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6:2 G. GOTTLOB AND P. SENELLART

1. Introduction

Main Problem Addressed. This article deals with the automatic discovery of re-
lational schema mappings based on existing data. In particular, we deal with the
following main problem, and with closely related questions. Given a relational
schema S, called the source schema, and a differently structured target schema T,
and given an instance I of S, and an instance J of T, where we assume that J
consists of an adequate “translation” of I to fit the target schema T, find an optimal
translation function, that is, a schema mapping that maps instances of S to instances
of T, taking I to J . This main problem actually consists of two important subprob-
lems: (i) determining an appropriate formal framework in which schema mappings
can be expressed and that allow one to numerically assess the quality of a schema
mapping, and (ii) understanding the computational fundamentals of the automatic
synthesis of schema mappings in that framework, in particular, complexity issues
and algorithms. We do not provide a direct algorithm for deriving schema mappings
from database instances, but we discuss a theoretical framework and complexity
analysis that can be a first step toward it.

Importance of the Problem. Schema mapping discovery has been recognized as
an issue of central relevance in various application and research contexts, for ex-
ample, in the area of data exchange [Fagin et al. 2003; Kolaitis 2005], data in-
tegration [Lenzerini 2002; Haas et al. 2005], metadata management [Bernstein
2003], and data extraction from the hidden Web, in particular, automated wrapper
generation.

Schemata and dependencies, in a data exchange context, form metadata that
need to be managed in a systematic and formal way. Bernstein [2003] argues for
the definition, in such a setting, of operators on this metadata. Thus, Fagin et al.
[2004; 2007], respectively propose ways to define the composition and inverse op-
erators on schema mappings. Another operator of importance, which is actually
closely related to the research proposed in the present paper, is the match oper-
ator [Bernstein 2003]: given two schemata and instances of these schemata, how
to derive an appropriate set of dependencies between these schemata. More pre-
cisely, given two relational databases schemata S and T and instances I and J
of these schemata, the problem is to find a schema mapping, that is, a finite set
� of formulas in a given language L, such that (I, J ) |= �, or such that (I, J )
approximates in some sense a model of �. This problem is related to the tech-
niques used for automatic schema matching in data exchange. Current methods
of automated schema mapping generation, such as those described in Rahm and
Bernstein [2001] and Haas et al. [2005], heavily rely on semantic meta-information
about the schemata (names of concepts and relations, concrete data types, etc.).
However, in many practical contexts such semantic meta-information is either not
available or would require too much or too expensive human interaction. In those
cases, the mere values of I and J constitutes the only information from which
a mapping ought to be constructed. This important case, which has been barely
studied, is addressed in the present article. Obviously, such a study is also a first
step towards schema matching systems that use both schema-based and data-based
information.

In automated wrapper generation (e.g., from Web sources), the absence of suit-
able meta-information is a similar problem. Let us take a concrete example, namely
that of extracting information from research publications databases on the Web.
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Consider for instance the list of publications by J. D. Ullman provided by DBLP1 and
Google Scholar.2 A structural information extraction wrapper such as ROADRUN-
NER [Crescenzi et al. 2001] can be applied on both pages (or set of pages obtained
by following the Next links) to obtain relational data from these pages, without any
metadata. The set of papers presented by both sources is not exactly the same, their
organization is different (e.g., grouping by dates in DBLP), some data is present in
some source and not in the other (page numbers in DBLP, direct links to electronic
versions of articles in Google Scholar), but both sources essentially present informa-
tion about the same data. Using the mutual redundancy of these sources to detect the
most appropriate schema mapping between them would enable us to wrap from one
format of output to another. If the structure of one source is known, then this schema
mapping would give us the core structure of the other one, in a fully automatic way.

Results. After stating in Section 2 some relevant definitions, in Section 3
of this article, we present a novel formal framework for defining and
studying the automatic discovery of schema mappings. In this framework,
schema mappings are—not surprisingly—expressed as source-to-target tuple-
generating dependencies (tgds). It is well known that tgds are suited for
this task. However, we also introduce a cost function, that tells us how well a
tgd does its job of translating the given source instance I into the given target in-
stance J . This cost function takes into account (i) the size of the tgd, (ii) the number
of repairs that have to be applied to the tgd in order for it to be valid and to perfectly
explain all facts of J .

Of course, defining a cost function may be seen as a somewhat arbitrary choice.
However, in Section 4, we give formal evidence of the appropriateness of the cost
function, showing that it enjoys nice properties when I and J are derived from each
other with elementary relational operations.

We study in Section 5 the computational complexity of the relevant problems. In
particular, we show that computing the cost of a schema mapping lies at the third
level of the polynomial hierarchy, while either fullness or acyclicity conditions
reduce this complexity by one level. The problem is thus NP-complete for full
acyclic tgds, and it remains NP-complete even in a very simple case where there is
only one relation of arity 3 in the source schema, and one relation of arity 1 in the
target schema. To see that, we use a lemma on the complexity of the VERTEX-COVER

problem in r -partite r -uniform hypergraphs, which is interesting in itself.
We finally discuss in Section 6 an extension and variants of this approach. We

show in particular how the cost definition can be extended to a schema mapping
expressed as an arbitrary first-order formula and discuss the complexity of the
relevant problems. We also examine other choices for the cost function, which may
seem simpler at first and closer to the existing notion of repair of a database in the
literature [Arenas et al. 1999], but which are not appropriate to our context since
they do not share the same “niceness” properties established in Section 4.

Related Work. We are not aware of any work with the same focus on a theoretical
and systematic analysis of the complexity of deriving a schema mapping, although,

1 http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/u/Ullman:Jeffrey
D=.html.
2 http://scholar.google.com/scholar?q=author%3A%22jd+ullman%22.
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6:4 G. GOTTLOB AND P. SENELLART

in spirit, the problem that we deal with here is similar to the one that inductive
logic programming (ILP) [Lavrač and Džeroski 1994] aims to solve. An approach
to the complexity of ILP is presented in Gottlob et al. [1997]; the main differences
with the work discussed here is the use of negative examples, the existence of a
background knowledge, and the restriction to Horn clauses instead of arbitrary tgds.

The notion of repair appears in the context of inconsistent databases [Arenas
et al. 1999] (with respect to some integrity constraint). In this work, consistent
query answers are defined as the common answers to a query on minimal repairs
of the database. Repairs use the addition or deletion of tuples to the database,
something close to what is discussed in Section 6 and that we show inappropriate
to our context. Besides, the focus is different: Arenas et al. [1999] suppose the
integrity constraint fixed, while we are looking for an optimal schema mapping
without any a priori.

Finally, note that the work presented here appeared in an abridged form in Senel-
lart and Gottlob [2008]. Most proofs appear here for the first time, as well as the
formal statement of Theorem 4.1, the distinction between complexity for a language
and the language of its repairs, and the various DP-hardness results.

2. Preliminaries

We assume some countably infinite sets C of constants (denoted a, b, 0, 1, etc.) and
V of variables (denoted x , y, z, etc.). We use the notation x to represent a vector
of variables x1 . . . xn . Constants appearing in formulas are here identified, as usual,
with the domain elements they are interpreted by.

A (relational) schema is a finite set of pairs (R, n) where R is a relation name
and n � 1 the arity of the relation. An instance I of a relational schema S consists,
for every (R, n) ∈ S, of a finite relation over Cn . We occasionally denote RI the
interpretation of the relation name R in the instance I (if |S| = 1, we shall make the
confusion RI = I ). In the following, we assume that the schemata are implicitly
given whenever we are given an instance.

A language L is a subset of the set of formulas of first-order logic with equality
and constants, and without function symbols (with its usual semantics). Given a lan-
guage L, a schema mapping in L is a finite set of formulas in L. We are particularly
interested in the following languages, given instances I , J with schemata S, T:

Relational Calculus. Lrc is the set of first-order formulas without constants or
equalities, with relations symbols in S ∪ T.

Source-to-Target Tuple-Generating Dependencies. Ltgd ⊂ Lrc is the set of formulas
of the form

∀x ϕ(x) → ∃y ψ(x, y),

where: (i) ϕ(x) is a (possibly empty) conjunction of positive relation atoms, with
relation symbols in S; (ii) ψ(x, y) is a conjunction of positive relation atoms, with
relation symbols in T; (iii) all variables of x appear in ϕ(x). As for Lrc, we as-
sume that no constants or equality relations appear in the formulas. This choice is
discussed in more detail in Section 3, when repairs of a tgd are introduced.

Acyclic tgds. Lacyc ⊂ Ltgd is the set of tgds such that (i) the hypergraph of the
relations on the left-hand side is acyclic [Beeri et al. 1981]; and (ii) the hypergraph
of the relations on the right-hand side, considering only existentially quantified
variables, is also acyclic. More precisely, the tgd is said to be acyclic if there are
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two forests F and F ′ (called the join forests) with each relation atom of ϕ(x)
(respectively, of ψ(x, y)) a node of F (respectively, F ′), such that for all variables
v ∈ x (respectively, v ∈ y), the subgraph of F (respectively, F ′) induced by the
atoms of ϕ(x) (respectively, ψ(x, y)) that contain v is connected. Consider for
example the tgds:

θ1 = ∀x R(x) → ∃y R(x, y)

θ2 = ∀x∀y∀z R(x, y) ∧ R(y, z) ∧ R(z, x) → R′(x, y, z)

The tgd θ1 is acyclic, while θ2 is not. Other equivalent definitions of acyclic hy-
pergraphs are given in Beeri et al. [1981]. Note that this notion of acyclicity is not
related to the notion of weakly acyclic sets of tgds that has been much studied in
the context of data exchange [Fagin et al. 2003; Kolaitis 2005].

Full tgds. Lfull ⊂ Ltgd is the set of tgds without an existential qualifier on the
right-hand side, that is, of the form

∀x ϕ(x) → ψ(x).

Acyclic Full tgds. Lfacyc = Lacyc ∩ Lfull is the set of full tgds such that the
hypergraph of the relations on the left-hand side is acyclic.

We focus here on source-to-target tuple-generating dependencies (either arbitrary
or with one of the restrictions mentioned above). Arbitrary tgds (and, in a lesser
way, full tgds) have been at the basis of most works3 in the data exchange setting
[Fagin et al. 2003; Kolaitis 2005]. As we shall see in Section 5, acyclic full tgds
have nice complexity results. We show in Section 6 how this work can be extended
to arbitrary formulas of the relational calculus.

3. Cost and Optimality of a tgd

We first introduce the two basic notions of validity and explanation that are at the
basis of our framework.

Definition 3.1. A schema mapping � is valid with respect to a pair of instances
(I, J ) if (I, J ) |= �.

Definition 3.2. A (ground) fact in a schema S is a tuple R(c1 . . . cn) where
c1 . . . cn ∈ C and R is a relation of S with arity n.

A schema mapping � explains a ground fact f in the target schema with respect to
a source instance I if, for all instances K of the target schema such that (I, K ) |= �,
f ∈ K .

A schema mapping fully explains a target instance J with respect to a source
instance I if it explains all facts of J with respect to I .

We have quite an asymmetric point of view about the pair of instances here; we
do not require a full explanation of I by the facts of J , for instance. This asymmetry
is quite common in the context of data exchange. For source-to-target tgds, note
that � fully explains J with respect to I if and only if J is included in the result of
the chase [Fagin et al. 2003] of I by �.

3 The other important class of dependencies, namely equality generating dependencies, is less appro-
priate to this context.
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6:6 G. GOTTLOB AND P. SENELLART

Example 3.3. Let us consider the following database instances I and J , on
schemata {(R, 1)} and {(R′, 2)}.

R R′

a
b
c
d

a a
b b
c a
d d
g h

We can imagine a number of schema mappings that more or less express the
relation between I and J :

�0 = ∅

�1 = {∀x R(x) → R′(x, x)}
�2 = {∀x R(x) → ∃y R′(x, y)}
�3 = {∀x∀y R(x) ∧ R(y) → R′(x, y)}
�4 = {∃x∃y R′(x, y)}
�5 = �1 ∪ �2

�0 and �4 seem pretty poor, here, as they fail to explain any facts of J , while
there seems to be a definite relation (albeit with some noise) between I and J . �3

explains most of the facts of J , but is far from being valid, since it also explains
a large number of incorrect facts such as R′(a, b) or R′(b, d). �1, �2, and �5 are
more interesting. �1 explains three facts of J , but also incorrectly predicts R′(c, c).
�2 fails to explain any facts of J , but explains most of them at least partially, in the
sense that they are explained by a fact with an existentially quantified variable (a
skolem); in addition, it is valid with respect to (I, J ). �5 combines the interesting
features of �1 and �2, with the downside of being larger. None of the schema
mappings explain the last fact of J .

As there seems to be some noise in the operation that produced J from I , it is
hard to say with certainty which schema mapping is optimal here, in the sense that
it reflects most closely the relation between I and J . At any rate, however, �1, �2,
and �5 seem far better candidates than the other ones.

To define in a formal way our notion of optimality of a schema mapping, the
basic idea is to get the simultaneous optimal for all three factors of interest (validity,
explanation of the target instance, conciseness) by minimizing the size of: the
original formula, plus all the local corrections that have to be done for the formula
to be valid and to fully explain the target instance. This is close in spirit to the
notion of Kolmogorov complexity and Kolmogorov optimal [Li and Vitányi 1997]
(though we do not consider a Turing-complete language for expressing either the
formula or the corrections, but much more limited languages).

Definition 3.4. Given a schema mapping of tgds � ⊂ Ltgd, we define the set
of repairs of �, denoted repairs (�), as a set of finite sets of formulas, such that
�′ ∈ repairs (�) if it can be obtained from � by a finite sequence of the following
operations:
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Schema Mapping Discovery from Data Instances 6:7

Adding to the left-hand side of a tgd θ of �, with θ of the form ∀x ϕ(x) →
∃y ψ(x, y), a conjunction τ (x) of the form:

∧
i xiαi ci where αi is either = or �=,

xi is a variable from x and ci is a constant.

Adding to the right-hand side of a tgd θ of �, with θ as above, a formula τ ′(x, y)
of the form:

∧
i

((∧
j

xi j = c′
i j

)
→ yi = ci

)

where xi j are variables from x, yi variables from y, and c′
i j and ci constants.

Adding to � a ground fact R(c1 . . . cn) where R is a relation of arity n, and
c1 . . . cn are constants.

The language of repairs L∗ of a language L is the language consisting of all
formulas which can be obtained from formulas of L with these operations (along
with all ground facts over the target schema).

In a repair of a tgd ∀x ϕ(x) ∧ τ (x) → ∃yψ(x, y) ∧ τ ′(x, y), the term τ (x) is
responsible for correcting cases when the tgd is not valid, by adding additional
constraints on the universal quantifier, whereas τ ′(x, y) specifies the right-hand
side of J , by giving the explicit value of each existentially quantified variable, in
terms of the universally quantified variables.

Example 3.5. Consider the databases instances and schema mappings from
Example 3.3. Two examples of repairs of �2 = {∀x R(x) → ∃y R′(x, y)} are the
following:

�′
2 = {∀x R(x) ∧ x �= e → ∃y R′(x, y), R(d, f )}

�′′
2 = {∀x R(x) → ∃y R′(x, y) ∧ (x = a → y = a) ∧ (x = b → y = b)

∧ (x = c → y = a) ∧ (x = d → y = d), R(g, h)}
�′

2 is not especially interesting with respect to I and J , since the condition
R(x) ∧ x �= e is never verified in I and R(d, f ) is not a fact in J . On the other
hand, �′′

2 has nice properties: it is still valid with respect to (I, J ) (this was already
the case with �2) and it fully explains J given I (this was not true for �2). �′′

2 is
then somehow a “perfect” repair of �2 that corrects all problems with the original
schema mapping. It is however quite long, since all conditions are enumerated one
by one. In the following, we will define the quality (or cost) of a schema mapping
in terms of the size of its minimal “perfect” repair.

An interesting property of repairs is that they are reversible: Because all oper-
ations add constants to a language where constants do not exist, it is possible to
compute (in linear time) the original schema mapping from a repair. Indeed, con-
stants are only used for repairing formulas; in other words, we consider that the
relations that we need to find between the source and target instances are to be
expressed with constant-free formulas, in order to abstract them as much as possi-
ble. Clearly, this is a simplifying assumption that could be lifted in future works.
Note that this extension is not straightforward, however: It is not clear how to dis-
tinguish between constants that are rightfully part of the optimal schema mapping
description and constants that are just used to correct some noise or missing data.
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6:8 G. GOTTLOB AND P. SENELLART

The notion of size of a schema mapping is easily defined as follows; we could also
use a more classical definition in function of the number of symbols of a formula,
without much difference in the theory.

Definition 3.6. The size of a first-order formula ϕ ∈ L∗, denoted size(ϕ) is
computed as follows:

The size of ϕ is the number of occurrences of variables and constants in ϕ (we
stress that each variable and constant is counted as many times as it occurs in
ϕ); occurrences of variables as arguments of quantifiers do not count.

If ϕ is a ground fact R(c1 · · · cn), then the size of ϕ is computed as if ϕ were the
formula

∃x1 · · · ∃xn R(x1 · · · xn) ∧ x1 = c1 ∧ · · · ∧ xn = cn .

Therefore, size(ϕ) = 3n.

The size of a schema mapping is the sum of the size of its elements.

The refinement on ground facts is performed so that such facts are not “too
cheap”: the cost of R(c1 · · · cn) is the same as that of the corresponding repair of
∃x1 · · · ∃xn R(x1 · · · xn), as will be illustrated in Example 3.9. This is not a major
assumption, however, and it does not impact the results of this paper in a significant
way. We are now ready to define the cost of a schema mapping, in terms of the size
of its repairs:

Definition 3.7. The cost of a schema mapping �, with respect to a pair of
instances (I, J ), is defined by:

cost(I,J )(�) = min
�′∈repairs(�)

(I, J ) |= �′ and �′ fully explains J

size(�′).

Note that cost(I,J )(�) may not be defined if the minimizing set is empty.
A schema mapping � ⊂ L is optimal in the language L, with respect to a pair

of instances (I, J ), if:

cost(I,J )(�) = min
�′⊂L

�′ finite

cost(I,J )(�
′).

It is indeed possible that cost(I,J )(�) is not defined. This is for instance the
case for T = {(R′, 1)}, � = {∃x R′(x)} and J = ∅. However, this case is easily
recognizable; in other cases, we have a linear bound on the cost of a schema
mapping:

PROPOSITION 3.8. There is an algorithm that is polynomial in the size of the
target instance to check whether the cost of a schema mapping in Ltgd is defined
with respect to a pair of instances. If it is defined, the cost is bounded by a linear
function of the size of the data and the schema mapping itself.

PROOF. Let � be a schema mapping, I and J instances of the source and target
schema. Then the cost of � is undefined if and only if it contains a tgd θ without a
left-hand side (i.e., of the form ∃y ψ(y)) and which is not valid in J , which can be
tested in polynomial time in the size of J .
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To see this, we shall prove that in all other cases, there is a linear bound on
cost(I,J )(�). Indeed, every tgd with a left-hand side can be canceled by adding an
x = c term on the left-hand side, where x is a universally quantified variable and
c a constant which does not appear in I . Moreover, all facts of J can be added to
the repair of the tgd as ground facts. We then have the following bound on the cost
of �:

cost(I,J )(�) � size(�) + 2|�| + 3r |J |
where r is the maximum arity of a target relation.

This linear bound is interesting, since we can imagine to use local search algo-
rithms to find the tgd with minimum cost, as soon as we are able to compute in an
efficient way the cost of a tgd. We shall see in Section 5, unfortunately, that even
for a very restricted language, computing the cost of a tgd is NP-complete.

Example 3.9. Let us go back to the instances and schema mappings of Exam-
ple 3.3, compute their respective cost, and see which one is optimal.

Consider first �1 = {∀x R(x) → R′(x, x)} and let us find its perfect repair of
minimal size. Since �1 incorrectly predicts R′(c, c), we need to add a condition on
the left-hand side; “ ∧ x �= c” is enough, only invalidates this fact, and there is no
correction whose size would be smaller. With this addition, �1 becomes valid, but
does not fully explain all facts of the target instance. The only way to fix this is to
add the ground facts R′(c, a) and R′(g, h) to �1, to obtain a repair

�′
1 = {∀x R(x) ∧ x �= c → R′(x, x), R′(c, a), R′(g, h)}

that is valid and fully explains the target instance. The discussion above shows that
�′

1 is of minimal size. This means cost(I,J )(�1) = size(�′
1) = (3+2)+2·3·2 = 17.

Consider now �4 = {∃x∃y R′(x, y)}. Since the formula has no left-hand side, we
only need to consider the last two repair operations: correcting existential qualifiers
and adding ground facts. Adding one of the fact of J to �4 yields an increase in
the size of the formula of 3 × 2 = 6. On the other hand, we can obtain one of the
fact of J by repairing the existential qualifiers with, say, “ ∧ x = a ∧ y = a”, for
an increase in size of 4. The cost of �4 is thus the sum of 2 (the original size of the
formula), 4 (the size of the repair of the existential qualifiers, to predict one of the
facts of J ), 4 × 6 (the size of the remaining facts of J added as ground facts), that
is, 30.

We obtain in this way (the computation is similar for the other schema mappings):

cost(I,J )(�0) = 3 · 2|J | = 30

cost(I,J )(�1) = 3 + 2 + 2 · 3 · 2 = 17

cost(I,J )(�2) = 3 + 4 · 4 + 3 · 2 = 25

cost(I,J )(�3) = 4 + 4 + 4 · 3 · 2 = 32

cost(I,J )(�4) = 2 + 4 + 4 · 3 · 2 = 30

cost(I,J )(�5) = 3 + 2 + 3 + 4 + 3 · 2 = 18

The fact that �4 has the same cost as �0 is no coincidence, this is due to the
choice we made for the cost of a ground fact. It appears that �1 is the best of
these schema mappings, with �5 almost as good, and �2 a little behind. We can
show that �1 is actually the optimal schema mapping, that is, there are no other
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6:10 G. GOTTLOB AND P. SENELLART

schema mappings with lesser cost. To see this, note first that g and h occur in J
without occurring in R. This means R′(g, h) is necessarily added as ground fact in
the repair of any schema mapping. Therefore, disregarding this ground fact, only
repaired schema mappings of size less than si ze(�1) − 6 = 11 are of potential
interest. We can then enumerate all such repaired schema mappings and show that
none is valid and fully explains J .

At least on this simple example, our measure of cost seems reasonable. We will
further justify it in Section 4.

The following decision problems arise naturally once given this notion of opti-
mality. Each of them is defined for a given language L (L can for instance be Ltgd

or Lacyc
∗), and we shall investigate their complexity in Section 5.

VALIDITY Given instances I , J , and � ⊂ L, is � valid with respect to
(I, J )?

EXPLANATION Given instances I , J , and � ⊂ L, does � fully explain J with
respect to I ?

ZERO-REPAIR Given instances I , J , and � ⊂ L, is cost(I,J )(�) equal to
size(�)?

COST Given instances I , J , � ⊂ L and an integer K � 0, is
cost(I,J )(�) less than or equal to K ?

EXISTENCE-COST Given instances I , J and an integer K � 0, does there exist
� ⊂ L such that cost(I,J )(�) is less than or equal to K ?

OPTIMALITY Given instances I , J , and � ⊂ L, is it true that � is optimal
with respect to (I, J )?

4. Justification

In this section, we justify the definitions of the previous section by observing that,
when instances I and J are derived from each other by elementary operators of the
relational algebra, the optimal schema mapping, in Ltgd, is the one that “naturally”
describes this operator.

Let r, r ′ be instances of relations. We consider the following elementary operators
of the relational algebra:

Projection πi (r ) denotes the projection of r along its i th attribute.

Selection σϕ(r ), where ϕ is a conjunction of equalities and negated equalities
between an attribute of r and a constant, denotes the selection of r
according to ϕ. Note that we allow neither identities between attributes
of r (this is the role of the join operation), nor disjunctions (they may
be expressed using a combination of selection and union).

Union r ∪ r ′ is the union of r and r ′.
Intersection r ∩ r ′ is the intersection of r and r ′.
Product r × r ′ is the cross product of r and r ′.
Join r 1ϕ r ′ is the join of r and r ′ according to ϕ, where ϕ is an equality

between an attribute of r and an attribute of r ′; ϕ is omitted when the
context makes it clear.
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The relationship between a database instance I and the instance J obtained from
I using one of these operators can often be (partially) expressed in a natural way
by a tgd or a set of tgds, where I is the source instance and J the target instance
(and similarly when the source instance is expressed as the result of applying some
operator to the target instance). For instance ∀x R1(x) ∧ R2(x) → R′(x) is natu-
rally associated with the intersection operator. The only case when the relationship
between I and J has no natural expression as a tgd is for the reciprocal of the
union operator: If I = R J

1 ∪ R J
2 , the natural formula for describing this relation

is ∀x R(x) → R1(x) ∨ R2(x), which is not a tgd since we do not allow disjunc-
tion. In some cases, as tgds are not powerful enough to express the relationship,
or as some information is lost, the correspondence is only partial. For instance,
∀x R(x) → R′(x) is the most natural tgd for the operation J = σϕ(I ), but the tgd
does not fully describe the selection.

We now state that, using the notion of optimality of a schema mapping with
respect to a pair of instances described in the previous section, and with some
simple restrictions on the considered instances, the optimal schema mapping for a
pair of instances obtained from each other with an operator of the relational algebra
is precisely the schema mapping that is naturally associated with the operator. This
justifies the choice of this notion of optimality, at least in these elementary contexts.
We shall see in Section 6 other choices for the cost function, that might seem more
natural at first, but that fail to satisfy the same property. For clarity’s sake, we
first state this result in an informal way and illustrate it on the example of the join
operator, before presenting it formally.

THEOREM 4.1 (INFORMALLY STATED). For any elementary operator γ of the
relational algebra, the tgd naturally associated with this operator (when it exists) is
optimal with respect to (I, γ (I )) (or (γ (J ), J ), depending on the considered case),
if some basic assumptions are fulfilled: the instances are not of trivial size and there
is no simpler relation between attributes than the one described by the operator.

Let us see what this means, and prove this result, for the join operator. Suppose
J = RI

1 1 RI
2 (with R1 and R2 two binary relation symbols), and let us add the

basic assumptions that π1(J ) �= π2(J ), π1(J ) �= π3(J ), π2(J ) �= π3(J ). We have:

cost(I,J )({∀x∀y∀z R1(x, y) ∧ R2(y, z) → R′(x, y, z)}) = 7

since this tgd is valid and explains all facts of J . The cost of the empty schema
mapping, 9|J |, is greater since J is not empty. The only remaining relevant schema
mappings with lesser size (of 5) have a single relation symbol R1 or R2 on the
left-hand-side. But this means that they either predict two identical columns in J
(this is incorrect, and has to be fixed in a repair of the schema mapping, whose
additional cost is at least 2), or use an existential quantifier on the right-hand size,
which also has to be repaired.

Now consider the case where I = R′
1

J 1 R′
2

J
, and let us suppose all three

attributes πi (I ) disjoint.

cost(I,J )({∀x∀y∀z R(x, y, z) → R′
1(x, y) ∧ R′

2(y, z)})
= 7 + 6

∣∣{(x, y) ∈ R′
1

J ∣∣∀z (y, z) /∈ R′
2

J }∣∣
+ 6

∣∣{(y, z) ∈ R′
2

J ∣∣∀x (x, y) /∈ R′
1

J }∣∣.
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6:12 G. GOTTLOB AND P. SENELLART

cost(I,J )(∅) = 6|J | is greater than that as soon as I is not empty. As we assumed all
three attributes of I disjoint, we can eliminate a number of schema mappings that
do not produce any correct facts. The only remaining ones only have R′

1(w1, w2) or
R′

2(w2, w3) terms on the right-hand size with those three variables either existen-
tially quantified or appearing, respectively in the first, second or third position of
a R(w1, w2, w3) atom on the left-hand side. None of these schema mappings can
explain the facts that the schema mapping above does not explain, and existential
quantifiers have to be accounted for in repairs.

We can now state the result of Theorem 4.1 more formally:

THEOREM 4.2 (FORMALLY STATED). The tgds presented in the last column of
Table I are optimal with respect to (I, J ), when I and J are as described (in order
not to clutter the table, universal quantifiers on the front of tgds are not shown).

PROOF. First, observe that the size of a ground fact of arity n is the
same as the size of any maximal repair of the tgd without a left-hand side
∃x1 · · · ∃xn R(x ′

1 · · · x ′
n). This means that we do not need to consider such tgds.

Projection. Suppose J = π1(I ) with I �= ∅. Then:

cost(I,J )({∀x∀y R(x, y) → R′(x)}) = 3

since it is valid and fully explains all facts of J . We then only need to con-
sider schema mappings of size strictly lesser than 3. The only relevant one is the
empty schema mapping and cost(I,J )(∅) = 3|J | = 3|I |, which is greater or equal
to 3 as soon as I �= ∅.

Consider now the case when I = π1(J ) with π1(J ) ∩ π2(J ) = ∅, |π1(J )| � 2.
We have:

cost(I,J )({∀x R(x) → ∃x R′(x, y)})
= 3 + 4|I | + 3 · 2(|J | − |I |)
= 3 − 2|I | + 6|J |

(this is a valid schema mapping, but it fails to explain all facts of J ; |I | facts can
be explained by repairing the existential quantifier, all others must be given as
ground facts). As we assume that attributes of J have disjoint domains, all schema
mappings with a R′(w1, w2) where w2 is not existentially quantified do not explain
any facts of J . The only remaining schema mapping of interest is then ∅, whose
cost is 6|J |, which is greater than 3 − 2|I | + 6|J | as soon as |I | � 2.

Selection. If J = σϕ(I ), with |σϕ(I )| � size(ϕ)+2

3
(in the common case where ϕ

is a single equality or negated equality, size(ϕ) = 2 and this condition amounts to
|J | � 2), we have:

cost(I,J )({∀x R(x) → R′(x)})
� size(∀x R(x) ∧ ϕ(x) → R′(x))

= 2 + size(ϕ).

The only other schema mapping that might have a lesser cost is ∅ and cost(I,J )(∅) =
3|J | = 3|σϕ(I )|.
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6:14 G. GOTTLOB AND P. SENELLART

Now, suppose I = σϕ(J ) with σϕ(J ) �= ∅. Observe that

cost(I,J )({∀x R(x) → R′(x)}) = 2 + 3(|J | − |I |)
is lesser than cost(I,J )(∅) = 3|J | as soon as |I | �= ∅.

Union. If J = RI
1 ∪ RI

2 with both relations strictly included in their union,

cost(I,J )({∀x R1(x) → R′(x), ∀x R2(x) → R′(x)}) = 4

while the cost of each of these tgds alone is greater than 5. We also have:

cost(I,J )({∀x R1(x) ∧ R2(x) → R′(x)})
= 3 + 3

(∣∣RI
1 ∪ RI

2

∣∣ − ∣∣RI
1 ∩ RI

2

∣∣) � 9.

Finally, the cost of the empty schema mapping is:

3
∣∣RI

1 ∪ RI
2

∣∣ � 6.

Intersection. Suppose J = RI
1 ∩ RI

2 with neither of these relations containing
the other one;

cost(I,J )({∀x R1(x) ∧ R2(x) → R′(x)}) = 3.

Neither {∀x R1(x) → R′(x)}, nor {∀x R2(x) → R′(x)}, nor the empty schema
mapping, have a lesser cost as soon as both RI

1 and RI
2 contain facts not in the other

one, and the intersection is not empty.

Consider now the case where I = R′
1

I ∩ R′
2

I
. Then:

cost(I,J )({∀x R(x) → R′
1(x) ∧ R′

2(x)})
= 3 + 3

(∣∣R′
1

J ∣∣ + ∣∣R′
2

J ∣∣ − 2|I |)
while

cost(I,J )({∀x R(x) → R′
1(x)})

= 2 + 3
(∣∣R′

1
J ∣∣ + ∣∣R′

2
J ∣∣ − |I |)

cost(I,J )({∀x R(x) → R′
2(x)})

= 2 + 3
(∣∣R′

1
J ∣∣ + ∣∣R′

2
J ∣∣ − |I |)

cost(I,J )(∅) = 3
(∣∣R′

1
J ∣∣ + ∣∣R′

2
J ∣∣).

The first schema mapping has a lower cost than the other ones as soon as I �= ∅.

Product. In both cases, the cost of the schema mapping from Table I is 4 (it is
valid and explains all facts of J ) and, unless one of the instance is empty, no other
schema mapping of lesser size is valid and explains all facts of J .

Join. This has been shown above.

These results could also be extended to the cases where we have relations of
greater arity, but we would then require strong constraints, as the one we imposed
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for reciprocal join (that all attributes are disjoint), so as not to have any “hidden”
relation between the different attributes. A weaker assumption that could be made
is to use a notion of Kolmogorov randomness [Li and Vitányi 1997]: A database
instance selected at random cannot have a description of length lower than its size,
thanks to a simple counting argument. We can use such random instances to get a
contradiction when we obtain a schema mapping that uses hidden relations between
attributes of relations in the instance to have a lower cost than the natural schema
mapping. Using such random instances is not straightforward to formalize: in the
case of a join, for instance, we probably do not want to consider instances for which
the result of the join is empty, which almost always happens if we consider truly
random instances.

One might also want to extend this result to arbitrary relational expressions.
However, this is not direct. The first issue is that arbitrary relational algebra ex-
pressions might not be minimal, or that several different algebra expressions of
the same size might be equivalent (think of projections pushed inside joins, for
instance). Depending on the way these expressions are transformed into tgds, this
nonminimality may be reflected on the schema mapping itself, and we definitely
do not want to derive a nonminimal schema mapping. Secondly, composing several
basic operations of the relational algebra will yield in most cases formulas that
are not expressible as tgds (possibly requiring second-order formulas [Fagin et al.
2004]). Finally, we need to be sure that there are no hidden dependencies inside
the data that will make another schema mapping optimal, as discussed above. The
conditions for that were relatively simple in the case of the basic operations of
the relational algebra but would be much more involved in the case of arbitrary
expressions.

5. Complexity Study

We now proceed to a study of the computational complexity of the different prob-
lems identified in Section 3, for the different subsets of Ltgd that we presented in
Section 2. We focus here on combined complexity (when K and � are part of the
input to the problem in addition to I and J ), since we are precisely reasoning about
the schema mappings themselves, but we also present at the end of the section data
complexity results. We first describe general relationships between the different
problems, before giving a full characterization of their complexity for Lfacyc, the
language of full acyclic tgds. We also consider the more general cases of Ltgd, Lfull,
and Lacyc. EXISTENCE-COST and OPTIMALITY will be discussed separately.

We briefly go over the standard notations used for the complexity classes that
are of interest here [Papadimitriou 1994]. All complexity classes are displayed
in bold font. PTIME is the class of problems solvable in polynomial time by
a deterministic Turing machine. A problem is in NP (respectively, coNP) if it
is solvable (respectively, if its complement is solvable) in polynomial time by a
nondeterministic Turing machine. DP is defined as the class of all languages L that
can be written as L = L1 ∩ L2, where L1 ∈ NP and L2 ∈ coNP. The polynomial
hierarchy is defined inductively as follows: ΣP

0 = ΠP
0 = PTIME, and for all

i � 0, ΣP
i+1 = NPΣP

i and ΠP
i+1 = coNPΣP

i where AB is the class of problems
solvable by a Turing machine in class A with access to an oracle for a B-complete
problem. Observe that ΣP

1 = NP and ΠP
1 = coNP.
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6:16 G. GOTTLOB AND P. SENELLART

5.1. GENERAL COMPLEXITY RESULTS. As the complexity of the different deci-
sion problems depends on the particular language considered, we add to the problem
name a subscript identifying the considered language (say, OPTIMALITYtgd for the
OPTIMALITY problem in Ltgd). We use an asterisk to indicate the problem con-

cerns schema mappings that include repairs (for instance, ZERO-REPAIRfull∗ for the
ZERO-REPAIR problem in Lfull

∗).
We have the following elementary relationships between these problems, that

can be used to derive complexity results for one problem from complexity results
for another one.

PROPOSITION 5.1. For any language L ⊆ Ltgd
∗:

(1) ZERO-REPAIR = VALIDITY ∩ EXPLANATION.

(2) There is a polynomial-time reduction of VALIDITY to ZERO-REPAIR.

(3) There is a polynomial-time reduction of ZERO-REPAIR to COST.

(4) Given an algorithm A ZERO-REPAIR for ZERO-REPAIR in L∗ and a polynomial-
time algorithm for determining if a formula is in L, there are nondeterministic
algorithms for COST and EXISTENCE-COST in L that run by using once the
algorithm A ZERO-REPAIR, with an additional polynomial-time cost.

(5) Given an algorithm A COST for COST and a polynomial-time algorithm for de-
termining if a formula is in L, there is a nondeterministic algorithm for the
complement of OPTIMALITY that runs by using a logarithmic number of times
the algorithm A COST, with an additional polynomial-time cost.

(6) IfL ⊆ L′, for any problem among VALIDITY, EXPLANATION, ZERO-REPAIR and
COST, there is a constant-time reduction from the problem in L to the problem
in L′. This is in particular true for reductions from the problem in L to the
problem in L∗.

PROOF

(1) By definition, cost(I,J )(�) � size(�). Because the size of a repaired formula
is always greater than the original formula, the only case when the equality occurs
is when the original formula is valid and fully explains J .

(2) Let (I, J, �) be an instance of VALIDITY. Let �′ be the union of � and of
all ground facts of J . Obviously, �′ fully explains J with respect to I . That means
that cost(I,J )(�

′) = size(�′) if and only if �′ is valid with respect to (I, J ). As
the ground facts of �′ do not change its validity, cost(I,J )(�

′) = size(�′) if and
only if � is valid with respect to (I, J ).

(3) Just take K = size(�), which is computable in linear time.
(4) Consider the nondeterministic algorithm for COST shown as Algorithm 1.

Algorithm 1. COST (NON-DETERMINISTIC) GIVEN A ZERO-REPAIR FOR ZERO-REPAIR

Input: Instances I , J , schema mapping �, K � 0.
Output: Answer to COST.

(a) Let K ′ be the minimum between K and the upper bound of Proposition 3.8.

(b) Guess a set of formulas �′ of total size less than or equal to K ′.

(c) Check that �′ is a repair of �. Otherwise, give up this guess.

(d) Apply A ZERO-REPAIR on �′; if the result is true, return true.
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Algorithm 2. COMPLEMENT OF OPTIMALITY (NON-DETERMINISTIC) GIVEN A COST FOR COST

Input: Instances I , J , schema mapping �.
Output: Answer to the complement of OPTIMALITY.

(a) Use A COST a logarithmic number of times to compute K = cost(I,J )(�) (we make use on the
linear bound of Proposition 3.8).

(b) Guess a set of formulas �′ of total size less than K .

(c) Check that �′ is in L. Otherwise, give up this guess.

(d) Apply A COST on (�′, K − 1); if the result is true, return true.

The algorithm for EXISTENCE-COST is very similar, just replace the bound on K
with the cost of the empty schema mapping, and step (c) by a check that �′ is in
L∗ (this can be done in polynomial time by hypothesis). Note that the bound of
cost(I,J )(∅) on the guess is critical, since otherwise the guess would be of size K ,
and thus exponential in the length of the representation of K .

(5) Algorithm 2 is a nondeterministic algorithm for the complement of OPTI-
MALITY.

(6) Directly results from the fact that a formula of L is also a formula of L′.
Note that this property does not necessarily hold for EXISTENCE-COST and OPTI-
MALITY, since both of them depend on the existence of a formula in the underlying
language.

Note that for each language considered here, there is a linear-time algorithm for
determining if a formula is in this language; this is obvious for all except Lacyc

and Lfacyc, and an algorithm from Tarjan and Yannakakis [1984] gives a linear-time
algorithm for the acyclicity of hypergraphs.

In the next sections, we shall investigate in detail the complexity of the different
problems in each of the identified subsets of Ltgd, starting from Ltgd itself. A
summary of all combined complexity results proved in the following, along with
their direct consequences, is shown in Table II. The lower part of Table II indicates
the references to the propositions used to derive the complexity results shown in
the upper part; in the case where there are two references, the first one is for the
upper bound, the second one for the lower bound.

5.2. COMBINED COMPLEXITY FOR FULL ACYCLIC TGDS. Let us first investigate
the combined complexity of VALIDITY and EXPLANATION in Lfacyc. We shall need
additional notions on acyclic joins from Beeri et al. [1981] and Yannakakis [1981].
Note first that an acyclic full tgd∀x ϕ(x) → ψ(x) that describes the relation between
a pair of instances (I, J ) can be seen, in the relational algebra, as a project-join
expression over the source instance, πψ (1ϕ(I )), ϕ expressing the join (which is, by
hypothesis, acyclic) and ψ expressing the projection. Adding repaired formulas,
of the form ∀x (ϕ(x) ∧ τ (x)) → ψ(x), means adding an additional selection:
πψ (στ (1ϕ(I ))).

A full reducer of a join expression is a program which removes some tuples
to the relations to be joined (by performing semi-joins) so that each relation can
then be retrieved as a projection of the full join. Such a full reducer always exists
in acyclic databases and can be obtained in polynomial time [Bernstein and Chiu
1981]. The full reducer itself runs in polynomial time. Finally, note that a join tree
of an acyclic join can be obtained in linear time [Tarjan and Yannakakis 1984].
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Algorithm 3. RESULT TO A PROJECT-JOIN EXPRESSION ON AN ACYCLIC DATABASE (AFTER

YANNAKAKIS [1981])

Input: An acyclic join expression ϕ, a project expression ψ , an instance I .
Output: πψ (1ϕ(I )).

(a) Compute a full reducer of the relation instances, and apply it.

(b) Compute a join tree T of the acyclic expression. Each node of the tree initially contains the
corresponding reduced relation instance.

(c) For each subtree of T with root r , compute recursively for each child r ′ of r the join of r with r ′,
and project to the union of the variables appearing in ψ and the common variables of r and r ′.
Remove r ′ and replace node r with this result.

Yannakakis [1981] proposes then Algorithm 3 for computing the result to a
project-join expression on an acyclic database, that we reuse with slight modifica-
tions in our next proposition.

An important property of this algorithm is that, at all time, the size of the relation
stored in node r of T is bounded by the original (reduced) size of r times the size of
the final output. This means in particular that this algorithm computes in polynomial
time the result to the project-join expression. Actually, the same algorithm can be
applied when repaired formulas are considered, since the only selection performed
is a conjunction of constraints (equality and negated equality) on a given variable:
These selections can be pushed inside the join.

PROPOSITION 5.2. VALIDITYfacyc∗ and EXPLANATIONfacyc∗ are in PTIME.

PROOF. We first consider VALIDITY and then EXPLANATION.
(1) First check that the ground facts of � are valid. Then, we have to apply

Algorithm 3 on each ϕ of � which is not a ground fact to check whether its output
is included in J . This, however, may not lead to a polynomial-time algorithm, since
Algorithm 3 is polynomial in the size of the join expression, the input, and the
output. The solution is to take care, at each join step, that the output remains in the
bound given in the discussion of Algorithm 3. Assume that at some point during a
run of the algorithm, the size of a relation stored at node r goes over the bound of
the original size of r multiplied by the size of J ; this means that the final output
of the algorithm is larger than J , that is, it is not included in J and (I, J ) �|= ϕ.
Otherwise, the computation is polynomial in the size of ϕ, I , and J , we can let the
algorithm terminate and check then if the output is included in J .

(2) For each fact f of J , proceed as follows. If f appears as a ground fact in �, it
is fully explained in �. Otherwise, for each formula of � that is not a ground fact,
we apply a variant of the algorithm presented above to decide whether f is in the
output of the original algorithm (once again, by pushing selections inside joins), as
described in Corollary 4.1 of Yannakakis [1981].

ZERO-REPAIR is then tractable in Lfacyc. One might hope that this tractability ex-
tends to COST. Unfortunately, we now show the NP-hardness of COSTfacyc, even for
a very simple schema mapping. For this purpose, we shall first need a quite general
result on the minimal size of a vertex cover in a r -partite r -uniform hypergraph (for
r � 3).

A hypergraph is r -partite if the set of vertices can be decomposed into an r -
partition, such that no two vertices of the same partitioning subset are in a same
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6:20 G. GOTTLOB AND P. SENELLART

FIG. 1. Example tripartite hypergraph corresponding to the 3SAT instance ¬z ∨ x ∨ y.

hyperedge. It is r -uniform if all hyperedges have a cardinality of r . A vertex cover of
a hypergraph is a subset X of the set of vertices, such that for every hyperedge e, at
least one of the elements of e is in X . In regular graphs, VERTEX-COVER (determining
whether there is a vertex cover of size � K ) is one of the most well-known and
useful NP-complete problems [Garey and Johnson 1979]. This obviously implies
that VERTEX-COVER is NP-hard in general r -uniform hypergraphs. Note that a
2-partite 2-uniform hypergraph is just a bipartite graph, and VERTEX-COVER in
bipartite graphs is PTIME, thanks to Kőnig’s theorem [Diestel 2005; Kőnig 1936]
which states that the maximal number of matchings in a bipartite graph is the
minimum size of a vertex cover.

LEMMA 5.3. The problem of, given an r-partite r-uniform hypergraph H and
a constant K , determining whether there exists a vertex cover in H of size less than
or equal to K is NP-complete for r � 3.

PROOF. This problem is clearly in NP: Just guess a set of vertices of size less
than or equal to K and check in polynomial time whether it is a vertex cover. For
the hardness part, we prove the case r = 3; there is an obvious reduction from this
case to the same problem for other values of r . We use a reduction from 3SAT.

Note that this result appears in Ilie et al. [2002], but the reduction presented there
is not exhaustive (in particular, nothing is said about interdependencies between
clauses, or the fact that the hypergraph is tripartite) and it is not clear whether the
proof was indeed led to completion. We use here a proof inspired by the proof that
3-DIMENSIONAL-MATCHING is NP-hard in Garey and Johnson [1979].

Let ϕ = ∧n
i=1 ci be an instance of 3SAT, where the ci ’s are 3-clauses over some

set x of variables. We build a tripartite 3-uniform hypergraph H = (V, E) (with
vertex partition V = V1 ∪ V2 ∪ V3) in the following way (see Figure 1 for an
illustration when ϕ = ¬z ∨ x ∨ y). For each variable x ∈ x, we add 12 nodes and 6
hyperedges toH. 6 out of the 12 nodes are anonymous nodes that only appear in one
hyperedge; they are denoted by •. The other nodes are denoted x1, x2, x3, x̄1, x̄2, x̄3.
Intuitively, all xi ’s are in a minimum covering if and only if a valuation satisfying
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TABLE III. LOCAL EDGES USED

IN THE PROOF OF LEMMA 5.3.

V1 V2 V3

x1 • x̄3

• x2 x̄3

x̄1 x2 •
x̄1 • x3

• x̄2 x3

x1 x̄2 •

ϕ maps xi to true (similarly with the x̄i ’s and false). For each i , xi and x̄i belong to
Vi . The so-called local hyperedges are shown in Table III. Then, for each clause ci ,
we add a single global hyperedge which contains the vertices corresponding to the
variables appearing in ci , while taking into account their position in the clause and
whether they are negated. For instance, if ci = ¬z ∨ x ∨ y, we add a hyperedge
(z̄1, x2, y3). This ensures that the hypergraph remains tripartite.

This reduction is polynomial. Let m be the cardinality of x. We now show that ϕ
is satisfiable if and only if there is a vertex cover inH of size less than or equal to 3m
(or, equivalently, if there is a minimum vertex cover of size less than or equal to 3m).

Suppose first that ϕ is satisfiable, and let ν be a valuation of x which satisfies ϕ.
Let us consider the following set S of vertices of H: For each x ∈ x, we add to S,
x1, x2 and x3 if ν(x) is true, x̄1, x̄2 and x̄3 otherwise. S is of cardinality 3m. Observe
that S covers all local hyperedges and, since ν satisfies ϕ, all global hyperedges.

Suppose now that there is a minimum vertex cover S of size less than or equal to
3m. Since anonymous vertices only appear in a single hyperedge, we can always
assume that S does not contain any anonymous vertex (they can always be replaced
by another vertex of the hyperedge). Let Si be, for each 1 � i � m, the subset of
S containing only the vertices corresponding to the i th variable of x. It is easy to
see that |Si | � 3 for all i , for all local hyperedges to be covered, which means that
|Si | = 3 since | ⋃ Si | � 3m. Si forms a vertex cover of the local subhypergraph
corresponding to the i th variable of x (let us call it x) and must cover the hyperedges
of this sub-hypergraph. But there are only two vertex covers of this subhypergraph
of cardinality 3: Either Si contains all xk’s, or it contains all x̄k’s. We consider the
valuation ν of the variables in x which maps x to true in the first case, to false in
the second. Then, since S is a vertex cover of H, ν satisfies all the clauses of ϕ.

We now use this lemma to prove the NP-hardness of COSTfacyc.

PROPOSITION 5.4. COSTfacyc is NP-hard.

PROOF. We consider first the case where we only allow negated equalities
x �= c, and no equalities x = c, on the left-hand side of repairs of tgds, with x a
universally quantified variable, as the proof is clearer.

We reduce the vertex cover problem in tripartite 3-uniform hypergraphs to
COSTfacyc. Let H be a tripartite 3-uniform hypergraph. We consider the follow-

ing instance of COSTfacyc:

S = {(R, 3)} and RI is the representation of H as a three-column table, where
each row corresponds to an edge, and each column to one of the sets of the
tripartition of H;
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6:22 G. GOTTLOB AND P. SENELLART

T = {(R′, 1)} and J = ∅;

� = {∀x1∀x2∀x3 R(x1, x2, x3) → R′(x1)} (this is obviously an acyclic tgd).

As J = ∅, any schema mapping fully explains J . This also means that the only
repairs of � to be considered are the ones that add a “xi �= ci ” term to the left-hand
side of the single element of �. A repair of � has to “cancel” somehow with these
additions each tuple of RI . In other words, the cost of � is size(�) + 2r , where
r is the minimal number of conjuncts in a formula of the form

∧
xi �= ci , such

that this formula is false for all tuples of RI . Such a formula expresses a vertex
cover in H, and H has a vertex cover of size less than or equal to K if and only if
cost(I,J )(�) � size(�) + 2K , which concludes the proof in this case.

In the case where we allow arbitrary repairs, including x = c terms on the left-
hand side of a tgd, the same proof does not work, since it suffices to choose an
arbitrary constant c, which does not appear in I for the term x1 = c to cancel every
tuple of RI . To fix this, we need to make prohibitive the addition of such a term to
� in the following way: Let c′, and, for 1 � i � 3, 1 � j � K , ci, j be 3K + 1
fresh constants. We can always assume that K is linear in the size of the input of
COSTfacyc (otherwise, just replace K with the upper bound of Proposition 3.8). We
consider the following slightly modified instance of COSTfacyc:

S = {(R, 3)} and RI = A ∪ B, where A is the representation of H as a three-
column table, where each row corresponds to an edge, and each column to one
of the set of the tripartition of H, and B is the set:

{R(c1 j , c′, c′) | 1 � j � K } ∪
{R(c′, c2 j , c′) | 1 � j � K } ∪
{R(c′, c′, c3 j ) | 1 � j � K };

T = {(R′, 3)} and J is the same as B if R is replaced by R′;
� = {∀x1∀x2∀x3 R(x1, x2, x3) → R′(x1, x2, x3)} (this is obviously an acyclic
tgd).

This reduction is polynomial if K is linear in the size of the input, as assumed.
� fully explains J and the repairs considered in the previous case do not change
this.

Let now xi = c be a term with 1 � i � 3 and c some constant. Whatever the
choice of c, the addition of this term to the tgd of � cancels at least K tuples of
B, and hence, fails to explain at least K tuples of J (the best case is when c = c′).
Just observe that, as the cost of a ground fact, which is the only way to repair
unexplained tuples, is 9, the size of any repair of � with such an xi = c term on
the left-hand side is greater than or equal to size(�) + 9K . We keep the fact that
cost(I,J )(�) � size(�) + 2K if and only if H has a vertex cover of size less than
or equal to K .

It is an open issue whether COST is in PTIME for the very restricted case when
the schema mapping consists of a single full tgd with a single binary relation symbol
appearing once in the left-hand side.

5.3. COMBINED COMPLEXITY FOR TGDS. We now look at the complexity of
the same problems in the more general case of Ltgd.
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PROPOSITION 5.5

(1) VALIDITYtgd and VALIDITYtgd∗ are ΠP
2 -complete.

(2) EXPLANATIONtgd∗ is in NP.

PROOF

(1) VALIDITYtgd∗ is clearly in ΠP
2 . First check the validity of the ground facts.

For the other formulas of �, guess a valuation of the variables of the left-hand side;
if the left-hand side is false (can be decided in polynomial time), give up the guess.
Otherwise, use the NP oracle to decide whether the right-hand side holds; if it does
not, return false.

For the hardness part, we use a reduction of ∀∃3SAT: the satisfiability of the
formula ∀x∃y ϕ(x, y), where ϕ is a propositional formula in 3-CNF over x ∪ y.
This problem is ΠP

2 -complete [Wrathall 1976; Schaefer and Umans 2002]. Let

∀x∃y
∧n

i=1 ci (zi1, zi2, zi3) be an instance of ∀∃3SAT, where each ci is a 3-clause,
and each zi j is one of the variables of x∪y. We consider then the following instance
of VALIDITYtgd:

S = {(B, 1)} and I = {B(0), B(1)};
T = {(R1, 3) . . . (R8, 3)} and J is such that the R J

i ’s are the 8 distinct subsets

of {0, 1}3 of cardinality 7 (this corresponds to the 8 possible truth tables of a
3-clause);

For each 1 � i � n, let 1 � ki � 8 be the unique integer such that ci (zi1, zi2, zi3)
is true if and only if (zi1, zi2, zi3) ∈ R J

ki
(with the usual abuse of notation of

identifying values of Boolean variables and values in {0, 1}). We now define �
as follows:

� =
{

∀x
m∧

i=1

B(xi ) → ∃y
n∧

i=1

Rki (zi1, zi2, zi3)

}
.

This reduction is clearly polynomial and yields an instance of VALIDITYtgd. Now
we have:

(I, J ) |= � ⇐⇒
(

∀x
m∧

i=1

(xi = 0 ∨ xi = 1) → ∃y
n∧

i=1

ci (zi1, zi2, zi3)

)
is true

⇐⇒ ∀x∃y ϕ(x, y) is true

(2) Let F be the set of facts of J which are not directly in � as ground facts. Guess
|F | valuations of the variables on the left- and right-hand sides of the formulas of
� which are not ground facts. If, for all 1 � i � |F |, there is some ϕ ∈ � such
that the i th valuation of the left-hand side of ϕ holds in I (which can be decided in
polynomial time) and the i th fact of F appears in the i th valuation of the right-hand
side of ϕ, then return true.

5.4. COMBINED COMPLEXITY FOR FULL TGDS. We then consider the language
of full tgds, Lfull.

PROPOSITION 5.6

(1) VALIDITYfull and VALIDITYfull∗ are coNP-complete;
(2) EXPLANATIONfull is NP-hard.
(3) ZERO-REPAIRfull is DP-hard.
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6:24 G. GOTTLOB AND P. SENELLART

PROOF

(1) Here is a nondeterministic polynomial-time algorithm for VALIDITYfull∗ . First
check the validity of the ground facts of �. For the other formulas of �, guess a
valuation of the universally quantified variables. If the left-hand side is true in I and
the right-hand side false in J (both of which can be decided in polynomial time),
return false.

For the hardness part, we use a reduction from the problem of evaluating a
boolean conjunctive query over a database, which is NP-complete [Chandra and
Merlin 1977]. Let D be a relational database of schema U, and Q = ∃y ϕ(y) a
boolean conjunctive query over U. We build an instance (I, J, �) of VALIDITYfull

in the following way: S = U ∪ {(S, 1)}, I = D ∪ {S(1)}, T = {(S′, 1)}, J = ∅ and
� = {∀y∀t ϕ(y) ∧ S(t) → S′(t)}. This reduction is polynomial, � ⊂ Lfull, and �
is valid with respect to (I, J ) if and only if Q is false in D.

(2) There is a straightforward reduction of the problem of deciding whether a
tuple is in the result of a project-join expression in the relational algebra, which
is a NP-complete problem [Yannakakis 1981], to EXPLANATIONfull. Alternatively,
we can also use a reduction from 3SAT, as the one used next in the proof of the
DP-hardness of ZERO-REPAIRfull.

(3) Let L = L1 ∩ L2 ∈ DP, with L1 ∈ NP and L2 ∈ coNP. As 3SAT is NP-
complete, there is a polynomial-time reduction �1 from L1 to 3SAT; similarly,
we noted in item (1) that the problem of evaluating a Boolean conjunctive query
over a database is NP-complete, therefore there is a reduction �2 from L2 to the
complement of this problem. Let α be any input. α ∈ L if and only if �1(α) (an
instance of 3SAT) is satisfiable and �2(α) (a conjunctive query over a relational
database) evaluates to false. Let �1(α) = ∧n

i=1 ci (zi1, zi2, zi3), where the ci ’s are
3-clauses over some set x of variables (and

⋃
i, j zi j = x) and �2(α) = (D, U, Q =

∃y ϕ(y)), where D is a relational database of schema U and Q a Boolean conjunctive
query over U.

We consider the following instance (I, J, �) of ZERO-REPAIRfull:

S = {(R1, 3) . . . (R8, 3), (S1, 1), (S2, 1)} ∪ U (we assume without loss of gener-
ality that the Ri and Sj do not appear in U) and I such that:

the RI
i are the 8 distinct subsets of {0, 1}3 of cardinality 7;

SI
1 = SI

2 = {a};
UI = D.

T = {(S′
1, 1), (S′

2, 1)} and J = {S′
1(a)};

For each 1 � i � n, let 1 � ki � 8 be the unique integer such that ci (zi1, zi2, zi3)
is true if and only if (zi1, zi2, zi3) ∈ RI

ki
. We then define � = {ψ1, ψ2} with:

ψ1 =∀x∀t
n∧

i=1

Rki (zi1, zi2, zi3) ∧ S1(t) → S′
1(t),

ψ2 =∀y∀t ϕ(y) ∧ S2(t) → S′
2(t).

Observe that (I, J ) |= ψ1 and that the only tuple to explain in J can only be
explained by ψ1. In other words, (I, J, �) is a solution of ZERO-REPAIRfull if and
only if the following two conditions are satisfied: ψ1 fully explains J with respect
to I and (I, J ) |= ψ2. But ψ1 fully explains J with respect to I if and only if
ϕ is satisfiable, while (I, J ) |= ψ2 if and only if Q is false in D. The reduction

Journal of the ACM, Vol. 57, No. 2, Article 6, Publication date: January 2010.



Schema Mapping Discovery from Data Instances 6:25

presented here is polynomial, and α ∈ L if and only if (I, J, �) is a solution of
ZERO-REPAIRfull.

5.5. COMBINED COMPLEXITY FOR ACYCLIC TGDS. The last subset of Ltgd that
we consider here is Lacyc.

PROPOSITION 5.7

(1) VALIDITYacyc and VALIDITYacyc∗ are coNP-complete.
(2) EXPLANATIONacyc∗ is NP-hard.
(3) ZERO-REPAIRacyc∗ is DP-hard.
(4) EXPLANATIONacyc∗ is in PTIME if, for all existentially quantified variables y

and for all constants c, there is at most one term y = c appearing in each formula
of the schema mapping. In particular, EXPLANATIONacyc is in PTIME.

PROOF

(1) — Let us first prove that VALIDITYacyc∗ is in coNP. The validity of ground
facts of � is trivial to check. Let θ be a formula of � which is not a ground fact.
Recall that θ is of the form

∀x ϕ(x) ∧ τ (x) → ∃y ψ(x, y) ∧ τ ′(x, y)

with τ (x) a conjunction of terms expressing equality or negated equality between
a variable of x and a constant, and τ ′(x, y) of the form

τ ′(x, y) =
n∧

i=1

((
mi∧
j=1

xi j = c′
i j

)
→ yi = ci

)
.

Guess a valuation ν of the variables of x. If the left-hand side of θ is made false by
this valuation, give up this guess. Otherwise, consider the formula

ξ = ∃y ψ(ν(x), y) ∧ τ ′(ν(x), y)

where τ ′(ν(x), y) is equivalent to a conjunction of terms of the form y = c with
y ∈ y and c a constant. We can then check in polynomial time if J satisfies ξ using
Algorithm 3.
— To prove that VALIDITYacyc is coNP-hard, we use a reduction of 3SAT. Let

ϕ = ∧n
i=1 ci (zi1, zi2, zi3) be an instance of 3SAT, where the ci ’s are 3-clauses over

some set x = {x1 . . . xm} of variables (and
⋃

i, j zi j = x). We consider now the

following instance of VALIDITYacyc:

S = {(B, 1)} and I = {B(0), B(1)}.
T = {(A, 3), (F, 1), (R1, 4) · · · (R8, 4)}, F J = {0}, AJ is the 0 and 1 truth table
of the and operator, and each R J

k is the following 4-ary relation of arity 8:

0 0 0 δ̄k1

0 0 1 δ̄k2

0 1 0 δ̄k3

0 1 1 δ̄k4

1 0 0 δ̄k5

1 0 1 δ̄k6

1 1 0 δ̄k7

1 1 1 δ̄k8

where δ̄k j is 0 if k = j and 1 otherwise.
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For all 1 � i � n, let 1 � ki � 8 be the unique integer such that ci (zi1, zi2, zi3)
is false if and only if (zi1, zi2, zi3, 0) ∈ R J

ki
(with the usual abuse of notation of

identifying values of Boolean variables and values in {0, 1}). We then define:

� =
{
∀x1 · · · ∀xm B(x1) ∧ · · · ∧ B(xm) → ∃y1 · · · ∃yn∃y′

1 · · · ∃y′
n−1 F(y′

n−1)

∧
n∧

i=1

Rki (zi1, zi2, zi3, yi )

∧ A(y1, y2, y′
1) ∧ A(y′

1, y3, y′
2) ∧ · · · ∧ A(y′

n−2, yn, yn−1)

}
.

This transformation is polynomial. We prove that � ⊂ Lacyc. First, remember that
the acyclicity condition on the right-hand side of the tgd only concerns existentially
quantified variables. Second, the yi ’s are not sources of cycles since each only occurs
in two relation atoms, one of which where they are the only existentially quantified
variables. Finally, we can build a join tree for the y′

i ’s that consists in a simple chain,
each relation atom A being a node of this chain.

Now observe that � is valid with respect to (I, J ) if and only if the following
quantified propositional formula is true:

∀x ∃y′
1 · · · ∃y′

n−1 ¬y′
n−1

∧ (c1(z11, z12, z13) ∧ c2(z21, z22, z23) → y′
1)

∧ (y′
1 ∧ c3(z31, z32, z33) → y′

2) ∧ · · ·
∧ (y′

n−2 ∧ cn(zn1, zn2, zn3) → y′
n−1).

This can be rewritten as:

∀x
n∧

i=1

ci (zi1, zi2, zi3) → ⊥ ≡ ¬ϕ.

In other words, � is valid with respect to (I, J ) if and only if the original 3SAT
instance is not satisfiable.

(2) We use once more a reduction from 3SAT.

S = {(B, 1)} and I = {B(0), B(1)};
T = {(S, n)} and J = {S(1, . . . , 1)};
For all 1 � i � n, let τi1 · · · τi8 be the eight conjunctions of the form zi1 =
b1 ∧ zi2 = b2 ∧ zi3 = b3 such that each bk is either the constant 0 or 1, and
ci (zi1, zi2, zi3) is true if any of these conjunctions holds. We then define:

� =
{
∀x1 · · · ∀xm B(x1) ∧ · · · ∧ B(xm) → ∃y1 · · · ∃yn S(y1 · · · yn)

∧
n∧

i=1

8∧
j=1

(τi j → yi = 1)

}
.

Observe that � is valid with respect to (I, J ). This transformation is polynomial,
and � fully explains J with respect to I if and only if the original 3SAT instance
is satisfiable.
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(3) The problem of determining whether, given two instances ϕ1 and ϕ2 of 3SAT,
the first is not satisfiable and the second is satisfiable, is a typical example of
a DP-complete problem [Papadimitriou 1994]. We can reduce this problem to
ZERO-REPAIRacyc∗ in polynomial time, by combining the two reductions from 3SAT

to the complement of VALIDITYacyc∗ and from 3SAT to EXPLANATIONacyc∗ given
respectively in items (1) and (2). The corresponding schemata, database instances,
and schema mappings are obtained as the union of the schemata, database instances,
and schema mappings of both reductions. One of the two formulas (let us call it ψ1)
comprising the resulting schema mapping � cannot contribute to the explanation
of the target instance J , while the other (ψ2) is valid. That means that � is valid
and fully explains J if and only if ψ1 is valid (or, after (1), if ϕ1 is not satisfiable)
and ψ2 fully explains J (or, after (5.7), if ϕ2 is satisfiable).

(4) Let f be a fact of J , we describe a polynomial algorithm for deciding whether
f is explained by �. First, check if f is in the ground facts of �. Otherwise, for
each atom R(z1 · · · zk) in the right-hand side of a formula θ ∈ � which is not a
ground fact, such that R is the relation name appearing in f , do the following. We
keep the same notations as above for the subformulas of θ .

Observe that f is explained by the R(z1 · · · zk) atom of θ if and only if there is
a valuation ν of the variables of x such that ν(ϕ(x) ∧ τ (x)) is true in I and, for all
extensions ν ′ of ν to x ∪ y, ν ′(τ ′(x, y)) is true and ν ′(R(z1 · · · zk)) = f .

This means that all variables of y appearing in R(z1 · · · zk) must also appear as
the right-hand side of an implication of τ ′(x, y) (otherwise, an extension ν ′ of ν
such that ν ′(R(z1 · · · zk)) is not equal to f is possible). By the hypothesis we made,
there is exactly one conjunct of τ ′(x, y) where each variable of y appears. Let ρ(x)
be the conjunction of the left-hand sides of these implications for all variables of
y. Then f is explained by the R(z1 · · · zk) atom of θ if and only if the boolean
query ∃x ϕ(x) ∧ τ (x) ∧ ρ(x) is true in the instance I . As τ (x) ∧ ρ(x) is a simple
conjunction, we can first perform the corresponding selection on I , and then use
Algorithm 3 to decide if the boolean query matches.

Note that, to prove the hardness of EXPLANATIONacyc∗ , we use the repairs them-
selves to encode the instance of a NP-hard problem: although the tgd itself is
acyclic, its repairs are not. We could probably get polynomial algorithms for the
same problems if we impose some acyclicity condition to repairs of a formula; this,
however, would weaken our notion of optimality.

5.6. COMBINED COMPLEXITY OF EXISTENCE-COST AND OPTIMALITY. With the
help of Lemma 5.3, we show the intractability of EXISTENCE-COST and OPTIMAL-
ITY, in all considered languages:

PROPOSITION 5.8. EXISTENCE-COST (respectively, OPTIMALITY) is NP-hard
(respectively, DP-hard) in the languages Ltgd, Lfull, Lacyc, Lfacyc, and in the lan-
guage of repairs of each of these languages.

PROOF. To prove this result, we use, as in the proof of Proposition 5.4, a
reduction from the vertex cover problem in tripartite 3-uniform hypergraphs. The
core of the reduction is the same for EXISTENCE-COST and OPTIMALITY. Observe
that a straightforward DP-complete problem obtained from this problem is that of
knowing if, given two tripartite 3-uniform hypergraphs and two integers, the vertex
cover of the first hypergraph is less than the first integer, and the vertex cover of the
second hypergraph is greater than the second integer.
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Let H = (V, E) be a tripartite 3-uniform hypergraph with N vertices and K an
integer. We denote by τ (H) the minimum size of a vertex cover in H. Let α � 1
an integer, to be defined further. Each vertex of V is seen as a constant of C. We
also use 3(α + N ) additional constants cik and c′

jk with 1 � i � α, 1 � j � N ,

1 � k � 3. We now consider the following schemata and instances:

S = {(R, 3)} and

I = {R(ci1, ci2, ci3) | 1 � i � α}
∪ {R(c′

i1, c′
i2, c′

i3) | 1 � i � N }
∪ {R(v, v ′, v ′′) | e = (v, v ′, v ′′) ∈ E};

T = {(R′, 1), (S′, 3)} and

J = {R′(ci1) | 1 � i � α}
∪ {S′(ci1, ci2, ci3) | 1 � i � α}
∪ {S′(c′

i1, c′
i3, c′

i3) | 1 � i � N }.
Let �0 = {∀x R(x) → S′(x)}. �0 is valid, but fails to explain α tuples of J .

Thus, cost(I,J )(�0) = 6 + 3α (since the cost of a ground fact of arity 1 is 3, see
Definition 3.6).

Let � = {∀x R(x) → R′(x1) ∧ S′(x)} (� ⊂ Lfacyc). An argument very similar
to the one of the proof of Proposition 5.4 shows that

cost(I,J )(�) = size(�) + 2τ (H) + 2N = 7 + 2τ (H) + 2N .

since S′J guarantees that the size of any repair of � with an x = c term on the
left-hand side is at least:

size(�) + 2 + 9(α + N − 1) > size(�) + 9N > cost(I,J )(�).

The idea now is to choose α such that τ (H ) � K if and only if cost(I,J )(�) �
cost(I,J )(�0). This is the case if:

α = 2(K + N ) + 1

3
.

With this value of α, we have cost(I,J )(�0) = 2(K + N ) + 7 and cost(I,J )(�) =
2τ (H) + N + 7, which yields the property we were looking for. However, 2(K +
N ) + 1 may not be divisible by 3; in this case, we just transform the initial problem
by observing that τ (H) = K if and only if τ (H′) = K where H′ is the tripartite
3-uniform hypergraph obtained from H by adding n new edges, each of which
span 3 new vertices (this does not change the value of N mod 3). Up to such a
transformation, we may then assume than 2(K + N ) + 1 is divisible by 3.

Let us now show that, for any schema mapping �′ ⊂ Ltgd
∗,

cost(I,J )(�
′) � min(cost(I,J )(�0), cost(I,J )(�)). (1)

This will conclude the proof, since we then have the following reductions, obviously
polynomial and valid for any of the considered languages:

NP-Hardness of EXISTENCE-COST. We have τ (H) � K if and only if there exists
a schema mapping whose cost with respect to (I, J ) is lesser than or equal to
cost(I,J )(�0) − 1.
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DP-Hardness of OPTIMALITY. Let H̃ be another tripartite 3-uniform hypergraph
and K̃ another integer. We use similar notations: �̃, �̃0, Ĩ , etc. We assume without
loss of generality that S, T, S̃, and T̃ use different relation names, and that the
constants in I and J on the one hand, and in Ĩ and J̃ on the other, are disjoint. Then
τ (H) � K if and only if � is optimal with respect to (I, J ), while τ (H̃) � K̃ − 1
if and only if �̃0 is not optimal with respect to ( Ĩ , J̃ ). This means that τ (H) � K
and τ (H̃) � K̃ if and only if � ∪ �̃0 is optimal with respect to (I ∪ Ĩ , J ∪ J̃ ):
indeed, since the relation names in S, T, S̃, and T̃ are disjoint,

cost(I∪ Ĩ ,J∪ J̃ )(� ∪ �̃0) = cost(I,J )(�) + cost( Ĩ , J̃ )(�̃0).

Let us now show (1). Given a schema mapping �′ ⊂ Ltgd
∗, the schema mapping

�′′ ⊂ Ltgd obtained by removing all repairs from �′ is such that cost(I,J )(�
′) �

cost(I,J )(�
′′). This means we only need to consider schema mappings of Ltgd.

Let �′ be a nonempty schema mapping of Ltgd. Observe that, as the constants
ci1 are completely indistinguishable from each other, �′ must either explain all or
none of the facts of R′J . We shall consider each case in turn.

—If �′ does not explain any of the facts of R′J , each of these must be accounted
for in the repairs, by one of the following methods:

—adding ground facts (additional cost: 3 each);

—adding an unconditioned “x = c” term to a R′(x) atom where x is existen-
tially quantified (additional cost: 2 each, but this can only be done once per
R′(x) atom, whose size is 1, or this yields an inconsistent formula);

—adding a conditioned “τ → x = c” term to a R′(x) atom where x is exis-
tentially quantified (minimum additional cost: 4 each, since the size of τ is
at least 2).

Moreover, a repair of �′ should also account for the facts of S′J , either as ex-
planations of �′ (this cannot be done in a formula with size lesser than 6) or by
enumerating all ground facts of S′ (with a cost of 9(α + N ), which is greater than
6). This means that cost(I,J )(�

′) � 3α + 6 = cost(I,J )(�0).

—In the case where �′ explains all facts of R′J , there is a tgd θ ∈ �′ such that
θ explains all facts of R′ J , and θ is necessarily of the form:

∀x1∀x2∀x3∀u R(x1, x2, x3) ∧ ϕ(x1, x2, x3, u) →
∃v R′(x1) ∧ ψ(x1, x2, x3, u, v)

with ∃u ϕ(c11, c12, c13, u) valid in I . Then, for all e = (v, v ′, v ′′) ∈ E ,

∃u ϕ(v, v ′, v ′′, u)

is valid in I since ϕ does not contain anything else than relation atoms R(w1, w2, w3)
with all xi ’s necessarily in the i th position, and other variables existentially quanti-
fied. That means that R′(v) is an incorrect fact implied by the tgd. As we saw earlier,
adding an x = c term on the left-hand side of θ has prohibitive cost. The only way
to cancel these facts is then as in the proof of Proposition 5.4. Finally, a repair
of θ must also explain all facts of S′J , either as facts explained by θ itself (then,
size(ϕ) � 3), or by enumerating ground facts of S′J , with a cost of 9(α + N ) > 3.
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TABLE IV. DATA COMPLEXITY RESULTS.

Ltgd, Lfull, Lacyc, Lfacyc

Ltgd
∗, Lfull

∗, Lacyc
∗, Lfacyc

∗

VALIDITY PTIME
EXPLANATION PTIME
ZERO-REPAIR PTIME
COST (K fixed) PTIME
COST (� fixed) NP, NP-hard for some �
EXISTENCE-COST PTIME
OPTIMALITY ΠP

2 , DP-hard for some �

We have therefore:

cost(I,J )(�
′) � cost(I,J )(θ ) � 7 + 2(τ (H) + N )

� cost(I,J )(�).

Note that the same proof does not work in the case of Lrc:

{∀x1∀x2∀x3 R(x1, x2, x3) ∧
¬ (∃x ′

2∃x ′
3 R(x1, x ′

2, x ′
3) ∧ (x2 �= x ′

2 ∨ x3 �= x ′
3)

) → R′(x)}
may have a lower cost for some instances than � (for instance if H is a hypergraph
where all nodes have a degree greater than 1).

5.7. DATA COMPLEXITY. As far as data complexity is concerned, the situation
is simpler, since we do not have any difference in complexity for all four subsets
of Ltgd. The results are presented summarized in Table IV.

PROPOSITION 5.9

(1) If � is fixed, VALIDITYrc∗ is in PTIME.
(2) If � is fixed, EXPLANATIONtgd∗ is in PTIME.
(3) If K is fixed, COSTtgd∗ and EXISTENCE-COSTtgd∗ are in PTIME.
(4) For some fixed value of �, COSTfacyc is NP-hard.
(5) For some fixed value of �, the problem OPTIMALITYin Ltgd, Lfull, Lacyc, Lfacyc

and the language of repairs of each of these is DP-hard.

PROOF

(1) If k is the number of quantified variables in a first-order formula ϕ in prenex
normal form, it is easy to see that checking whether ϕ is valid in a database of size
n is O(nk).

(2) Each formula of � is either a ground fact, or of the form ∀x (ϕ(x) ∧ τ (x)) →
∃y (ψ(x, y)∧τ ′(x, y)) with τ and τ ′ propositional combinations of terms expressing
equalities between a variable and a constant. For each fact f of J , first check if
it appears as a ground fact �; otherwise, for each valuation of x ∪ y (there is a
constant number of such valuations, since � is fixed), check whether the left-hand
side holds, and f is a consequence of the right-hand side.

(3) We can just enumerate all schema mappings of Ltgd
∗ whose size is lower

than K , and check in polynomial time if they are valid and fully explain the target
instance.
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(4) This results from the proof of Proposition 5.4.
(5) This results from the proof of Proposition 5.8.

Unsurprisingly, in terms of data complexity, the different problems appear to
be somewhat more tractable than in terms of combined complexity, even though
COSTfacyc is still NP-hard for a fixed �. Note, however, that since the objective is

the discovery of schema mappings from database instances, the schema mapping
itself is the object of interest. This is different from the traditional setting of query
answering over databases, for instance, where it makes sense of reasoning about
a fixed query and a varying dataset. In that sense, it seems to us that combined
complexity results are more meaningful here.

6. Extension and Variants

We study in this section some extensions of our optimality notion to (i) formulas
of the full relational calculus; (ii) other apparently simpler functions of cost.

6.1. EXTENSION TO THE RELATIONAL CALCULUS. We can extend the defini-
tions of Section 3 to the language Lrc of relational calculus, by the following
adaptation of the notion of repair.

A repair of a schema mapping � ⊂ Lrc is a set of formulas obtained from � by
a finite sequence of the following operations:

—Replacing in a formula of � a subformula ∀x ϕ(x, y) (we also assume that
ϕ does not start with a ∀ symbol, and that the sub-formula is not preceded by a ∀
symbol) by ∀x τ (x, z) → ϕ(x, y) where z is the set of variables free in ϕ and τ is
a Boolean formula over terms w = c of the following form:

∧
i

((∧
j

zi j = c′
i j

)
→ xiαi ci

)

with zi j variables from z, xi variables from x, αi either = or �=, and c′
i j and ci

constants.
—Replacing in a formula of � a subformula ∃x ψ(x, y) (we also assume that

ψ does not start with a ∃ symbol, and that the subformula is not preceded by a ∃
symbol) by ∃x ψ(x, y) ∧ τ ′(x, z) where z is the set of variables free in ψ and τ ′ is
a boolean formula over terms w = c of the following form:

∧
i

((∧
j

zi j = c′
i j

)
→ xi = ci

)

with zi j variables from z, xi variables from x, and c′
i j and ci constants.

—Adding to � a ground fact R(c1 · · · cn) with R a relation of the target schema
of arity n, and c1 · · · cn constants.

We can check that this definition amounts to the same as Definition 3.4 if we
restrict ourselves to Ltgd. We can then use the same definitions of the size and
cost of a formula, and consider the same decision problems. It is easy to see
that the results of Proposition 5.1 still hold. We have the following complexity
results:
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PROPOSITION 6.1

(1) VALIDITYrc∗ and VALIDITYrc∗ are PSPACE-complete;
(2) EXPLANATIONrc∗ is co-recursively enumerable;
(3) EXPLANATIONrc and ZERO-REPAIRrc are not recursive.

PROOF

(1) — Let us first show that VALIDITYrc∗ is in PSPACE. Let ϕ ∈ �. If ϕ is a
ground fact, this is trivial. Otherwise, we first rewrite ϕ in prenex normal form

α1x1α2x2 . . . αnxn ψ(x1, . . . , xn)

where each αi is either ∃ or ∀.
Let C be the set of constants appearing in I and J , along with n distinct constant

⊥1 . . . ⊥n . It can be shown that we do not need to consider valuations of the x1 · · · xn
into other constants. For each valuation ν of x1 · · · xn into C , it is decidable in
polynomial time whether (I, J ) |= ψ (ν(x1), ..., ν(nn)). We then enumerate all
valuations, enumerating recursively all valuations of xi+1 while keeping xi fixed,
and remembering for each 1 � i � n + 1 a single value oki which is equal to:

If i = n + 1: 1 if (I, J ) |= ψ (ν(x1), . . . , ν(nn)) in the current valuation ν, 0
otherwise;

If αi = ∃: the maximum of oki+1 and the preceding value of oki (and the
preceding value is reset to 0 whenever the valuation of xi−1 is changed).

If αi = ∀: the preceding value of oki , multiplied par the current value of oki+1

(and the preceding value is reset to 1 whenever the valuation of xi−1 is changed).

The algorithm returns true if, after enumerating all valuations, all oki ’s are equal to
1. Otherwise, the algorithm returns false. This is obviously a PSPACE algorithm,
and it returns true if and only if (I, J ) |= ϕ. We can run the same algorithm in
sequence on all ϕ ∈ �.
—The PSPACE-hardness of VALIDITYrc comes from a polynomial-time reduction
of QSAT (also known as QBF), which is PSPACE-complete [Papadimitriou 1994;
Stockmeyer and Meyer 1973]. Let ϕ = α1x1 · · · αnxn ψ(x1 · · · xn) be an instance
of QSAT (the αi ’s are either existential or universal quantifiers, and ψ(x1 · · · xn) is
a propositional formula in CNF with variables x1 · · · xn).

Let S = {(B, 1), (T, 1), (F, 1)}, T = ∅, I = {B(0), B(1), T (1), F(0)} and
J = ∅. We rewrite inductively the quantified propositional formula ϕ into a first-
order formula ξ in the following way:

From the CNF propositional formula ψ(x1 · · · xn), we obtain a first-order for-
mula with all free variables by replacing every positive literal xi with T (xi ) and
every negative literal ¬xi with F(xi ).

A ∀xiθi subformula with universal quantification is rewritten as ∀xi (B(xi ) →
θi ).

A ∃xiθi subformula with existential quantification is rewritten as ∃xi (B(xi ) ∧
θi ).

Then (I, J ) |= {ξ} if and only if ϕ is true.
(2) To see that EXPLANATIONrc∗ is co-recursively enumerable, just enumerate

all instances K of the target schema, and whenever they are such that (I, J ) |= �
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(which is decidable, see just above), see if they contain K . If this is not the case,
we can conclude that � does not fully explain J with respect to I .

(3) The uncomputability comes from a reduction of the satisfiability of the re-
lational calculus, which is not recursive [Trakhtenbrot 1963; Di Paola 1969]. The
reduction is the same for both problems EXPLANATIONrc and ZERO-REPAIRrc. Let
ϕ be a formula of the relational calculus over a schema U. Consider the following
instance of EXPLANATIONrc (this is also an instance of ZERO-REPAIRrc):

S = {(R, 1)} and I = {R(a)};
T = U ∪ {(R′, 1)} and J = {R′(a)};
� = {∀x R(x) → ϕ ∨ R′(x)}

Observe that (I, J ) |= �, therefore (I, J, �) is a solution of EXPLANATIONrc if
and only if it is a solution of ZERO-REPAIRrc.

Now, (I, J, �) is a solution of EXPLANATIONrc if and only if, for all K such
that (I, K ) |= �, R′(a) is a fact of K . This is the case if and only if ϕ is not
satisfiable.

Interestingly, the computability of OPTIMALITYrc remains open. It seems to be a
“harder” problem than ZERO-REPAIRrc, but as there is no simple reduction between
them, we cannot even be sure that OPTIMALITYrc is not recursive. We do not
even know whether it is recursively enumerable or co-recursively enumerable (but
COSTrc∗ and EXISTENCE-COSTrc∗ are both co-recursively enumerable because of
the co-recursive enumerability of ZERO-REPAIRrc∗).

Note that a related problem is studied in Fletcher [2007], where it is shown that
determining whether there exists a schema mapping in Lrc that is valid and explain
all facts of the target instance is coNP and co-graph-isomorphism-hard. In the case
ofLrc

∗, such a mapping obviously always exists since one can enumerate all ground
facts of the target instance.

6.2. VARIANTS OF THE COST FUNCTION. The definition of repairs and cost that
we presented in Section 3 may appear, at first, unnecessarily complicated. We argued
in Section 4 for a justification of this notion by showing that it has nice properties
with respect to instances that are derived from each other with elementary operations
of the relational algebra. We consider in this section two alternative definitions of
cost and optimality of a schema mapping with respect to database instances, and
show that neither, although simpler and perhaps more intuitive, present the same
properties and are thus adapted to our context.

We keep our notions of validity of a schema mapping, of full explanation of a
database instance by a schema mapping, and of size of a schema mapping, and
we want to consider alternative ways to characterize the cost of a given schema
mapping. The first idea is to assign as the cost of a schema mapping the minimal
number of tuples that have to be added or removed to the target instance J for
the schema mapping to become valid and to fully explain J . (Each tuple may also
be weighted by its arity, to get something closer to our original cost definition.)
Thus, the cost of the empty schema mapping corresponds to the size of the target
instance, as before, while the cost of a schema mapping that fully explains the
target instance but also incorrectly explains some tuples is the (possibly weighted)
number of such tuples. This sounds like a reasonable definition, but it presents an
important problem: We lose the linear bound on the cost of a schema mapping in
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the size of the data and the schema mapping itself. Indeed, consider the following
schema mapping, for a given n, where R is a source relation of arity 1 and R′ a
target relation of arity n:

{∀x1 · · · ∀xn R(x1) ∧ · · · ∧ R(xn) → R′(x1, . . . , xn)}.
If J is empty, the cost of this schema mapping according to the definition given in
this paragraph is |I |n (or n|I |n if we weight with the arity of the relations), which
is exponential in the size of the schema mapping. This combinatorial explosion
discourages all hopes of getting an optimal schema mapping by local search tech-
niques. Besides, all the problems that we describe for the variant that we consider
next also arise here.

An alternate definition of cost, close to the previous one but for which we still
have a linear bound on the cost of a mapping is the following: The cost of a schema
mapping � is the minimal number of tuples to add or remove from the source
and target instances I and J so that � becomes valid and fully explains J . As
before, we assume that we weight tuples by their arity; we could also choose to
add an arbitrary constant weight to operations on J with respect to operations on
I , or to deletion with respect to addition of tuples, without much difference. The
linear bound is clear since we can just remove all tuples of I and of J for �
to be valid and to fully explain J . However, there is still a fundamental problem
with this definition, which can be seen by looking back at Section 4. We showed
there that, for elementary operations of the relational algebra, the definition of
optimality of Section 3 yielded the same as the intuitive tgds expressing these
operations. This is not true any more here, however, in particular in the presence
of selections and projections. For projections, this is due to the fact that a schema
mapping that predicts existentially quantified tuples has a higher cost than the same
schema mapping where these existentially quantified relation atoms are removed.
We exhibit next a concrete example of database instances that illustrate the problem
with selections.

Example 6.2. Let us consider instances I and J of the following schemata:
S = {(P, 2)} and T = {(P ′, 1)}, where: I contains a list of titles of publications (as
first attribute) along with their kind: article , book , report , etc.; J contains a list
of book titles. Let us assume that J and I contain the same book titles. In other words,
J = π1(σ2=book (I )). It is quite natural to expect � = {∀x∀y P(x, y) → P ′(x)}
as the “optimal” schema mapping in the language of tgds for these database in-
stances, and indeed, cost(I,J )(�) = 5 is minimal as soon as J is large enough
and there is no hidden relation between the second attribute of I and J . Now, ob-
serve that with the variant proposed in the preceding paragraph, the cost will be:
3 + min (2 · (|I | − |J |), |J |) , which is, in all cases when there are more publica-
tions of another kind than book (a common situation), greater than the cost of
the empty schema mapping, which is then the optimal schema mapping for these
instances.

Then, although our definition of optimality is a bit complex, it is much more
adapted to the addressed problem than these simpler definitions, since it can capture
such things as the worth of an existentially quantified relation atom, or the possibility
of limiting the scope of a tgd with a simple selection.
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7. Conclusion

We discussed a theoretical framework that addresses the problem of finding a
schema mapping optimal with respect to a pair of database instances, based solely
on the structure and occurrences of constants in the instances. We showed that
this problem is DP-hard (in particular, both NP-hard and coNP-hard) even for a
very restricted language, namely full acyclic tuple-generating dependencies. This
is not unexpected, since it is well known that such learning problems have high
complexity even in very simple cases (see, e.g., Gottlob et al. [1997] for ILP). Such
a study is still useful since (i) it provides a formal framework for the discovery of
schema mappings; (ii) complexity lower bounds are useful to detect the source of
the complexity; (iii) complexity upper bounds often give practical algorithms.

There are a number of open theoretical issues, especially on the computability
and precise complexity of OPTIMALITY, but the most obvious direction for future
work would be to connect such a theoretical framework with practical heuristics and
approximation algorithm; in particular, the relation to inductive logic programming
has to be explored. We believe that this is an especially important problem, and
that discovering and understanding hidden relations in data is one of the most
fundamental tasks of artificial intelligence. Other problems of interest would be to
improve our complexity upper bounds by generalizing the notion of acyclicity to that
of bounded hypertree width [Gottlob et al. 1999], and to look at the same problems
when some fixed set of preconditions on instances is given. One can imagine for
instance that some part of the schema mapping is known in advance, or that an
approximate schema mapping has been discovered by a schema matching algorithm,
and that we extend it using the framework developed in this article. Finally, a
potentially fruitful direction of research would be to explore the connection between
the work presented here and other works on schema mapping operators [Bernstein
and Chiu, 1981; Fagin et al. 2004; 2007]: Is the composition (in the sense of Fagin
et al. [2004]) of two schema mappings from I to J and J to K optimal with respect
to I and K ? Are there cases when our framework can be used to minimize the
representation of such a schema mapping? Is it possible (and perhaps easier) to
find the optimal schema mapping from J and I and then construct its quasi-inverse
[Fagin et al. 2007] as an optimal schema schema mapping from I to J? Note
that works on data exchange usually consider additional dependencies in addition
to source-to-target tgds (egds, source-only tgds, etc.), and that more expressive
languages for schema mappings may be required (e.g., second-order tgds in the
case of Fagin et al. [2004], tgds with constants and inequalities for Fagin et al.
[2007]).
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