
The SIGMOD 2010 Programming Contest
A Distributed Query Engine

Clément Genzmer 1 Volker Hudlet 2 Hyunjung Park 3

Daniel Schall 2 Pierre Senellart 4

1 Facebook, USA 2 TU Kaiserslautern, Germany
3 Stanford University, USA 4 Télécom ParisTech, France

ABSTRACT
We report on the second annual ACM SIGMOD pro-
gramming contest, which consisted in building an effi-
cient distributed query engine on top of an in-memory
index. This article is co-authored by the organizers of
the competition (Clément Genzmer, Pierre Senellart) and
the students who built the two leading implementations
(Volker Hudlet, Hyunjung Park, Daniel Schall).

1. CONTEXT
For the second year in a row, a programming contest

was organized in parallel with the ACM SIGMOD 2010
conference. Undergraduate and graduate student teams
from over the world were invited to compete to develop
an efficient distributed query engine over relational data.
Students had several months to work on their implemen-
tation, which was judged for their overall performance on
a variety of workloads. The teams responsible for the five
best systems were invited to present their work during
the SIGMOD 2010 conference, and the winning team
(one-man team cardinality formed of Hyunjung Park,
Stanford University), was awarded a prize of $5,000.

In addition to encouraging students to be active in the
database research community, the aim is to build over the
years, throughout a series of contests, an open source in-
memory distributed database management system. Thus,
the candidates of this year’s contest relied on the in-
memory index implementation produced as the outcome
of last year’s competition.

We first describe in more detail the task the contestants
were involved in, as well as the workload their implemen-
tation was evaluated on. We then report on the outcome
of the competition, before describing the key ideas of the
systems ranked first and second.

2. TASK DESCRIPTION
As previously mentioned, the task was to program

a simple distributed relational query engine. Contes-
tants had to provide a binary library conforming to a
specific interface, along with the corresponding source

code. Each submission was evaluated on a dedicated
cluster of eight machines, over a series of eight secret
query loads. The input provided to the implementation
for each workload was the description of which nodes of
the cluster stored (parts of) which tables, possibly hori-
zontally partitioned, as well as a set of queries, expressed
in a simple subset of SQL. The goal was then to provide
the correct output to these queries, as fast as possible.
The final score of each submission was computed as a
monotonous function of the total time used for running
all workloads. Workloads where the submission crashed,
did not return the correct output, or ran over the time
limit of five to ten minutes (depending on the workload),
were assigned penalties.

All queries were simple select-project-join queries, of
the form:

SELECT alias.attribute, ...
FROM table AS alias, ...
WHERE condition1 AND ... AND conditionN

where a condition might be any of:

• alias.attribute = constant

• alias.attribute > constant

• alias1.attribute1 = alias2.attribute2

A parser for this subset of SQL was provided.
Attribute values were either character strings or inte-

gers, and tables were stored in text files on disk. All
tables had at least one column indexed in memory, the
implementation of the index being provided based on last
year’s contest. Before the actual starting of each work-
load, the contestants were given a predefined number of
seconds to perform some preprocessing steps over the
data. At this point, their implementation received a set
of queries which was representative of the workload.

Among the eight benchmarks, five were of a reason-
ably small scale and were designed to test the workability
of the binary provided by the contestants. The last three
were designed to test the performance (up to 150,000

queries, and up to 1,000,000 tuples stored on a given
node). Contestants were given a one-line description of
each workload, though the actual structure of the input
data was not disclosed. The benchmarking tool would
initiate 50 parallel connections on a master node and then
would start issuing the queries.

The full description of the task is available at http:
//dbweb.enst.fr/events/sigmod10contest/.

3. THE COMPETITION
The initial description of the task was made available

in December 2009 along with all necessary interfacing
code, though some addition and fixes came over the fol-
lowing months as bugs or imprecisions were pointed out
by contestants. Starting from February 2010, contestants
had access to the evaluation cluster and could check the
score of their submission and their ranking. Students
had then up to April to work on their implementation.
Then, a shortlist of five finalist teams, whose submis-
sion had the best performance, was selected and these
teams could use the remaining time before the beginning
of the conference, in June, to continue improving their
implementation.

Setting up the evaluation cluster, eight dedicated PCs
running a 64bit version of Linux on a single-core CPU,
was not completely straightforward. First, it was criti-
cal to ensure the security of the machines and the non-
disclosure of the contents of the benchmarks, whereas
contestants were allowed to run arbitrary code on the clus-
ter. The solution chosen was to run each submission as a
new unprivileged Linux user without any write access to
any part of the disk (except for a temporary directory that
was emptied after each evaluation), and to set up a strict
firewall that prevented any information leaking outside
the cluster. Second, for scores to be meaningful, evalua-
tion times had to be reproducible from one run to another.
This led us to use dedicated servers rather than virtualiza-
tion, to clear all system caches across runs, and to ensure,
as much as possible, that no concurrent processes were
active on the cluster nodes. Third, it turned out that con-
testants encountered problems (crashes, timeouts) while
running their submissions on the evaluation workloads
that they were not able to reproduce on their test bench-
marks. To help them with debugging, we provided them
with stack traces and other similar crash information,
from the execution log of the evaluation. This, however,
could not be automated, because of potential leaks of de-
tailed information about the content of the benchmarks,
and resulted in a time-consuming task for the organizers.

A total of 29 teams took part in the competition, from
23 different institutions in 13 countries. An amazing
collective effort was put in this contest, with some teams
literally dedicating months of working time to the com-
petition. As a result, leading implementations are impres-

sively sophisticated and efficient.
The five finalist teams and their score, computed at the

end of the competition, are listed in Table 1. Note that
only the top two teams managed to pass all benchmarks
in the allocated time. Both of these implementations
are interesting: the winning one, cardinality’s, is gener-
ally faster, but is actually slower than the second-ranked,
namely dbis’s, on the last workload, which is also the
most difficult one.

More details about the results of the competition can
be found at the following URL: http://dbweb.enst.
fr/events/sigmod10contest/results/.

4. KEY IDEAS BEHIND LEADING IM-
PLEMENTATIONS

We present in this section the general ideas behind the
two systems we implemented. When not stated other-
wise, the description applies to both.

Given the task, query planner and executor are two
main components to build. Undoubtedly, both of them
can make an enormous impact on the overall perfor-
mance. Here we discuss key decisions on designing and
implementing these components in more detail. We re-
fer to a textbook on database management systems such
as [2] for precisions on some of the techniques used.

Query Planning
In order to determine the most efficient physical query
plan, we implemented cost-based query optimization.
Our objective is to minimize total resource consumption
rather than response time because of the many concur-
rent queries running at the same time. The cost model
focuses on network transfer as well as sequential and
random disk reads. Incorporating CPU cost would be a
natural next step, but we believe that its impact on the
quality of the selected plan will be marginal given the
performance of the main-memory index and the limited
class of supported SQL queries. Also, calibrating param-
eters for complex models would have been more difficult
due to restricted access to the evaluation cluster.

Finalist teams employed various plan search strate-
gies. Team cardinality enumerates all possible physical
query plans and estimates their costs. Because plans are
built bottom-up, a dynamic programming technique is ap-
plied in order to avoid building and evaluating the same
subplan multiple times. During plan enumeration, unin-
teresting subplans are pruned according to heuristics that
favor index-based operators. These heuristics not only
reduce the size of search space but also complements the
rather simple cost model. Note that time and space con-
sumption of this exhaustive search is bounded because
the contest specifies that at most five tables are joined.
On the other hand, team dbis first performs an exhaustive
search for all possible join orders and then refines the

http://dbweb.enst.fr/events/sigmod10contest/
http://dbweb.enst.fr/events/sigmod10contest/
http://dbweb.enst.fr/events/sigmod10contest/results/
http://dbweb.enst.fr/events/sigmod10contest/results/

Table 1: Final score, corresponding time, and proportion of the eight workloads processed
Team Institution Country Score Time Workloads

1. cardinality Stanford University USA 88 3min 18s 8/8
2. dbis TU Kaiserslautern Germany 98 5min 45s 8/8
3. spbu Saint-Petersburg University Russia 108 >12min 17s 7/8
4. insa INSA Lyon France 119 >22min 20s 7/8
5. bugboys KAUST Saudi Arabia 142 >30min 19s 5/8

Naïve implementation 207 >45min 31s 2/8

plan with optimal join order using heuristics. Once the
optimal join order is chosen, the query planner starts
with a basic plan using table scans and block nested-loop
joins. Subsequently, alternative plans are derived using
as many index-based operators as possible. In this step,
a block nested-loop join can be replaced by a merge join
when two primary key columns are joined. Likewise, if
one or both join columns are indexed, a hash join can be
used by treating the given index as a hash-based access
structure. A similar procedure applies for access opera-
tors; a table scan is substituted by an index scan followed
by an optional table seek based on the offset retrieved
from the index.

Exploiting partitioning information during query plan-
ning turns out to be a crucial observation for passing all
benchmarks. Clearly, certain queries can be answered
by accessing only relevant partitions because all tables
are range-partitioned based on the primary key column.
For example, primary key joins do not cover all possible
partition pairs, but are processed only between partition
pairs whose ranges overlap. Similarly, conditions on the
primary key column can eliminate out-of-range partitions.
Because accessing multiple partitions usually involves
network transfer, skipping one partition can decrease the
running time significantly. If partitioning information
indicates that a condition is unsatisfiable, we generate a
query plan with a no-op operator that produces an empty
result set.

Statistics of each partition are gathered during the pre-
processing step. We obtain partition sizes and estimate
the cardinality and average column sizes by sampling
a few first pages in each partition. Also, we count the
number of distinct values for indexed columns. Other
than these basic statistics, we do not maintain detailed
information about data distribution and rely on fixed se-
lectivity factors depending on the type of predicates.

Query Execution: Single Node
Tables stored on disk are accessed through memory-
mapped I/O. This strategy has two main advantages.
First, we can deploy a high performance buffer pool with
little implementation effort because the page cache in the
Linux kernel provides this function for us. Even though

a naïve approach using an input file stream library also
utilizes the page cache, we cannot read the page cache
directly. Consequently, excessive memory copy between
kernel and user spaces cannot be avoided. Second, we
can access columns spanning multiple pages efficiently.
Unlike most traditional databases, underlying data files
are stored in the comma-separated values (CSV) format.
Thus, addressing a column would be complicated un-
less there is a contiguous address space for an entire file.
Note that despite these advantages, this strategy would
not have been practical on 32-bit architectures where
available address space is considerably smaller.

Query execution uses a simple pull-based, Volcano-
style, iterator model [1] where each operator implements
Open(), GetNext(), and Close() interfaces. A tuple passed
by GetNext() is always represented as a vector of pointer-
length pairs. Because we avoid memory copy as much as
possible, these pointers usually reference either memory-
mapped files or communication buffers.

Query Execution: Multiple Nodes
Send and receive operators fulfill the communication
among the master and slave nodes. A receive operator
generates a request message by serializing the subplan
rooted at its child and ships the message to its correspond-
ing send operator. Upon receiving a request message, the
send operator constructs the subplan, executes it, and
sends its result back as a response message. Each send
operator runs on its own worker thread for concurrent
execution. Some finalist teams maintained a thread pool
with a fixed number of worker threads. However, a naïve
approach without a thread pool also performs well be-
cause only hundreds of threads are created and destroyed
each second in this setting.

The send and receive operators exchange messages
over TCP/IP connections, so efficient TCP communi-
cation is vital to the performance. The first challenge
to minimize TCP overhead is to amortize TCP connec-
tion setup and tear-down cost across multiple request-
response pairs. Finalist teams addressed this challenge in
slightly different ways, but the main idea is to maintain
established TCP connections for reuse. Some teams keep
a single TCP connection between each pair of nodes,

while the others initiate a new TCP connection whenever
there is no reusable connection. In the contest setting,
the latter works better because receive operators do not
have to wait for the single TCP connection to be avail-
able. Another challenge is to reduce per-message TCP
overhead in order to increase application throughput. To
achieve this goal, we pack each message into fewer TCP
segments by setting the TCP_CORK option on all TCP
connections. The Linux kernel does not transmit partial
TCP segments as long as the TCP_CORK option is set and
a 200-millisecond timer does not expire. As a result,
more network bandwidth is utilized by request and re-
sponse messages rather than TCP/IP headers. These two
techniques yield a substantial performance improvement;
benchmark 6 runs more than four times faster.

Message compression is another natural way to save
network bandwidth. For request messages, we adopted
a variable-length integer code that serializes smaller in-
tegers into fewer bytes. This simple encoding is quite
effective for request messages because serialized query
plans contain many small integers such as node ids and
column ids. An optimized variable-length encoding im-
plementation decreases the running times of benchmarks
6 and 7 by more than 20%. For response messages, we
experimented with a couple of lossless compression al-
gorithms. Even though we observed good compression
ratios and some performance improvements using our
test dataset and queries, we failed to decrease any bench-
mark running time. This result is not surprising because
the cost of message compression can be more expensive
than the benefit depending on workload and hardware
configuration. Clearly, we need a more sophisticated
algorithm that determines which messages to compress
in order for this technique to work well across various
workloads.

5. CLOSING REMARKS
The SIGMOD 2009 and 2010 programming contests

were a chance for many students (at both the undergradu-
ate and graduate levels) to discover and design parts of
the architecture of a distributed database management
system. The contest was used in several universities as
part of the curriculum or as an optional alternative to
other assignments. This programming contest will run
again next year, organized by Stavros Harizopoulos and
Mehul Shah from HP Labs. It is our hope that this com-
petition will help foster the next generation of database
researchers and practitioners.

6. ACKNOWLEDGMENTS
We are very grateful to the sponsors of the program-

ming contest: NSF, Microsoft (platinum sponsors); Ama-
zon, INRIA Saclay (gold sponsors); Exalead, Yahoo!
(silver sponsors). We would also like to acknowledge our
advisory board: Serge Abiteboul, Magdalena Balazinska,
Samuel Madden, and Michael Stonebraker.

7. REFERENCES
[1] Goetz Graefe. Volcano - an extensible and parallel

query evaluation system. IEEE Trans. Knowl. Data
Eng., 6(1):120–135, 1994.

[2] Raghu Ramakrishnan and Johannes Gehrke.
Database Management Systems. McGraw-Hill, New
York, USA, third edition, 2002.

	Context
	Task Description
	The Competition
	Key Ideas behind Leading Implementations
	Closing Remarks
	Acknowledgments
	References

