-
ments in the encoded px-space. Distributional nodes, on the other hand, are used
only for defining the probabilistic process that generates random documents (but
they do not actually occur in those documents). As an example, Figure [I] shows a
p-document &, where the distributional nodes are the ones represented by boxes
with rounded corners (and denoted by vy, v2, and so on). The words ind and mux
inside those boxes will be discussed later. Each distributional node specifies a prob-
ability distribution over subsets of its children; later on, we will define several types
of distributional nodes (like ind and mux), where each type defines the way these
distributions are encoded. In the probabilistic process that generates a random doc-
ument, a distributional node randomly chooses a subset of its children according
to the distribution specified for that node. The root and leaves of a p-document are
required to be ordinary nodes.

Next, we describe the px-space (D, p) defined by a p-document & by specifying
a sampling process that generates a random document. Note that such a process well
defines the px-space (D, p) as follows: D consists of all the documents that can be
produced in this process, and p(d) (where d € D) is the probability that d is obtained
in this process.

The random document is generated by the p-document & in two steps. First, each
distributional node of & randomly chooses a subset of its children. Note that the
choices of different nodes are not necessarily probabilistically independent. All the
unchosen children and their descendants (even descendants that have been chosen by
their own parents) are deleted. The second step removes all the distributional nodes.
If an ordinary node u remains, but its parent is removed, then the new parent of u
is the lowest ordinary node v of &2, such that v is a proper ancestor of u. Note that
two different applications of the first step may result in the same random document
generated (and for further discussion on that, see]).

Probabilistic XML: Models and Complexity 45

discussion z
message
. // vy
title time (mux follow-ups

*V‘]8.|52675 Oi #@W
mux -
0.4
01 0.9 topic topic 08
~ ;S p p i \

car finansing ~ car financing | | message message
automotive finance P I
title time topic title time topic

RE: car financing 19541 (mux Y4 on financing | finance

F . PN 35416
i d discussion : automotive finance
: | :
MESSAZE &L)
title time topic follow-ups
| [|
car financing | automotive message message
L I B
18526 title time topic title time topic
| [| [
RE: car financing | automotive on financing finance
19541 35416

Fig. 1 A p-document & in PrXM {ind,mux} (top) and a sample document d of &2 (bottom)

A Concrete Model: ProTDB

We now construct a concrete model of p-documents, namely, the ProTDB model [@].
For that, we define two types of distributional nodes. Recall that when defining a
type of distributional nodes, we need to specify the encoding and meaning of the
random process in which a distributional node of that type selects children. In Sec-
tion [we will define additional types of distributional nodes (hence, additional
concrete models).

A ProTDB document has two types of distributional nodes.

e ind: A distributional node v of type ind specifies for each child w, the probability
of choosing w. This choice is independent of the other choices of children, of
either v or other distributional nodes in the p-document.

e mux: A distributional node v of type mux chooses at most one child w (that is,
different children are mutually exclusive, hence the name mux) with a specified
probability for w. We require the sum of probabilities along the children of v to
be at most 1; the complement of this sum of probabilities is the probability that v
chooses none of its children.

Example 1. The top part of Figure [Tl shows a ProTDB p-document 2. The type
of each distributional node is written in the corresponding box. For instance, node
vy is a distributional node of type mux; as shown by the numbers on its outgoing
edges, v chooses its left child and right child with probability 0.1 and 0.9, respec-
tively. Note that the mux node v, chooses none of its children with probability 0.1

46 B. Kimelfeld and P. Senellart

(=1—-0.4—0.5). Finally, observe that the ind node v3 makes independent choices
about its two children; for example, it chooses just the left child with probability
0.8 x (1 —0.4), both children with probability 0.8 x 0.4, and no children at all with
probability (1 —0.8) x (1 —0.4).

In the bottom, Figure [Il shows a sample document d of Z2. Let us now compute
the probability of d. For d to be produced, the following independent events should
take place:

e v chooses its right child. This event occurs with probability 0.9.

e V) chooses its left child. This event occurs with probability 0.5.

e v3 chooses both of its children. This event occurs with probability 0.8 x 0.4 =
0.32.

e v, chooses its right child. This event occurs with probability 0.5.

Hence, the probability of d is given by
Pr(# =d)=0.9%x0.5x0.32x0.5=0.072. ad

We follow the conventional notation [@] that, given k types type,, type,, ..., type,
of distributional nodes (such as ind, mux, and the types that we define later),

nodes only among type;, type,, ..., type,. Hence, under this notation ProTDB
is the model PrXMLIM™t (and for the p-document & of Figure [l we have
P c PrXML{i“d’m“X}). Observe that PrXML{nd:mux} strictly contains PrXML{i"d},
PrXMLI™} and PrXMLY (which is the set Dy of ordinary documents).

3 Query Evaluation

In this section, we discuss a central aspect in the management of probabilistic
XML—query evaluation. In general, a query Q maps a document d to a value Q(d)
in some domain domyg; that is, a query is a function Q : Dy — domg. As an example,
in the case of a Boolean query, domg is the set {true,false}; in that case we may
write d = Q instead of Q(d) = true (and d (£~ Q instead of Q(d) = false). In the
case of an aggregate query, domy is usually the set QQ of rational numbers. Later on,
we discuss additional types of queries.

A px-space 2" and a query Q naturally define a probability distribution over
domg, where the probability of a value a € domg is given by Pr(Q(2") = a). We
usually follow the conventional semantics [@] that, when evaluating Q over 2, the
output represents that distribution. For example, if Q is a Boolean query, then the
goal is to compute the number Pr (2" = Q).

3.1 Query Languages

We now describe the languages of queries that capture the focus of this chapter:
tree-pattern queries, monadic second-order queries, and aggregate queries.

Probabilistic XML: Models and Complexity 47

ff

| | | | |
! . . Lo '
1 [v v i
! discussion ! | discussion ! ! discussion . discussion .
1 [[v i
A l P l |
H [o [H
| message ' . message ' ! message Lo message I
H HE H- o H

i
oo e N TN
1 topic ! topic v topic topic ' time topic
' | Vo | . Vo | | '
1 o H. . N '
1 finance * ' ' automotive finance | | * finance

Fig. 2 Tree patterns

3.1.1 Tree-Pattern Queries

Tree-pattern queries (a.k.a. twig queries [@ ﬁ]), or just tree patterns for short, cor-
respond to the navigational fragment of XPath restricted to child and descendant
edges. Specifically, a tree pattern is a Boolean query that is represented by a tree ¢
with child and descendant edges. In our figures, child and descendant edges are de-
picted by single and double lines, respectively. Each node of the tree ¢ is labeled
with either a label of X or with the special wildcard symbol x (and we assume that
* & X). A match of a tree pattern ¢ in a document d is a mapping u from the nodes of
t to those of d, such that (t maps root to root, child edges to edges, and descendant
edges to paths (with at least one edge); furthermore, u preserves labels of X, that is,
for a node v of ¢, if label(v) # * then label(v) = label(tt(v)). Note that a tree pattern
ignores the order among siblings in a document. (Queries that take sibling order into
account will be discussed in the next section.)

Example 2. Four tree patterns, ¢, . . . , 14, are shown in Figure[2]l Child and descendant
edges are represented by single and double lines, respectively. As in documents
(and p-documents), edges are implicitly directed top down. As specific examples,
let us consider the patterns #; and #4. The pattern #; says that some message in the
document has a topic descendant (where this topic can be that of the message or of
a descendant message) with a child finance. The pattern 4 is the same, except that
it also requires the message to have a time child, and the time child to have a child
(any child, as indicated by %) of its own. O

Tree patterns are often used not just as Boolean queries, but also as queries that
produce tuples of nodes (or tuples of labels). Informally speaking, these tuples are
obtained by projecting the matches to a selected sequence of nodes of the tree pat-
tern. For the sake of simplicity, here we restrict the discussion to the Boolean case.
It is important to note, though, that under the standard notion of query evaluation
for such querie [Iﬁ], evaluating a non-Boolean tree pattern reduces in polynomial
time to evaluating a Boolean one [@].

! Under this notion, the output consists of every possible result tuple a and its marginal
probability Pr(a € Q(.2)).

48 B. Kimelfeld and P. Senellart

3.1.2 Monadic Second-Order Tree Logic (MSO)

A language that is far more expressive than tree patterns is that of Monadic Second-
Order tree logic (MSO). A query in MSO is a Boolean formula over the document
nodes. The vocabulary includes two binary relations over nodes x and y: “x is the
parent of y,” denoted E(x,y), and “x is a following sibling of y,” denoted y < x. For
each label A € X, the vocabulary includes also the unary relation “A is the label of x,”
denoted A (x). The formula is in first-order logic, extended with quantification over
set variables. This quantification allows, among other things, to express conditions
on the set of all ancestors or descendants of a node, or on that of all nodes following
a given node in document order. For a more formal definition the reader is referred
to the vast literature on MSO for trees (e.g., Neven and Schwentick [@]).

Example 3. For illustration, the following MSO query says that there is a message
with two descendants that are consecutive sibling messages on the topic finance.

3x,y1,y2[message(x) A message(y;) A message(y,)
Ndescendant(x,y|) A descendant(x,y,) A next-sibling(y1,y2)
Afinance-topic(yy) A finance-topic(y,))

In the formula above, descendant(x,y) is phrased in MSO as follows.
VS[S(x) AVz1,22(S(21) AE(z1,22) = S(22)) = S(v)]

Similarly, next-sibling(yi,y2) is given by y; < y» A =3z[y; < z < y2]. Finally,
finance-topic(y) is phrased in MSO as follows.

Iz, w[E(y,2) AE(z,w) Atopic(z) Afinance(w)] O

MSO queries are closely related to the notion of a (bottom-up) nondeterministic
tree automaton (NTA). Specifically, every MSO query can be translated into an
NTA, such that the documents that satisfy the MSO query are precisely those that
are accepted by the NTA; conversely, every NTA can be similarly translated into an
MSO query , @, @].

3.1.3 Join Queries

Both tree patterns and MSO queries can be extended by adding value joins that test
whether two nodes (for tree patterns), or two first-order variables (for MSO), have
the same label. Value joins are fairly commonly used in XPatlE; for instance, they
allow us to dereference identifiers used as foreign keys.

Example 4. The following query in MSO extended with the same-label predicate
tests whether two messages that are descendant of each other have the same topic:

2 The first version of the XPath language only supports a limited form of value joins, but this
restriction is lifted in the latest version.

Probabilistic XML: Models and Complexity 49

Jx1,x2,X3,y1,Y2,y3[message(x1) A message(y1) A descendant(xy,y1)
NE(x1,x2) Atopic(xa) AE (x2,x3)

AE(y1,y2) Atopic(y2) NE(y2,y3)
A same-label(x3,y3)] O

3.1.4 Aggregate Queries

In this chapter, an aggregate function is a function o that takes as input a set V
of document nodes, and returns as output a numerical (rational) number (V) € Q.
Some of the aggregate functions we consider, like sum, need to assume that the
label of a node is a number; to accommodate that, we fix a function num over the
document nodes, such that num(v) = label(v) if label(v) is a number, and otherwise,
we arbitrarily determine num(v) = 0. Specifically, we will discuss the following
aggregate functions.

def

e Count: count(V) = |V|.
e Count distinct: countd(V) = |{label(v) | v € V' }|; that is, countd (V') is the number
of distinct labels that occur in V, regardless of the multiplicity of these labels.

o Sum:sum(V) =Y, oy num(v).
e Average: avg(V) = sum(V)/|V/|; if V is empty, then avg(V) is undefined.
e Min/max: min(V) = min,ey num(v), max(V) = max,cy num(v).

An aggregate query applies an aggregate function to the set of nodes that is se-
lected by another query (of a different type). Specifically, here we consider aggre-
gate queries that we write as o o¢[w], where o is an aggregate function, 7 is a tree
pattern, and w is a node of 7. The evaluation of & o7[w] over a document d results in
the number ot (V'), where V is the set of nodes v of d, such that there exists a match
of 7 in d with u(w) = v; that is:

aotw](d) = o ({v| u(w) = v for some match y of 7 in d})

Example 5. Consider the tree pattern t, of Figure 2 and let w be the wildcard (de-
noted *) node. When applied to the document d of Figure[ll the query counto,[w]
returns 3, which is the number of nodes with a “topic” parent. In contrast, countd o
t[w](d) is 2, which is the number of distinct topics (i.e., distinct labels of nodes
with a “topic” parent) in d.

As another example, consider the tree pattern 74 of Figure 2] and, again, let w be
the wildcard node. The query min o#4[w] returns the earliest time of a message that
has a descendant message on the topic finance; hence, minots[w](d) = 18526. O

3.2 Complexity for ProTDB

Nierman and Jagadish [@] studied the evaluation of (non-Boolean) tree patterns
without projection, and showed computability in polynomial time. Although pro-
jection leads to hardness in the relational probabilistic model [Iﬂ], Kimelfeld et

50 B. Kimelfeld and P. Senellart

al. [@] showed that tree patterns with projection, and in particular Boolean tree
patterns, can be evaluated in polynomial time in ProTDB [@]. Cohen et al. [@]
extended this result to MSO queries. The main reason behind this tractability is that
it is possible to evaluate queries directly over a ProTDB tree in a bottom-up manner,
making use of the locality of both the p-document and the query. This can be done
using dynamic programming for tree patterns], and through the computation of
a product automaton of the query and the p-document in the MSO case [10].

Theorem 1. [@] Let Q be an MSO query (e.g., a tree pattern). The problem “com-
pute Pr (2 |= Q) given & € PeXMLUIM™E g in polynomial time.

Observe that Theorem [l is phrased in terms of data complexity [@], which means
that the query is held fixed. As mentioned by Kimelfeld et al. [45], the evaluation of
tree patterns becomes intractable if the query is given as part of the input. Actually,
it was shown [@,] that over ProTDB the evaluation of tree patterns, and even
MSO queries, is fixed-parameter tractable (abbr. FPT) [@], which means that onl
the coefficients (rather than the degree) of the polynomial depend on the queryé
(hence, FPT is stronger than “polynomial data complexity”). Nevertheless, while
for tree patterns this dependence is “merely” exponential, for general MSO queries
this dependence is not any elementary function (unless P # NP), since that is already
the case when the p-document is ordinary (deterministic) [@,].

Tractability (in terms of data complexity) is lost when tree patterns are extended
with (value) joins [B]. This is not surprising, for the following reason. Tree pat-
terns with joins over trees can simulate Conjunctive Queries (CQs) over relations.
Moreover, tree patterns with joins over PrXM L{ind} can simulate CQs over “tuple-
independent” probabilistic relations [@]. But the evaluation of CQs over tuple-
independent probabilistic databases can be intractable even for very simple (and
small) CQs [b]. Interestingly, it has been shown that adding any (single) join to
any tree pattern results in a query that is intractable, unless that query is equivalent
to a join-free pattern [42].

Theorem 2. [@] If Q is a tree pattern with a single join predicate, then one of the
following holds.

1. Q is equivalent to a tree pattern (hence, can be evaluated in polynomial time).
2. The problem “compute Pr (P |= Q) given F € PXMLIN™E o 4p_pard,

Recall that #P is the class of functions that count the number of accepting paths
of the input of an NP machine [@]; this class is highly intractable, since using an
oracle to a #P-hard function one can solve in polynomial time every problem in the
polynomial hierarchy [@].

Next, we discuss aggregate queries. Cohen et al. [IE] showed that for the ag-
gregate functions count, min, and max, the evaluation of the corresponding aggre-
gate queries is in polynomial time for PrXM Liindmut (That result of Cohen et
al. [[19] is actually for a significantly broader class of queries, which they refer to as
“constraints.”) Note that, for these specific functions, the number of possible results

3 For a formal definition of FPT the reader is referred to Flum and Grohe’s book [Iﬂ].

Probabilistic XML: Models and Complexity 51

(numbers) ¢ is polynomial in the size of the input p-documents; hence the evalu-
ation of an aggregate query Q reduces (in polynomial time) to the evaluation of

Pr(Q(Z) =q).

Theorem 3. [19] Let Q be the aggregate query oL ot|w|. If o is either count, min
or max, then the problem “compute Pr(Q(2) = q) given 2 € PrXMLInmut gq
q € Q” is in polynomial time.

Note that an immediate consequence of Theorem[3is that we can evaluate, in poly-
nomial time, Boolean queries like counto¢[w] > ¢ (i.e., where equality is replaced
with a different comparison operator). Unfortunately, this result does not extend to
the aggregate functions countd, sum and avg.

Theorem 4. [B,] For each oo among countd, sum and avg there is an aggregate
query Q = aot|w], such that the problem “determine whether Pr(Q(%) =q) >0
given & € PrXM L{indmuxt q € Q” is NP-complete.

A particularly interesting fact that is shown by Theorems[3]and @lis that there is an
inherent difference between the complexity of count and countd when it comes to
query evaluation over PrXM | {ind.mux}

4 Additional p-Documents and Extensions

We now discuss additional representation systems for probabilistic XML. Some of
these systems are p-document models with additional kinds of distributional nodes,
and other systems are extensions of the p-document concept. We discuss the expres-
sive power of these representation systems, and the complexity of query answering.

4.1 Long-Distance Dependencies

The mux and ind distributional nodes encode local dependencies between nodes,
in the sense that the presence of a node in the document depends just on the pres-
ence of its parent and (in the case of mux) its siblings. However, it is often desired
to represent long-distance dependencies to capture correlations among nodes of ar-
bitrary locations in the document tree. Towards that, we introduce new kinds of
distributional nodes. Assume a finite set {e; ...e, } of independent Boolean random
variables (called Boolean events), and a probability Pr(e;) for each of these e;. We
define two new kinds of distributional nodes:

e cie [E, @]: A distributional node v of type cie specifies for each child w of v a
conjunction of independent events e or their negation —ey, (e.g., ex A —es A eg).

e fie [41]: A distributional node v of type fie specifies for each child w of v an
arbitrary propositional formula on the ¢;s (e.g., €2 V (e3 A —e7)).

Recall from Section 2 that, to define the semantics of a type of distributional node,
we need to specify how a random subset of children is chosen by a node of that type.

52 B. Kimelfeld and P. Senellart

discussion z
/message\
title time follow-ups

| / e —e) |
(cie) u(18000, 19000)/ \ cie
e
e topic topic e \

el

e
car finansing car financing | | message message
automotive finance _—" | _ N
title time topic title time topic

RE: car financing 19541 on financing | finance

ST N(35400, 100)
automotive finance

Fig. 3 A continuous p-document 2’ in PrXMLIY®} with Pr(e;) = 0.1, Pr(e;) = 0.5,
Pr(e3) = 0.8, Pr(eq4) = 0.4

For cie and fie, the specification is as follows. At the beginning of the process, we
draw a random truth assignment 7 to the events ey, ..., ey, independently of one an-
other and according to the probabilities Pr(e;),...,Pr(ey). Then, each distributional
node selects the children that are annotated by a formula that evaluates to true under
7. (We then proceed to the second step, as described in Section[2])

Example 6. An example p-document &’ of PrXM Lice} is shown in Figure 3 Dis-
regard for now the leaf nodes under “time” nodes (these nodes contain continuous
distributions that will be discussed in Section[£.3). The p-document &' is somewhat
similar to &2 of Figure[I} there is uncertainty in the title of the first message, in its
topic, and in the existence of the two follow-up messages, which are independent
of each other. However, there is also a fundamental difference. The topic of the first
follow-up is correlated with that of the original message: either both are set to “au-
tomotive” or both are set to “finance.” This reflects what a topic extraction system
might do, if it has a global view of the whole discussion. a

We now look at the relative expressiveness and succinctness of p-documents de-
fined with ind, mux, cie, and fie distributional nodes. In terms of expressiveness,
PrXML{i"d’m”X}, PrXML{Cie}, and PrXMLU are all able to represent all finite
probability distributions over documents and are therefore equivalent [@] (as al-
ready noted, this is not the case for PrXML{i“d}, PrXML {mux} and, obviously,
PrXM L{}). However, in terms of succinctness the picture is different: while there
is a polynomial-time transformation of a PrXM Liindmuxt 5_document into an equiv-
alent PrXML{cie} p-document, the converse is not true [ﬁ]. Similarly, PrXM Llcie}
is a subset of PrXM L{ﬁe}, but a transformation from PrXML{fe} into PrXmL{cie}
entails an inevitable exponential blowup].

The families PrXML{9®} and (a fortiori) PrXMLfe} are thus exponentially more
succinct than ProTDB. However, this succinctness comes at a cost: query eval-
uation is now intractable. More precisely, every (Boolean) tree-pattern query is

Probabilistic XML: Models and Complexity 53

#P-hard over PrXML1ce}! (and PrXM L{ﬁe}), except for some trivial cases [@,].
The situation in PrXML <} ig essentially the same as that in PrXM L{ﬁe}, although a
few specific types of queries are tractable over PrXM Li¢e} and yet intractable over
PrxMLifie}. projection-free tree patterns with joins (58], and expected values for
some types of aggregate queries ﬂ].

The intractability of querying p-documents with long-distance dependencies dis-
cussed above concerns the computation of the exact probability of a query. It makes
sense to look also at approximation algorithms [IE]. The simplest way to approxi-
mate query probability is by Monte-Carlo sampling: pick a random document, eval-
uate the query, and iterate. The approximated probability will then be the ratio of
draws for which the probability evaluated to true. This approach yields a polynomial-
time algorithm for obtaining an additive approximation of the query probability;
that is, a number that is guaranteed, with high confidence, to be in the interval
[p — €; p+ €] around the exact probability p. Using other means [@], in the case of
tree patterns over PrXM Lide} it is also possible to obtain a (polynomial-time) mul-
tiplicative approximation (i.e., a number in the interval [(1 — €)p, (1 + €)p]) [43].

4.2 Conditional Models

As mentioned earlier, a central drawback in the ProTDB model (i.e., PrXM L{i"d’mux})
and some other models proposed in the literature (e.g., [@]) is the assumption of
probabilistic independence among probabilistic choices; in turn, this assumption is
the key reason for the tractability of query evaluation]. However, even simple ad-
ditional information about the database may give rise to intricate correlations. As a
simple example, consider again the p-document in Figure[Il Even if we do not know
the exact structure of the messages (hence, we use probabilistic rather than determin-
istic XML), it is likely that we know the total number of messages, and precisely
(with no uncertainty involved). This new detail introduces dependency among the
children of v3, since now a random world cannot have too many (or too few) mes-
sages altogether. A more intricate statement can be the fact that at least 90% of the
messages with the topic automotive have one or more automotive follow-ups; note
that this statement implies correlation between the distributional nodes v, and v4.
To incorporate such additional information, Cohen et al. [IE] suggested to specify
constraints in addition to the p-document. They presented a language for specifying
constrains that may involve aggregate functions (e.g., “the total number of messages
is 392,” and “at least 80% of the messages have follow—ups”)ﬂ Formally, a Proba-
bilistic XML Database (PXDB) is a pair (#,%), where & is a p-document and
% is a set of constraints. The px-space that is defined by a PXDB (£2,%) is the
sub-space of & conditioned on the satisfaction of each constraint of 4 (in other
words, we restrict the px-space to the possible worlds that satisfy %', and normalize
the probabilities). Cohen et al. gave polynomial-time algorithms for various central
tasks, such as sampling and querying, where their queries are tree patterns with

4 For the precise specification of this language, see [IE].

54 B. Kimelfeld and P. Senellart

some aggregate functions (that include count, and min/max)ﬁ Similar tractability
results have been shown for the case where both constraints and queries are phrased
in MSO [20].

4.3 Recursive Markov Chains

In principle, p-documents provide means of representing arbitrary finite px-spaces.
Some applications, however, require the ability to represent infinite sets of possi-
ble worlds. Consider again the example document of Figure [T} all such documents
describing email discussions conform to the following schema, given as a DTD:

discussion: (messagex)
message: (title, time, topic?, follow-ups?)
follow-ups: (messagex)

There are infinitely many documents conforming to this DTD, of arbitrarily large
depth and width. In order to represent a discussion in which the number of messages
and the structure of the discussion itself is fully uncertain, we need to be able to
model, in a concise manner, infinite px-spaces.

The formalism of recursive Markov chains [@] is used for describing recursive
probabilistic processes. Alternatives are described using a Markov chain, where
each node in the chain can be a call to another (or the same) chain. This formal-
ism naturally lends itself to the representation of potentially infinite px-spaces, as
shown by Benedikt et al. [IE]. In that work, Benedikt et al. study the tractability of
MSO queries over px-spaces represented by recursive Markov chains (and restric-
tions thereof). In particular, recursive Markov chains that are hierarchical (i.e., when
there are no cycles in the call graph) are tractable if we assume that all arithmetic op-
erations have unit cost[§ Hierarchical Markov chains can be seen as a generalization
of p-documents defined with directed acyclic graphs instead of trees, a model intro-
duced in [@,]. If we further restrict recursive Markov chains so that no Markov
chain is called at two different positions (they are thus free-like), we obtain a fully
tractable model that generalizes PrXM [{mux,ind} (and even more succinct models,
e.g., PrXML{=®] [44]).

4.4 SCFGs

A Context-Free Grammar (CFG) specifies a process of producing parse trees for
strings in a nondeterministic manner; indeed, a specific string may have multiple
(even infinitely many) parse trees, since multiple production rules can be specified
for a nonterminal. A stochastic (or probabilistic) Context-Free Grammar (SCFG) is
similar to a CFG, except that the rules are augmented with probabilities; that is, the

3 This language allows for nesting of queries, and the reader is referred to [19] for the exact
details.

6 Without this assumption, we lose tractability because the exact probability of a query may
require exponentially many bits in the size of the representation.

Probabilistic XML: Models and Complexity 55

production of a nonterminal becomes a probabilistic, rather than a nondeterministic,
process.

When given a string, an SCFG implies a probability space over the possible parse
trees of the string (where the probability of a parse tree corresponds to the confi-
dence of the SCFG in that tree). Since this space comprises of labeled trees, we can
view it as a (possibly infinite) px-space, on which we can evaluate XML queries
(e.g., “find each noun phrase that forms an object for the verb likes”). Cohen and
Kimelfeld [@] studied the problem of evaluating a tree-pattern query over the px-
space that is represented by an SCFG and a string. In particular, they showed that
this task is tractable for the class of weakly linear SCFGs (that generalizes popular
normal forms like linear SCFGs, and Chomsky or Greibach normal forms). It fol-
lows from known results [IE] that, in the general case, query probabilities do not
have a polynomial-size bit representation, and can even be irrational.

4.5 Continuous Distributions

So far, all probabilistic XML models we have considered represent discrete proba-
bility distributions, where the uncertainty is either in the structure of the document
or in the choice of a value from a finite collection of options. But some sources
of uncertainty, such as the imprecision in sensor measurements, are essentially con-
tinuous. So, following [B, ﬁ] we introduce the possibility of labeling leaves of p-
documents with not only constant values, but continuous probability distributions
of values (as usual, represented in some compact manner). For example, we might
say that a given leaf represents a uniform distribution between two constants.

Example 7. Consider again the p-document &2’ of Figure[3l Two of the “time” nodes
have for leaf a continuous distribution. The first one, U (18000, 19000) represents a
uniform distribution in the interval [18000;19000], which is adapted to the case
when nothing else is known about the timestamp, perhaps because of a coarse gran-
ularity in the way the message metadata was displayed. The second distribution,
N(35400,100) is a Gaussian centered around 35400 and with a standard deviation
of 100. Such a timestamp might arise from a known imprecision in the date of the
computer system that produced the timestamp. One can check that the document d
of Figure[Ilis one of the possible worlds represented by &’ (but of course, it has a
zero probability due to the continuous distributions). O

Observe that we cannot use our current formalism of a px-space to define the se-
mantics of a p-document with continuous values, since our px-space is discrete, and
in particular, is defined by means of a probability of each possible world. Neverthe-
less, px-spaces can be properly extended to a continuous version by constructing
a o-algebra of sets of possible worlds, and define a probability measure over this
o-algebra, as done by Abiteboul et al. [ﬁ]. When this is done, we can investigate
the complexity of query evaluation, as usual. Tree patterns are not of much inter-
est in this case, because if a query node is matched against a node with continuous
distribution, the probability of this match is usually zero. But of course, aggregate
queries make sense. As shown by Abiteboul et al. [ﬁ], the tractability of aggregate

56 B. Kimelfeld and P. Senellart

queries with functions such as count, min, or max extends from (discrete) ProTDB
to the continuous case, as long as the class of probability distributions present in
the p-document can be efficiently convoluted, summed, integrated, and multiplied.
This is for instance the case of distributions defined by piecewise polynomials, a
generalization of uniform distributions.

5 Other Problems of Interest

In the previous sections, we discussed the task of query evaluation over different
models of probabilistic XML. Here, we discuss additional tasks. Specifically, we
address updating and typing, which are classical XML operations. We also dis-
cuss compression—the problem of finding a representation of a smaller size, and
top-k querying—retrieving the most probable answers to a tree-pattern or a keyword-
search query. Finally, we list additional tasks that are mostly left as open problems.

5.1 Updates

In update languages like XUpdate or the XQuery Update Facility, the specification
of update operations entail locator queries that indicate, as XPath or XQuery ex-
pressions, the locations where data are to be inserted, modified, or deleted. An ele-
mentary probabilistic update operation can thus be defined as consisting of a locator
query, a specification of the operation to be performed at matched locations (e.g., a
tree to be inserted), and a probability that the update should be performed (provided
that the locator query matches); such an operation has been studied by Abiteboul
et al. [@]. The semantics of updates is defined as for queries: the result of an up-
date on a probabilistic database should be a representation of a probabilistic space
obtained from the original probabilistic space by applying the update on every possi-
ble world. Again, we want to avoid the exponential enumeration of possible worlds
and perform the update directly on the original probabilistic document. Updates are
of particular interest since they can be seen as a fundamental mechanism for con-
structing a probabilistic XML document: a sequence of uncertain update operations
applied to a deterministic XML document [E|].

Limiting our study to ProTDB and models with long-distance dependencies,
we observe the following tradeoff on update tractability], in terms of data
complexity:

e The result of an update operation is computable in polynomial time over ProTDB
for a restricted set of non-branching tree pattern queries (specifically, those with-
out descendant edges or those whose locator query returns the node at the bottom
of the tree pattern).

e In general, computing the result of an update operation over ProTDB is in-
tractable.

e The result of an update operation is computable in polynomial time over the
family PrXM Lifie} for updates defined by tree-pattern queries with joins.

Probabilistic XML: Models and Complexity 57

The reason for the tractability of updates in PrXM L {fiet (while querying operations
are hard) is that updates do not entail computation of probabilities; we just manipu-
late event formulas without computing their probabilities.

Updating probabilistic XML documents highlights the following issue in mod-
els different from ProTDB and PrXML{"e}: the model may lack the property of
being a strong representation system [B] for the query language used in locator
queries; this means that it is impossible to represent the output of a query (or the
result of an update based on this query language) in the model. This is the case for
ProTDB extended with continuous value distributions, and the language of aggre-
gate tree-pattern queries (or even tree-pattern queries with inequalities). To be able
to apply updates on such probabilistic models, the challenge is to define generaliza-
tions of these models (and of the corresponding querying techniques) that are strong
representation systems.

5.2 Typing

Typing an XML document, that is, testing whether the document is valid against a
schema defined in some schema language (e.g., DTD), is another fundamental data-
management problem in XML. Similarly to Boolean querying, typing a probabilistic
XML document should return a probability, namely, the probability that a random
document is valid. As shown by Cohen et al. [@], when the schema can be defined
by a deterministic bottom-up tree automaton (which is the case for DTDs, disre-
garding for now keys and foreign keys), computing the probability that a ProTDB
p-document is valid is in polynomial time in the size of both the p-document and the
schema. Essentially, this computation is done by running the automaton over the p-
document, maintaining on the way some data structures that allow us to compute the
probability that a node has type g given the corresponding probabilities of its chil-
dren. This result can be generalized in a number of ways. First, tractability extends
to computing the probability of a fixed query (say, a tree pattern) in the probabilis-
tic space that is restricted to only those worlds that are valid against a schema [IE].
Second, the data model can be generalized to recursive Markov chains, and we ba-
sically have tractability in the same classes of recursive Markov chains where MSO
query answering is tractable [IE]. Third, adding constraints (such as keys and for-
eign keys) renders typing intractable, though it is still tractable to test whether the
probability of being valid against a schema with constraints is exactly one [Iﬁ].

5.3 Compression

A fundamental advantage of using probabilistic XML models, such as ProTDB, is
their potential compactness in representing probabilistic spaces. Depending on the
application, obtaining such a compact model might not be straightforward. The di-
rect translation of a set of possible worlds with probabilities into a PrXM L {muxind}
document, for instance, simply enumerates all possible worlds as children of a mux
node and has the same size as the original space. The compression or simplification

58 B. Kimelfeld and P. Senellart

problem [@] is to obtain, given a probabilistic XML document, another more com-
pact document that defines the same px-space.

In ProTDB, a basic operation that can be used to simplify a p-document is
to push distributional nodes down the tree whenever possible, merging ordinary
nodes in the process [@]. Another direction is to apply regular XML compression
techniques 13] to compress the probabilistic tree into a probabilistic DAG while
retaining querying tractability (assuming unit-cost arithmetics), as discussed in
Section 43l Veldman et al.] explored the combination of probabilistic XML
simplification techniques with ordinary XML compression, demonstrating gain in
the size of the representation.

5.4 Top-k Queries

Chang et al. [IE] studied the problem of finding, in a probabilistic XML document,
the top-k query answers, that is, the k answers with the highest probabilities (where
k is a specified natural number). Their model of probabilistic XML is ProTDB, and
as queries they considered projection-free path patterns. Another type of a top-k
query arises in keyword search. Information retrieval by keyword search on proba-
bilistic XML has been studied by Li et al. [Iﬂ]. Specifically, they perform keyword
search in the ProTDB model by adopting the notion of Smallest Lower Common An-
cestor (SLCA) [@], which defines when an XML node constitutes an answer for a
keyword-search query. More particularly, the problem they explore is that of finding
the k£ nodes with the highest probabilities of being SLCAs in a random world.

5.5 Open Problems

We now discuss important open problems around management operations on prob-
abilistic XML. Despite the existence of techniques for compressing ProTDB doc-
uments [@], we lack a good understanding on when compression is possible and
whether it is possible to obtain an optimal representation (with respect to compact-
ness) of a px-space, in ProTDB and other models. A fundamental problem related
to this one concerns equivalence of probabilistic XML documents: decide whether
two representations define the same px-space [@]. As shown in [Iﬂ], this problem
admits a randomized polynomial-time decision procedure for PrXM Li¢e} when p-
documents are shallow, giving some hope of obtaining a more systematic procedure
for minimizing the size of a p-document. Nevertheless, the exact complexities of the
equivalence problem, of testing optimality, and of minimization itself, remain open
problems.

Compressing a discrete px-space into a compact p-document is somewhat akin
to the problem of XML schema inference from XML data [|ﬁ|]: in both cases, the
goal is to obtain a compact model of a set of documents. There are two differences,
however. First, an XML schema represents a set of XML documents, while a p-
document represents a probabilistic distribution thereof. Second, it is assumed that
XML schema inference generalizes the observation of the example documents and

Probabilistic XML: Models and Complexity 59

that some documents valid against the schema are not present in the original collec-
tion, while compression preserves the px-space. Relaxing this last assumption leads
to the problem of probabilistic schema inference, that is, learning a probabilistic
model, with potential generalization, for a corpus of XML documents. A first work
in this direction is by Abiteboul et al. [Ia], where the skeleton of the schema is given,
and probabilities are learned to optimize the likelihood of the corpus. Adapting XML
schema inference techniques to directly generate probabilistic models would allow
us to generalize any collection of XML documents as a probabilistic XML document.

The focus of most of the literature on probabilistic XML is on modeling and
querying, while only little exploration has been done on other aspects of probabilis-
tic XML management. One of the important aspects that deserve further exploration
is that of mining, namely, discovering important patterns and trends (e.g., frequent
items, correlations, summaries of data values, etc.) in probabilistic XML documents.
Kharlamov and Senellart [@] discuss how some mining tasks can be answered us-
ing techniques of probabilistic XML querying. Nevertheless, it is to be explored
whether other techniques (e.g., based on ordinary frequent itemset discovery) can
provide more effective mining.

6 Practical Aspects

In this section, we discuss some practical aspects of probabilistic XML manage-
ment. We first consider system architecture and indexing, and then elaborate on
the practical challenges that remain to be tackled towards a full-fledged database-
management system for probabilistic XML. (To the best of our knowledge, up to
now only prototypical systems have been developed.)

6.1 System Architecture

The first question is that of the general architecture of a probabilistic XML system:
should it be (a) built on top of a probabilistic relational database system, (b) based
on a query-evaluation engine for ordinary XML, or (c¢) engineered from scratch to
easily accommodate the existing algorithmic approaches for probabilistic XML?
We overview these three approaches, pointing to preliminary work, and noting
advantages and shortcomings of each.

Over a Probabilistic Relational Engine

Much effort has been put on building efficient systems for managing probabilis-
tic relational data. These systems include Trio [é], MayBMS [32] and its query
evaluator SPROUT [@] (in turn, these systems are usually built on top of an ordi-
nary relational database engine). Leveraging these efforts to the probabilistic XML
case makes sense, and basically amounts to encoding probabilistic XML data into
probabilistic tables, and tree-pattern queries into conjunctive queries. This direc-
tion is explored by Hollander and van Keulen] with Trio, where feasibility is

60 B. Kimelfeld and P. Senellart

demonstrated for different kinds of XML-to-relation encodings. However, the rela-
tional queries that result from those encodings are of a specific form (e.g., inequali-
ties are used to encode descendant queries) for which optimizations are not always
available to the probabilistic relational engine.

Over of an XML Query Engine

Alternatively, it is possible to rely on native XML database systems (such as eXis(]
or MonetDB/XQueryﬁ) to evaluate queries over probabilistic XML documents, del-
egating components such as indexing of document structure and query optimization
to the underlying XML database engine. It requires either to modify the internals
of the XML query evaluation engine to deal with probabilities, or to be able to
rewrite queries over probabilistic XML documents as queries over ordinary doc-
uments. The latter approach is demonstrated by Senellart and Souihli [@]; there,
tree-pattern queries with joins over p-documents of PrXM Lice} are rewritten into
XQuery queries that retrieve each query match, along with a propositional for-
mula that represents the probability of the match. All XML processing is therefore
handed out to the XQuery query engine, and the problem is reduced to probability
evaluation of propositional formulas.

Independent Implementation

The previous two architectures do not make use of the specificities of probabilis-
tic XML, and in particular, of the techniques that have been developed for query-
ing probabilistic XML. An alternative is thus to design a probabilistic XML system
around one or more of these techniques (e.g., bottom-up dynamic programming [@]),
and thereby utilize the known algorithms at query time [44]. The downside of this
approach is that existing algorithms are main-memory intensive. Furthermore, the
implemented system is typically applicable to only a limited probabilistic model
(e.g., [@] supports just ProTDB documents, though it should be possible to use a
similar bottom-up approach for hierarchical Markov chains [IE] and to support con-
tinuous distributions [ﬂ]), and to a limited class of queries (e.g., [@] supports just
tree patterns, but it should also be possible to extend it to MSO by combining the
algorithm of [@] and a toolkit such as Mona [@] for converting queries into tree
automata).

6.2 Indexing

We now consider indexing as a mean of enhancing the efficiency of query evaluation
over probabilistic XML. When a probabilistic XML system is implemented on top
of an XML database system, we can rely on this system to properly index the tree
structure and content. Still remaining is the question of how to provide efficient
access to the probabilistic annotations.

7 http://exist.sourceforge.net/
8 http://monetdb.project.cwi.nl/monetdb/XQuery/

http://exist.sourceforge.net/
http://monetdb.project.cwi.nl/monetdb/XQuery/

Probabilistic XML: Models and Complexity 61

The PEPX system] proposes to index ProTDB documents in the following
manner: instead of storing with each child of a mux or ind node the probability
of being selected by its parent, store the marginal probability that the child exists.
Coupled with indexing of the tree structure, it allows much more efficient processing
of simple queries, since a single access suffices to retrieve the probability of a node,
and accessing all ancestors of this node is not required. This approach has also been
taken by Li et al. [@] who adapted the TwigStack algorithm [12] to the evaluation
of projection-free patterns in a ProTDB document.

This is certainly not the last word on probabilistic XML indexing, though. An
interesting direction would be to combine structure-based indexing with probability-
based indexing. Conceivably, such an approach has the potential of enhancing the
efficiency of finding the most probable answers [@] or answers with a probability
above a specified threshold [43].

6.3 Remaining Challenges

We now highlight some of the challenges that remain on the way to implementing a
full-fledged system for managing probabilistic XML.

We first discuss the choice of method for query evaluation. Depending on the
data model in use, and depending on the query language, we have a variety of tech-
niques, exact or approximate: bottom-up algorithm in the absence of long-distance
correlations], naive enumeration of all possible worlds, Monte-Carlo sampling,
relative approximation [@], and so on. Each of these has specific particularities in
terms of the range of query and data it can be applied to, its evaluation cost, and
its approximation guarantee. Hence, it is likely that some methods are suitable in
some cases and other methods are suitable in other cases. A system should have a
wealth of evaluation techniques and algorithms, and should be able to make proper
decisions on which technique to use for providing a quick and accurate result. For
example, the system may be given precision boundaries, and it should then select the
most efficient approximation that guarantees these boundaries. Alternatively, given
a time budget, a system should be able to select an exact or approximation tech-
nique (as precise as possible) for performing query evaluation within that budget.
This process can be carried out at the level of the whole query, or at the level of
each sub-query. For instance, in some cases it may be beneficial to combine proba-
bilities that are computed (for different parts of the query and/or the document) by
deploying different techniques. This suggests relying on cost-based, optimizer-like,
query planning where each implementation of a (sub-)query evaluation is associated
with an estimated cost, of both time and approximation. First steps are highlighted
in [60].

There is also a need for a deeper understanding of the connection between prob-
abilistic XML and probabilistic relational data. This is obviously critical if one is to
implement a probabilistic XML system on top of a probabilistic relational database;
but, it is important in other architectures as well, for identifying techniques in the re-
lational setting that carry over to the XML setting. The connection is not so straight-
forward. It is of course easy to encode trees into relations or relations into trees, but

62 B. Kimelfeld and P. Senellart

in both cases the encoding has special shapes: relations encoding trees are tree-like
(with treewidth [@] one) and relations encoded as trees are shallow and have repet-
itive structure. Typical query languages are different, too: tree-pattern queries or
MSO on one side, conjunctive queries or the relational algebra on the other. When
trees are encoded into relations, tree-pattern queries become a particular kind of
conjunctive queries, involving hierarchically structured self joins, a class for which
it is not always possible to obtain efficient query plans over arbitrary databases [@].
Some results from the probabilistic XML setting (such as the bottom-up evaluation
algorithm for ProTDB) have no clear counterpart in the relational world, and vice
versa. A unifying view of both models would help in building systems for managing
both probabilistic relational and XML data.

The last challenge we highlight is that of optimizing query evaluation by reusing
computed answers of previous queries. This can be seen as a case of query answer-
ing using views, a problem that has been extensively studied in the deterministic
XML setting [IE, EE)@] There is little known on whether and how (materialized)
views can be used for query answering in the probabilistic XML setting, though
Cautis and Kharlamov ?ﬂ] have made a preliminary study of the problem in the
setting of ProTDB, where they show that the major challenge is not retrieving query
answers, but computing their probabilities.

7 Conclusions

We reviewed the literature on probabilistic XML models, which are essentially rep-
resentation systems for compactly encoding probability distributions over labeled
trees. A variety of such representation systems have been proposed, and each pro-
vides a different trade-off between expressiveness and compactness on the one hand,
and management complexity on the other hand. Specifically, ProTDB [@] and some
of its extensions (e.g., ProTDB augmented with constraints or continuous distri-
butions, and tree-like Markov chains) feature polynomial-time querying for a rich
query language (MSO, or aggregate queries defined by tree-patterns). In contrast,
query evaluation is intractable in other models such as PrXM Lifie} (that allows for
correlation among arbitrary sets of nodes) or arbitrary recursive Markov chains (that
can represent spaces of unbounded tree height or tree width).

We mentioned various open problems throughout this chapter. Two of these de-
serve particular emphasis. First, the connection to probabilistic relational models
needs better understanding, from both the theoretical viewpoint (e.g., what makes
tree-pattern queries over ProTDB tractable, when they are encoded into relations?)
and the practical viewpoint (e.g., can we build on a system such as Trio [@] or
MayBMS [@] to effectively manage probabilistic XML data?). Second, further ef-
fort should be made to realize and demonstrate the ideal of using probabilistic XML
databases, or probabilistic databases in general, to answer data needs of applica-
tions (rather than devising per-application solutions); we discussed some of the wide
range of candidate applications in the introduction. We believe that the research
of recent years, which is highly driven by the notable popularity of probabilistic

Probabilistic XML: Models and Complexity 63

databases in the database-research community, constitutes a significant progress
towards this ideal, by significantly improving our understanding of probabilistic
(XML) databases, by developing a plethora of algorithmic techniques, and by build-
ing prototype implementations thereof.

Acknowledgements. We are grateful to Evgeny Kharlamov for his helpful comments. This
work was partially supported by the European Research Council grant Webdam (under FP7),
grant agreement 226513.

References

(1]

(2]

(3]
(4]

(5]
(6]

(7]

(8]

(9]
(10]
(1]
[12]

[13]
[14]

[15]

[16]
(17]

Abdessalem, T., Ba, M.L., Senellart, P.: A probabilistic XML merging tool. In: EDBT
(2011)

Abiteboul, S., Senellart, P.: Querying and updating probabilistic information in XML.
In: Toannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Béhm, K.,
Kemper, A., Grust, T., Bohm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1059-1068.
Springer, Heidelberg (2006)

Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
Abiteboul, S., Kimelfeld, B., Sagiv, Y., Senellart, P.: On the expressiveness of proba-
bilistic XML models. VLDB Journal 18(5) (2009)

Abiteboul, S., Chan, T.H.H., Kharlamov, E., Nutt, W., Senellart, P.: Aggregate queries
for discrete and continuous probabilistic XML. In: ICDT (2010)

Abiteboul, S., Amsterdamer, Y., Deutch, D., Milo, T., Senellart, P.:) Optimal probabilis-
tic generators for xml corpora. In: BDA (2011a)

Abiteboul, S., Chan, T.H.H., Kharlamov, E., Nutt, W., Senellart, P.: Capturing continu-
ous data and answering aggregate queries in probabilistic XML. ACM Transactions on
Database Systems (2011b)

Afrati, EN., Chirkova, R., Gergatsoulis, M., Kimelfeld, B., Pavlaki, V., Sagiv, Y.: On
rewriting XPath queries using views. In: EDBT. ACM International Conference Pro-
ceeding Series, vol. 360, pp. 168-179. ACM (2009)

Amer-Yabhia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Minimization of tree pat-
tern queries. In: SIGMOD (2001)

Benedikt, M., Kharlamov, E., Olteanu, D., Senellart, P.: Probabilistic XML via Markov
chains. Proceedings of the VLDB Endowement 3(1) (2010)

Bex, G.J., Neven, F., Vansummeren, S.: Inferring XML schema definitions from XML
data. In: VLDB (2007)

Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern match-
ing. In: SIGMOD (2002)

Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: VLDB (2003)
Cautis, B., Kharlamov, E.: Challenges for view-based query answering over probabilis-
tic XML. In: AMW (2011)

Cautis, B., Deutsch, A., Onose, N.: XPath rewriting using multiple views: Achieving
completeness and efficiency. In: WebDB (2008)

Chang, L., Yu, J.X., Qin, L.: Query ranking in probabilistic XML data. In: EDBT (2009)
Cheng, R., Singh, S., Prabhakar, S.: U-DBMS: A database system for managing
constantly-evolving data. In: VLDB (2005)

64

(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]
[27]

[28]
[29]

(30]

[31]
(32]
[33]
[34]
[35]
[36]
[37]
(38]
[39]

[40]

B. Kimelfeld and P. Senellart

Cohen, S., Kimelfeld, B.: Querying parse trees of stochastic context-free grammars. In:
ICDT (2010)

Cohen, S., Kimelfeld, B., Sagiv, Y.: Incorporating constraints in probabilistic XML.
ACM Transactions on Database Systems 34(3) (2009)

Cohen, S., Kimelfeld, B., Sagiv, Y.: Running tree automata on probabilistic XML. In:
PODS (2009)

Dalvi, N., Ré, C., Suciu, D.: Probabilistic databases: Diamonds in the dirt. Communica-
tions of the ACM 52(7) (2009)

Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
Journal 16(4) (2007)

Doner, J.: Tree acceptors and some of their applications. Journal of Computer Systems
and Science 4(5) (1970)

Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer
Science. Springer (1999)

Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. Journal of the ACM 56(1) (2009)

Fagin, R., Kimelfeld, B., Kolaitis, P.: Probabilistic data exchange. In: ICDT (2010)
Flum, J., Grohe, M.: Parameterized Complexity Theory. In: Texts in Theoretical Com-
puter Science. An EATCS Series. Springer (2006)

Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic
revisited. Annals of Pure and Applied Logic 130(1-3) (2004)

Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling, Design And Imple-
mentation. IGI Global (2005)

Henriksen, J., Jensen, J., Jgrgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm, A.:
Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleaveland,
W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89-110.
Springer, Heidelberg (1995)

Hollander, E., van Keulen, M.: Storing and querying probabilistic XML using a proba-
bilistic relational DBMS. In: MUD (2010)

Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: a probabilistic database man-
agement system. In: SIGMOD (2009)

Hung, E., Getoor, L., Subrahmanian, V.S.: PXML: A probabilistic semistructured data
model and algebra. In: ICDE (2003)

Imielifiski, T., Lipski Jr., W.: Incomplete information in relational databases. Journal of
the ACM 31(4) (1984)

Jampani, R., Xu, F., Wu, M., Perez, L.L., Jermaine, C.M., Haas, P.J.: MCDB: a Monte
Carlo approach to managing uncertain data. In: SIGMOD (2008)

Jousse, F., Gilleron, R., Tellier, I., Tommasi, M.: Conditional random fields for XML
trees. In: ECML Workshop on Mining and Learning in Graphs (2006)

Karp, R.M., Luby, M., Madras, N.: Monte-Carlo approximation algorithms for enumer-
ation problems. Journal of Algorithms 10(3) (1989)

van Keulen, M., de Keijzer, A.: Qualitative effects of knowledge rules and user feedback
in probabilistic data integration. VLDB Journal 18(5) (2009)

van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data inte-
gration. In: ICDE (2005)

Kharlamov, E., Senellart, P.: Modeling, querying, and mining uncertain XML data. In:
Tagarelli, A. (ed.) XML Data Mining: Models, Methods, and Applications. IGI Global
(2011)

Probabilistic XML: Models and Complexity 65

[41]
[42]

[43]
[44]

[45]
[40]
[47]
[48]
[49]

[50]
[51]

[52]

[53]
[54]

[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]

[65]

Kharlamov, E., Nutt, W., Senellart, P.: Updating probabilistic XML. In: EDBT/ICDT
Workshop on Updates in XML (2010)

Kharlamov, E., Nutt, W., Senellart, P.: Value joins are expensive over (probabilistic)
XML. In: LID (2011)

Kimelfeld, B., Sagiv, Y.: Matching twigs in probabilistic XML. In: VLDB (2007)
Kimelfeld, B., Kosharovski, Y., Sagiv, Y.: Query efficiency in probabilistic XML mod-
els. In: SIGMOD (2008)

Kimelfeld, B., Kosharovsky, Y., Sagiv, Y.: Query evaluation over probabilistic XML.
VLDB Journal 18(5) (2009)

Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic mod-
els for segmenting and labeling sequence data. In: ICML (2001)

Li, J., Liu, C., Zhou, R., Wang, W.: Top-k keyword search over probabilistic XML data.
In: ICDE (2011)

Li, T., Shao, Q., Chen, Y.: PEPX: a query-friendly probabilistic XML database. In:
MUD (2006)

Li, Y., Wang, G., Xin, J., Zhang, E., Qiu, Z.: Holistically twig matching in probabilistic
XML. In: ICDE (2009)

Manning, C.D., Schutze, H.: Foundations of Statistical NLP. MIT Press (1999)

Meyer, A.R.: Weak monadic second-order theory of successor is not elementary recur-
sive. Logic Colloquium 453 (1975)

Neven, F., Schwentick, T.: Query automata over finite trees. Theoretical Computer Sci-
ence 275(1-2) (2002)

Nierman, A., Jagadish, H.V.: ProTDB: Probabilistic data in XML. In: VLDB (2002)
Olteanu, D., Huang, J., Koch, C.: SPROUT: Lazy vs. eager query plans for tuple-
independent probabilistic databases. In: ICDE (2009)

Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. Journal of Combi-
natorial Theory, Series B 36(1) (1984)

Sen, P., Deshpande, A., Getoor, L.: PrDB: managing and exploiting rich correlations in
probabilistic databases. VLDB Journal 18(5) (2009)

Senellart, P.: Comprendre le Web caché. Understanding the hidden Web. PhD thesis,
Université Paris XI (2007)

Senellart, P., Abiteboul, S.: On the complexity of managing probabilistic XML data. In:
PODS (2007)

Senellart, P., Souihli, A.: ProApproX: A lightweight approximation query processor
over probabilistic trees. In: SIGMOD (2011)

Souihli, A.: Efficient query evaluation over probabilistic XML with long-distance de-
pendencies. In: EDBT/ICDT PhD Workshop (2011)

Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Morgan & Claypool
(2011)

Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to
a decision problem of second-order logic. Mathematical Systems Theory 2(1) (1968)
Toda, S., Ogiwara, M.: Counting classes are at least as hard as the polynomial-time
hierarchy. SIAM Journal on Computing 21(2), 316-328 (1992)

Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Sci-
ence 8, 189-201 (1979)

Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:
STOC (1982)

66 B. Kimelfeld and P. Senellart

[66] Veldman, 1., de Keijzer, A., van Keulen, M.: Compression of probabilistic XML doc-
uments. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 255-267.
Springer, Heidelberg (2009)

[67] Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In:
CIDR (2005)

[68] Xu, W., Ozsoyoglu, Z.: Rewriting XPath queries using materialized views. In: VLDB
(2005)

[69] Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest LCAs in XML
databases. In: SIGMOD (2005)

[70] Zadeh, L.A.: A simple view of the Dempster-Shafer theory of evidence and its implica-
tion for the rule of combination. Al Magazine 7(2) (1986)

	Introduction
	Probabilistic XML
	XML Documents
	px-Spaces
	p-Documents

	Query Evaluation
	Query Languages
	Complexity for ProTDB

	Additional p-Documents and Extensions
	Long-Distance Dependencies
	Conditional Models
	Recursive Markov Chains
	SCFGs
	Continuous Distributions

	Other Problems of Interest
	Updates
	Typing
	Compression
	Top-k Queries
	Open Problems

	Practical Aspects
	System Architecture
	Indexing
	Remaining Challenges

	Conclusions
	References

