Exploration adaptative de graphes sous contraintes de budget

Georges Gouriten*
Silviu Maniu°
Pierre Senellart*

* Télécom ParisTech – Institut Mines-Télécom – LTCI CNRS
° Hong Kong University
Scalable, Generic, and Adaptive Systems for Focused Crawling

Georges Gouriten*
Silviu Maniu°
Pierre Senellart*°

* Télécom Paristech – Institut Mines-Télécom – LTCI CNRS
° Hong Kong University
What is focused crawling?
A directed graph
Web

Social network

P2P

etc.
Weighted
Let u be a node,

$\beta(u) = \text{count of the word } Bhutan \text{ in all the tweets of } u$
Even more weighted
Let \((u, v)\) be an edge,

\[
\alpha(u) = \text{count of the word } Bhutan \text{ in all the tweets of } u \text{ mentioning } v
\]
The total graph
A seed list
The frontier
Crawling one node
A crawl sequence

Let V_0 be the seed list, a set of nodes, a *crawl sequence*, starting from V_0, is

$$\{ v_i, v_i \text{ in } \text{frontier}(V_0 \cup \{v_0, v_1, \ldots, v_{i-1}\}) \}$$
Goal of a focused crawler

Produce crawl sequences with global scores (sum) as high as possible
The focused crawling high-level algorithm

```plaintext
input : seed subgraph \( G_0 \), budget \( n \)
output: crawl sequence \( V \) with a score as high as possible

1 \( V \leftarrow () \);
2 \( G' \leftarrow G_0 \);
3 \( \text{budgetLeft} \leftarrow n \);
4 \textbf{while} \textbf{budgetLeft} > 0 \textbf{do}
5 \hspace{1em} \text{frontier} \leftarrow \text{extractFrontier}(G') ;
6 \hspace{2em} \text{scoredFrontier} \leftarrow
7 \hspace{3em} \text{estimator.scoreFrontier}(G',\text{frontier});
8 \hspace{1em} r \leftarrow \text{getRefreshRate}();
9 \hspace{2em} \text{NodeSequence} \leftarrow
10 \hspace{3em} \text{strategy.getNextNodes(scoredFrontier,} r \); \text{)}
11 \hspace{1em} V \leftarrow (V, \text{NodeSequence]);
12 \textbf{for } u \textbf{ in } \text{NodeSequence} \textbf{ do}
13 \hspace{2em} \text{G'} \leftarrow G' \cup \text{crawlNode}(u); \text{)
14 \hspace{1em} \text{budgetLeft} = \text{budgetLeft} - r
15 \textbf{return } V
```
Supposing a perfect estimator
Finding an optimal crawl sequence offline:
NP-hard

Greedy wins for a crawled graph > 1000 nodes

Refresh rate of 1 is better
Estimation in practice
Different kinds of estimators
bfs
Estimator 1 (bfs). \(\hat{\beta}(v) = \frac{1}{l(v)+1} \), where \(l(v) \) is the distance of \(v \) to \(V_0 \).
\[NR_1(v)^{t+1} = d \times w(v) + (1 - d) \times \text{avg}_{(v,u) \in E'} \frac{NR_1(u)^t}{d_i(u)} \]

\[NR_2(v)^{t+1} = d \times NR_1(v) + (1 - d) \times \text{avg}_{(u,v) \in E'} \frac{NR_2(u)^t}{d_0(u)}. \]

Estimator 2 (nr). \(\tilde{\beta}(v) = NR_2(v). \)
1. the node \(v \) with the highest cash is selected, and its history is updated with the current cash value \(H(v) = H(v) + C(v) \),

2. for each outgoing node \(u \) of \(v \), the cash value is updated \(C(u) = C(u) + \frac{C(v)}{d_{o(v)}} \),

3. the cash value of \(v \) is reset and the global counter incremented, by \(G = G + C(v) \) and \(C(v) = 0 \).

\[
C(u) = C(u) + \sum_{(v,w) \in E'} \frac{C(v)}{\alpha(v,w) \times C(w)} \times \alpha(v,u) \times C(u)
\]

Estimator 3 (opic). \(\tilde{\beta}(v) = \frac{H(v) + C(v)}{G+1} \).
First-level neighborhood
Second-level neighborhood
Neighborhood-based estimators

Estimator 4 \((fl_n \ fl_e \ fl_ne \ sl_n \ sl_e \ sl_ne)\).

- **fl_deg:** \(\tilde{\beta}(v) = d_i(v) = |P(v)|\)
- **fl_n:** \(\tilde{\beta}(v) = \sum_{u \in P(v)} \beta(u)\)
- **fl_e:** \(\tilde{\beta}(v) = \sum_{u \in P(v)} \alpha(u, v)\)
- **fl_ne:** \(\tilde{\beta}(v) = \sum_{u \in P(v)} \beta(u)\alpha(u, v)\)
- **sl_n:** \(\tilde{\beta}(v) = \sum_{u \in P(v)} \sum_{w \in V'} \beta(w)\)
- **sl_e:** \(\tilde{\beta}(v) = \sum_{u \in P(v)} \sum_{w \in V'} \alpha(u, w)\)
- **sl_ne:** \(\tilde{\beta}(v) = \sum_{u \in P(v)} \sum_{w \in V'} \beta(w)\alpha(u, w)\)
Linear regressions

Estimator 5 \((lr_{fl} \text{ lr}_{sl}) \).

- \(lr_{fl}: \tilde{\beta}(v) = \text{trained linear combination of the } fl_\text{ estimators} \).
- \(lr_{sl}: \tilde{\beta}(v) = \text{trained linear combination of the } fl_\text{ and } sl_\text{ estimators} \).
Multi-armed bandits (1)

slot machine 1

slot machine 2

slot machine 3

slot machine 4

...
Multi-armed bandits (2)

Budget n, how to maximize the reward?

Balance exploration and exploitation
Applied to focused crawling

Slot machines: estimators

Reward: score of the top node
mab$_\varepsilon$

Probability $1-\varepsilon$: slot machine with the highest average reward

Probability ε: random slot machine

Estimator 6 (mab$_\varepsilon$). $\tilde{\beta}(v) = \text{output of an epsilon-greedy strategy.}$
mab_\(\varepsilon\)-first

steps \([0, \varepsilon \times N]\): random slot machine

steps \([\varepsilon \times N + 1, N]\): slot machine with the highest average reward

Estimator 7 (mab_\(\varepsilon\)-first). \(\tilde{\beta}(v) = \text{output of an epsilon-first strategy.}\)
Succession of ε-first strategies, with a reset every r steps, r varying with the context

Estimator 8 (mab_var). $\tilde{\beta}(v) = \text{output of an epsilon-first with variable reset strategy.}$
Their running times
Expected running times

Twitter API for one week:
- 3s
- 200,000 nodes

One domain website for one week:
- 1s
- 600,000 nodes
Experimental framework (1)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Nodes (million)</th>
<th>Non-zero nodes (%)</th>
<th>Edges (million)</th>
<th>Non-zero edges (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bretagne</td>
<td>2.2</td>
<td>2.0</td>
<td>35.6</td>
<td>0.5</td>
</tr>
<tr>
<td>France</td>
<td>"</td>
<td>19.2</td>
<td>"</td>
<td>6.8</td>
</tr>
<tr>
<td>Happy</td>
<td>16.9</td>
<td>11.0</td>
<td>78.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Jazz</td>
<td>"</td>
<td>0.6</td>
<td>"</td>
<td>0.1</td>
</tr>
<tr>
<td>Weird</td>
<td>"</td>
<td>3.2</td>
<td>"</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Experimental framework (2)

--- Graph score
10 seed graphs

1 seed graph:
50 seeds picked randomly among non-zero β
Arithmetic average of the crawl scores (sum)

--- Global score
Normalization with a baseline -- relative score
Geometric average among the five graphs
Datasets and code are online

http://netiru.fr/research/12fc/
To measure the running times

Same crawl sequence: the oracle
Storage in RAM (20G)
3.6 GHz
The running times (ms)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Evaluator</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>nr</td>
<td>2,832.1</td>
<td>19,720.5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>opic</td>
<td>1.9</td>
<td>2.5</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>ne_fl</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>lr_fl</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>mab_var_fl</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>ne_sl</td>
<td>8.5</td>
<td>27.1</td>
<td>2.0</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>lr_sl</td>
<td>8.5</td>
<td>27.2</td>
<td>2.0</td>
<td>6.1</td>
</tr>
<tr>
<td>HAPPY</td>
<td>nr</td>
<td>45,965.7</td>
<td>105,209.3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>opic</td>
<td>1.8</td>
<td>1.6</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>ne_fl</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>lr_fl</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>mab_var_fl</td>
<td>1.1</td>
<td>0.3</td>
<td>0.5</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>ne_sl</td>
<td>111.1</td>
<td>24.5</td>
<td>63.3</td>
<td>240.5</td>
</tr>
<tr>
<td></td>
<td>lr_sl</td>
<td>111.4</td>
<td>24.5</td>
<td>63.3</td>
<td>241.0</td>
</tr>
</tbody>
</table>
nr

\[NR_1(v)^{t+1} = d \times w(v) + (1 - d) \times \text{avg}_{(v,u) \in E'} \frac{NR_1(u)^t}{d_i(u)} \]

\[NR_2(v)^{t+1} = d \times NR_1(v) + (1 - d) \times \text{avg}_{(u,v) \in E'} \frac{NR_2(u)^t}{d_0(u)} . \]

Estimator 2 (nr). \(\tilde{\beta}(v) = NR_2(v) \).

Quadratic complexity, with important multipliers
Their precision
The precision

Same crawl sequence: the oracle

Precision: distance of the top node to the actual top node

Arithmetically averaged over a window of 1000 steps
Their ability to lead crawls
Leading the crawl

Different crawl sequences:

defined by the top estimated nodes
Average graph scores for France
The multi armed-bandits

<table>
<thead>
<tr>
<th>Type</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0.450</td>
<td>0.481</td>
<td>0.477</td>
<td>0.495</td>
</tr>
<tr>
<td>ε-first</td>
<td>0.409</td>
<td>0.501</td>
<td>0.484</td>
<td>0.490</td>
</tr>
<tr>
<td>var-0.1-1000</td>
<td>0.383</td>
<td>0.439</td>
<td>0.420</td>
<td>0.494</td>
</tr>
<tr>
<td>var-0.2-200</td>
<td>0.427</td>
<td>0.413</td>
<td>0.461</td>
<td>0.458</td>
</tr>
</tbody>
</table>
All the estimators

<table>
<thead>
<tr>
<th>Estimator</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>bfs</td>
<td>0.147</td>
<td>0.132</td>
<td>0.130</td>
<td>0.207</td>
</tr>
<tr>
<td>opic</td>
<td>0.283</td>
<td>0.184</td>
<td>0.205</td>
<td>0.287</td>
</tr>
<tr>
<td>n</td>
<td>0.358</td>
<td>0.280</td>
<td>0.362</td>
<td>0.467</td>
</tr>
<tr>
<td>e</td>
<td>0.594</td>
<td>0.560</td>
<td>0.457</td>
<td>0.377</td>
</tr>
<tr>
<td>ne</td>
<td>0.583</td>
<td>0.570</td>
<td>0.466</td>
<td>0.378</td>
</tr>
<tr>
<td>lr_fl</td>
<td>0.325</td>
<td>0.382</td>
<td>0.466</td>
<td>0.504</td>
</tr>
<tr>
<td>mab_var-0.2-200</td>
<td>0.427</td>
<td>0.413</td>
<td>0.461</td>
<td>0.458</td>
</tr>
</tbody>
</table>
Conclusion
What we learnt

Generic model

NP-hardness offline

Refresh rate of 1

Greedy

Neighborhood features

Linear regressions

Multi-armed bandit strategy
Future work

Approximation of the optimal score

Distributed crawl

Recrawling nodes

Further multi-armed bandits comparisons
Thank you.
Finding the optimal crawl sequences in a known graph
PTime many-one reduction from the LST-Graph problem
Rich friends will make you richer
The greedy strategy

Node picked = $\text{argmax}(\beta(v)), \ v \text{ in frontier}$
Is not always optimal
The altered greedy strategy

Node picked =

probability q: $\text{argmax}(\beta(v))$

probability $1-q$: random v so that,

$\max(\beta(u)) - \beta(v) \leq \zeta \times \max(\beta(u))$
Altered greedy vs greedy for jazz

![Graph showing the comparison between altered greedy and greedy for jazz. The x-axis represents the budget, and the y-axis represents the relative score vs greedy. The graph includes lines for different parameter settings: $q = 0.8, \zeta = 1.0$, $q = 0.8, \zeta = 0.8$, $q = 0.8, \zeta = 0.6$, and $q = 0.8, \zeta = 0.4$. Each line represents a different parameter setting, demonstrating how the relative score changes with varying budget.]
The refresh rate disadvantage
When estimation takes too long

```
input : seed subgraph $G_0$, budget $n$
output : crawl sequence $V$ with a score as high as possible

1 $V \leftarrow ()$;
2 $G' \leftarrow G_0$;
3 budgetLeft $\leftarrow n$;
4 while budgetLeft $> 0$ do
5     frontier $\leftarrow$ extractFrontier($G'$);
6     scoredFrontier $\leftarrow$
7     estimator.scoreFrontier($G'$, frontier);
8     $r \leftarrow$ getRefreshRate();
9     NodeSequence $\leftarrow$
10    strategy.getNextNodes(scoredFrontier, $r$);
11 $V \leftarrow (V, NodeSequence)$;
12 for $u$ in NodeSequence do
13     $G' \leftarrow G' \cup$ crawlNode($u$);
14     budgetLeft $=$ budgetLeft $- r$
15 return $V$
```
The score degradation (%) at different steps

<table>
<thead>
<tr>
<th>Refresh rate</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.4</td>
<td>2.2</td>
<td>3.9</td>
<td>6.4</td>
</tr>
<tr>
<td>8</td>
<td>1.3</td>
<td>6.5</td>
<td>12.8</td>
<td>18.3</td>
</tr>
<tr>
<td>32</td>
<td>6.6</td>
<td>6.5</td>
<td>17.5</td>
<td>24.3</td>
</tr>
<tr>
<td>128</td>
<td>38.8</td>
<td>10.7</td>
<td>19.9</td>
<td>29.5</td>
</tr>
<tr>
<td>1024</td>
<td>38.8</td>
<td>74.3</td>
<td>25.8</td>
<td>35.9</td>
</tr>
</tbody>
</table>