
Adaptive Web Crawling Through
Structure-Based Link Classification

Muhammad Faheem1,2 and Pierre Senellart1,3(B)

1 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Paris, France
pierre@senellart.com

2 University of Ottawa, Ottawa, Canada
3 IPAL, CNRS, National University of Singapore, Singapore, Singapore

Abstract. Generic web crawling approaches cannot distinguish among
various page types and cannot target content-rich areas of a website.
We study the problem of efficient unsupervised web crawling of content-
rich webpages. We propose ACEBot (Adaptive Crawler Bot for data
Extraction), a structure-driven crawler that uses the inner structure of
the pages and guides the crawling process based on the importance of
their content. ACEBot works in two phases: in the learning phase, it
constructs a dynamic site map (limiting the number of URLs retrieved)
and learns a traversal strategy based on the importance of navigation
patterns (selecting those leading to valuable content); in the intensive
crawling phase, ACEBot performs massive downloading following the
chosen navigation patterns. Experiments over a large dataset illustrate
the effectiveness of our system.

1 Introduction

A large part of web content is found on websites powered by content management
systems (CMSs) such as vBulletin, phpBB, or WordPress [1]. The presentation
layer of these CMSs use predefined templates (which may include left or right
sidebars, headers and footers, navigation bars, main content, etc.) for populat-
ing the content of the requested web document from an underlying database. A
study [1] found that 40–50% of web content, in 2005, was template-based; this
order of magnitude is confirmed by a more recent web technology survey [2],
which further shows that one specific CMS, WordPress, is used by 24% of web-
sites, giving it 60% of CMS market share. Depending on the request, CMSs may
use different templates for presenting information; e.g. in blogs, the list of posts
type of page uses a different template than the single post webpage that also
includes comments. These template-based webpages form a meaningful structure
that mirrors the implicit logical relationship between web content across differ-
ent pages within a website. Many templates are used by CMSs for generating
different types of webpages. Each template generates a set of webpages (e.g. list
of blog posts) that share a common structure, but differ in content. These tem-
plates are consistently used across different regions of the site. More importantly,
for a given template (say, a list of posts), the same links usually lead to the same
c© Springer International Publishing Switzerland 2015
R.B. Allen et al. (Eds.): ICADL 2015, LNCS 9469, pp. 39–51, 2015.
DOI: 10.1007/978-3-319-27974-9 5

40 M. Faheem and P. Senellart

kind of content (say, individual posts), with common layout and presentation
properties.

Due to limited bandwidth, storage, or indexing capabilities, only a small frac-
tion of web content can actually be harvested by web crawlers. This is true for
archival crawlers of institutions with limited resources (e.g. the national library
of a small country). This is even true for a company such as Google, that, as
of June 2013, had discovered more than a trillion unique URLs [3], but indexed
around 40 billion webpages. This suggests a need to develop a crawling strat-
egy that not only effectively crawls web content from template-based websites,
but also efficiently minimizes the number of HTTP requests by avoiding non-
interesting webpages.

A generic web crawler performs inefficient crawling of websites. It crawls the
web with no guarantee of content quality. An ideal crawling approach should
solve the following three problems: What kind of webpages are important to
crawl (to avoid redundant and invalid pages)? Which important links should be
followed? What navigation patterns are required on the website?

We introduce in this article an intelligent crawling technique that meets these
criteria. We propose a structure-driven approach that is more precise, effective,
and achieves a higher quality level, without loss of information. It guides the
crawler towards content-rich areas: this is achieved by learning the best traversal
strategy (a collection of important navigation patterns) during a learning phase,
that ultimately guides the crawler to crawl only content-rich webpages during
an intensive crawling phase.

Our structure-driven crawler, ACEBot, first establishes connections among
webpages based on their root-to-link paths in the DOM tree of the pages,
then ranks paths according to their importance (i.e. root-to-links paths that
lead to content-rich webpages), and further learns a traversal strategy for bulk-
downloading of the website. Our main claim is that structure-based crawling not
only clusters webpages which require similar crawling actions, but also helps to
identify duplicates, redundancy, and boilerplates, and plays as well an important
role in prioritizing the frontier (the list of URLs left to crawl).

After discussing related work in Section 2, we present our model in Section 3.
The algorithm that ACEBot follows is then presented in detail in Section 4,
followed by experiments in Section 5. Due to space constraints, some material
(proofs of results, additional experiments, examples) could not be included but
can be found in [4].

2 Related Work

In [5], Liu et al. proposed an algorithm, called SEW, that models a website as a
hypertext structure. SEW relies on a combination of several domain-independent
heuristics to identify the most important links within a webpage and thus dis-
cover a hierarchical organization of navigation and content pages. Kao et al. [6]
have addressed a similar problem, and propose a technique to distinguish between
pages containing links to news posts and the pages containing those news items.

Adaptive Web Crawling Through Structure-Based Link Classification 41

Compared to our approach, both techniques above only cluster the webpages into
two predefined classes of pages: navigational and content pages. In addition, Kao et
al. [6] focus on pages of a specific domain. In contrast, we have proposed a system
that performs unsupervised crawling of websites (domain-independent) without
prior assumption on the number of classes.

[7,8], aim to cluster webpages into different classes by exploiting their struc-
tural similarity at the DOM tree level, while [9] introduces crawling programs:
a tool that listens to the user interaction, registers steps, and infers the corre-
sponding intentional navigation. This approach is semi-supervised as it requires
human interaction to learn navigation patterns to reach the content-rich pages.
A web crawler is generally intended for a massive crawling scenario, and thus
semi-automatic approaches are not feasible in our setting. Therefore, in our pro-
posed approach, we have introduced the learning phase which learns navigation
patterns in an unsupervised manner.

Another structure-driven approach [10] has proposed a web crawler that
requires minimum human effort. It takes a sample page and entry point as input
and generates a set of navigation patterns (i.e. sequence of patterns) that guides
a crawler to reach webpages structurally similar to the sample page. As stated
above, this approach is also focused on a specific type of webpage, whereas our
approach performs massive crawling at web scale for content-rich pages.

Several domain-dependent web forum crawling techniques [11,12] have been
proposed recently. In [11], the crawler first clusters the webpages into two groups
from a set of manual annotated pages using Support Vector Machines with some
predefined features, and then, within each cluster, URLs are clustered using
partial tree alignment. Furthermore, a set of ITF (index-thread-page-flipping)
regular expressions are generated to launch a bulk download of a target web
forum. The iRobot system [12], that we use as a baseline in our experiments,
creates a sitemap of the website being crawled. The sitemap is constructed by
randomly crawling a few webpages from a given website. After sitemap genera-
tion, iRobot obtains the structure of the web forum. The skeleton is obtained
in the form of a directed graph consisting of vertices (webpages) and directed
arcs (links between different webpages). A path analysis is then performed to
learn an optimal traversal path which leads the extraction process in order to
avoid redundant and invalid pages. A web-scale approach [13] has introduced an
algorithm that performs URL-based clustering of webpages using some content
features. However, in practice, URL-based clustering of webpages is less reliable
in the presence of the dynamic nature of the web.

Our previous work [14] proposes an adaptive application-aware helper (AAH)
that crawls known CMSs efficiently. AAH is assisted with a knowledge base that
guides the crawling process. It first tries to detect the website and, if detected
as a known one, attempts to identify the kind of webpage given the matched
website. Then, the relevant crawling actions are executed for web archiving. This
approach achieves the highest quality of web content with fewer HTTP requests,
but is not fully automatic and requires a hand-written knowledge base that
prevents crawling of unknown websites.

42 M. Faheem and P. Senellart

3 Model

In this section, we formalize our proposed model: we see the website to crawl as
an directed graph, that is rooted (typically at the homepage of a site), and where
edges are labeled (by structural properties of the corresponding hyperlink). We
first consider the abstract problem, before explaining how actual websites fit into
the model.

Formal Definitions. We fix countable sets of labels L and items I . Our main
object of study is the graph to crawl:

Definition 1. A rooted graph is a 5-tuple G = (V,E, r, ι, l) with V a finite set
of vertices, E ⊆ V 2 a set of directed edges, r ∈ V the root; ι : V → 2I and
l : E → L assign respectively a set of items to every vertex and a label to every
edge.

Here, items serve to abstractly model the interesting content of webpages;
the more items a crawl retrieves, the better. Labels are attached to hyperlinks
between pages; further on, we will explain how we can use the DOM structure
of a webpage to assign such labels. We naturally extend the function ι to a set
of nodes X from G by posing: ι(X) :=

⋃
u∈X ι(u). We introduce the standard

notion of paths within the graph:

Definition 2. Given a rooted graph G = (V,E, r, ι, l) and vertices u, v ∈ V , a
path from u to v is a finite sequence of edges e1 . . . en from E such that there
exists a set of nodes u1 . . . un−1 in V with: e1 = (u, u1); ∀1 < k < n, ek =
(uk−1, uk); en = (un−1, v).

The label of the path e1 . . . en is the word l(e1) . . . l(en) over L .

Critical to our approach is the notion of a navigation pattern that uses edge
labels to describe which paths to follow in a graph. Navigation patterns are
defined using the standard automata-theory notion of regular expression (used
here as path expressions):

Definition 3. A navigation pattern p is a regular expression over L . Given a
graph G = (V,E, r, ι, l), the result of applying p onto G, denoted p(G), is the
set of nodes u with a path from r to u that has for label a prefix of a word in
the language defined by p. We extend this notion to a finite set of navigation
patterns P by letting P (G) :=

⋃
p∈P p(G).

Note that we require only a prefix of a word to match: a navigation pattern
does not only return the set of pages whose path from the root matches the path
expression, but also intermediate pages on those paths. For instance, consider
a path e1 . . . en from r to a node u, such that the navigation pattern p is the
path expression l(e1) . . . l(en). Then the result of executing navigation pattern
p contains u, but also all pages on the path from r to u; more generally, p
returns all pages whose path from the root matches a prefix of the expression
l(e1) . . . l(en). Navigation patterns are assigned a score:

Adaptive Web Crawling Through Structure-Based Link Classification 43

body

div

div

a

table

tbody

tr

td

a

td

a

thead

tr

th

a

Fig. 1. Partial DOM tree
representation

l1 body/table/tbody/tr/td/a
l2 body/table/thead/tr/th/a
l3 body/div/div/a

Fig. 2. Root-to-link paths

NP #2-grams score

l1 5107 2553.5
l1l4 7214 2404.7
l3 754 754.0
l2 239 239.0

Fig. 3. Navigation pat-
terns with score

Definition 4. Let G = (V,E, r, ι, l) be a rooted graph. The score of a finite
set of navigation patterns P over G, denoted ω(P,G) is the average number of
distinct items per node in P (G): ω(P,G) := |ι(P (G))|

|P (G)| .

In other words, a navigation pattern has a high score if it retrieves a large
number of items in a relatively low number of nodes. The crawling interpreta-
tion is that we want to maximize the amount of useful content retrieved, while
minimizing the number of HTTP requests made.

We can now formalize our problem of interest: given a rooted graph G and a
collection of navigation patterns P (that may be all path expressions over L or
a subclass of path expressions over L), determine the set of navigation patterns
P ⊆ P of maximal score over G. We can show (see [4] for proofs):

Proposition 1. Given a graph G and a collection of navigation patterns P,
determining if one finite subset P ⊆ P has maximal score over G is a coNP-
complete problem.

Thus, there is no hope of efficiently obtaining an optimal set of navigation
patterns. In this light we will introduce in Section 4 a non-optimal greedy app-
roach to the selection of navigation patterns, that we will show in Section 5 still
performs well in practice.

Model Generation. We now explain how we consider crawling a website in the
previously introduced abstract model. A website is any HTTP-based application,
formed with a set of interlinked webpages that can be traversed from some base
URL, such as http://icadl2015.org/. The base URL of a website is called the
entry point of the site. For our purpose, we model a given website as a directed
graph (see Definition 1), where the base URL becomes the root of the graph. Each
vertex of the graph represents a distinct webpage and, following Definition 1, a
set of items is assigned to every vertex.

In our model, the items are all distinct 2-grams seen for a webpage. A 2-
gram for a given webpage is a contiguous sequence of 2 words within its HTML
representation. The set of 2-grams has been used as a summary of the content
of a webpage [14]; the richer a content area is, the more distinct 2-grams. It also
corresponds to the classical ROUGE-N [15] measure used in text summarization:

http://icadl2015.org/

44 M. Faheem and P. Senellart

Fig. 4. Before clustering Fig. 5. After clustering Fig. 6. After scoring

the higher number of 2-grams a summary shares with its text, the more faithful
the summary is. The set of items associated to each vertex plays an important
role in the scoring function (see Definition 4), which eventually leads to select a
set of webpages for crawling.

A webpage is a well-formed HTML document, and its Document Object
Model (DOM) specifies how objects (i.e. texts, links, images, etc.) in a webpage
are accessed. Hence, a root-to-link path is a location of the link (i.e. <a> HTML
tag) in the corresponding DOM tree. Fig. 1 shows a DOM tree representation
of a sample webpage and Fig. 2 illustrates its root-to-link paths.

Following Definition 1, each edge of the graph is labeled with a root-to-link
path. Assume there is an edge e(u, v) from vertex u to v, then a label l(e)
for edge e is the root-to-link path of the hyperlink pointing to v in vertex (i.e.
webpage) u. Navigation patterns will thus be (see Definition 3) path expressions
over root-to-link paths.

Two webpages reachable from the root of a website with paths p1 and p2
whose label is the same are said to be similar.

Consider the scoring of a navigation pattern (see Definition 4). We can note
the following: the higher the number of requests needed to download pages com-
prised by a navigation pattern, the lower the score; the higher the number of
distinct 2-grams in pages comprised by a navigation pattern, the higher the
score.

4 Deriving the Crawling Strategy

Simple Example. Consider the homepage of a typical web forum, say http://
forums.digitalspy.co.uk/, as the entry point of the website to crawl. This webpage
may be seen as a two different regions. There is a region with headers, menus
and templates, that are presented across several webpages, and is considered as
a non-interesting region from the perspective of archiving the main content of
the website. The other region at the center of the webpage is a content-rich area
which should be archived. Since pages are generated by a CMS (vBulletin here),

http://forums.digitalspy.co.uk/
http://forums.digitalspy.co.uk/

Adaptive Web Crawling Through Structure-Based Link Classification 45

the underlying templates have a consistent structure across similar webpages.
Therefore the links contained in those pages obey regular formating rules. In
our example website, the links leading to blog posts and the messages within an
individual post have some layout and presentational similarities.

Fig. 1 presents a simplified version of the DOM tree of the example entry
point webpage and its root-to-link paths are shown in Fig. 2. Fig. 4 shows a
truncated version of the generated graph for the corresponding site. Each ver-
tex represents a unique webpage in the graph. These vertices are connected
through directed edges, labeled with root-to-link paths. Each vertex of the graph
is assigned a number of distinct 2-grams seen for the linked webpage (e.g. 3,227
distinct 2-grams seen for p3). Furthermore, the set of webpages (i.e. vertices)
that share the same path (i.e. edge label) are clustered together (see Fig. 5).
The newly clustered vertices are assigned a collective 2-gram set seen for all clus-
tered webpages. For instance, the clustered vertex {p3, p4} has now 5,107 distinct
2-gram items. After clustering, all possible navigation patterns are generated for
the graph. This process is performed by traversing the directed graph. Table 3
exhibits all possible navigation patterns. Afterwards, each navigation pattern
(a combination of root-to-link paths) is assigned a score. The system does not
compute the score of any navigation pattern that does not lead the crawler from
the entry point to an existing webpage. Once all possible navigation patterns
are scored then the navigation pattern with highest score is selected (since the
highest score ensures the archiving of the core contents). Here, the navigation
pattern l1 is selected. The process of assigning the score to the navigation pat-
terns keeps going after each selection for navigation patterns not selected so far.
Importantly, 2-gram items for already selected vertices are not considered again
for non-selected navigation patterns. Therefore, in the next iteration, the nav-
igation pattern l1l4 does not consider items from webpages retrieved by the l1
navigation pattern. The process of scoring and selecting ends when no interesting
navigation pattern is left.

Detailed Description. ACEBot mainly consists of two phases: learning and inten-
sive crawling. The aim of the learning phase is to first construct the sitemap and
cluster the vertices that share a similar edge label. A set of crawling actions (i.e.
best navigation patterns) are learned to guide massive crawling in the intensive
crawling phase.

Algorithm 1 gives a high-level view of the navigation pattern selection mecha-
nism for a given entry point (i.e. the home page). Algorithm 1 has six parameters.
The entry point r is the home page of a given website. The Boolean value of the
parameter d specifies whether the sitemap of the website should be constructed
dynamically. The argument k defines the depth (i.e. level or steps) of navigation
patterns to explore. The Boolean expDepth specifies whether to limit the expan-
sion depth of navigation patterns to a fixed value of 3; this is typically used in
webpages with “Next” links. The argument a passes the set of attributes (e.g.
id and class) that should be considered when constructing navigation patterns.
cr sets the completion ratio: the selection of navigation patterns ends when this
criterion is met.

46 M. Faheem and P. Senellart

Input: entry point r, dynamic sitemap d, navigation pattern expansion depth
expDepth, navigation-step k, a set of attributes a, completion ratio cr

Output: a set of selected navigation patterns SNP
siteMap ← generateSiteMap(r, d);
clusteredGraph ← performClustering(siteMap);
navigationPatterns ← getNavigationPatterns(r , clusteredGraph, k , expDepth, a);
NP ← updateNavigationPatterns(navigationPatterns);
while not cr do

topNP ← getTopNavigationPattern(NP ,SNP);
SNP ← addToSelectedNP(topNP);
NP ← removeSubNavigationPatterns(topNP);

Algorithm 1. Selection of the navigation patterns

The goal of the learning phase is to obtain useful knowledge for a given
website based on a few sample pages. The sitemap construction is the foundation
of the whole crawling process. The quality of sampled pages is important to
decide whether learned navigation patterns target the content-rich part of a
website. We have implemented a double-ended queue (similar to the one used
in [12]), and then fetched the webpages randomly from the front or end. We have
limited the number of sampled pages to 3,000, and detailed experiments (see
Section 5) show that the sample restriction was enough to construct the sitemap
of any considered website. The generateSiteMap procedure takes a given entry
point as parameter and returns a sitemap (i.e. site model).

The procedure performClustering in Algorithm 1 clusters the vertices with
similar edge labels. It performs breadth-first traversal over the graph, starting
from each root till the last destination vertex. For instance, in Fig. 5, vertex p3
and p4 share the label l1 and thus are clustered together. The 2-gram measure
is also computed for each clustered vertex. More precisely, similar nodes are
clustered when cluster destination vertices share an edge label, such as a list of
blog posts where the label l2 is shared across vertices. Assume vertex v′ has an
incoming edge from vertex v with label l1, and also vertex v′ has an outgoing
edge to vertex v′′ with similar label l1. Since v′ and v′′ share an edge label, these
vertices will be clustered. For instance, page-flipping links (e.g. post messages
that may exist across several pages) usually have the same root-to-link path.
These types of navigation patterns end with a + (for example /html/body/div
[contains(@class ,"navigation")])+), that indicates the crawling action should
be performed more than once on similar webpages during intensive crawling.

Once the graph is clustered, getNavigationPatterns extracts all possible nav-
igation patterns for each root vertex r ∈ R. The procedure takes three parame-
ters clusteredGraph, r, and k as input. The procedure generates the navigation
patterns using a depth-first traversal approach where depth is limited to k (i.e.
number of navigation-steps). node. Hence, a set of navigation patterns are gener-
ated, starting from the root vertex (i.e. the navigation patterns that do not start
with the root vertex are ignored) and counting the k number of navigation-steps.
This step will be performed for each root vertex and updateNavigationPatterns
will update the set of navigation patterns NP accordingly.

Adaptive Web Crawling Through Structure-Based Link Classification 47

The getTopNavigationPattern procedure returns a top navigation pattern on
each iteration. The procedure takes two parameters NP (a set of navigation
patterns), and SNP (a set of selected navigation patterns) as input. This pro-
cedure applies the subset scoring function (see Definition 4) and computes the
score for each navigation pattern. items(NP) is computed by counting the total
number of distinct 2-grams words seen for all vertices that share the navigation
pattern NP . The size of the navigation pattern NP (i.e. size(NP)) is the total
number of vertices that shares the NP . The SNP parameter is passed to the
procedure to ensure that only new data rich areas are identified. More precisely,
assume the l1l2 navigation pattern is already selected. Now the scoring function
for navigation pattern l1l2l3 does not take into account the score for navigation
pattern l1l2, but only the l3 score will play a role in its selection. Eventually, it
guarantees that the system always selects the navigation patterns with newly
discovered webpages with valuable content. The removeSubNavigationPatterns
procedure removes all the sub navigation patterns. For instance, if navigation
pattern l1l4l5 is newly selected, and there already exists the navigation pattern
l1l4 in SNP , then l1l4 will be removed from SNP .

The selection of navigation patterns ends when all navigation patterns from
the set NP are selected or when some other criterion is satisfied (e.g. completion
ratio cr condition reached). Then, the system will launch the intensive crawl-
ing phase and feed the selected navigation patterns to the crawler for massive
crawling.

5 Experiments

In this section, we present the experimental results of our proposed system. We
compare the performance of ACEBot with AAH [14] (our previous work, that
relies on a hand-written description of given CMSs), iRobot [12] (an intelligent
crawling system for web forums), and GNU wget1 (a traditional crawler), in
terms of efficiency and effectiveness. Though wget is relatively simple software
as far as crawlers are concerned, we stress that any other traditional crawler (e.g.
Heritrix) will perform in the same way: as no structure analysis of the website
is executed, the website will be exhaustively downloaded.

Experimental Setup. To evaluate the performance of ACEBot at web scale, we
have carried out the evaluation of our system in various settings. We first describe
the dataset and performance metrics and different settings of our proposed algo-
rithm. We have selected 50 websites from different application domains (totaling
nearly 2 million webpages) with diverse characteristics, to analyze the behavior
of our system for small websites as well as for web-scale extraction with both
wget (for a full, exhaustive crawl), and our proposed system. To compare the per-
formance of ACEBot with AAH, 10 websites (nearly 0.5 million webpages) were
crawled with both ACEBot and AAH (note that AAH only works on selected
CMS which prevents a comparison on the larger dataset).
1 http://www.gnu.org/software/wget/

http://www.gnu.org/software/wget/

48 M. Faheem and P. Senellart

WordPress vBulletin phpBB other
0

10

20

30

Pr
op
or
tio

n
of

H
T
T
P
re
qu

es
ts

(%
)

ACE
AAH

Fig. 7. Total number of HTTP requests (excluding overhead), in proportion to the
total size of the dataset

In the learning phase, the site map of a given website is constructed either
from the whole mirrored website or from a smaller collection of randomly selected
sample pages, as detailed previously. We found that ACEBot requires a sample
of 3,000 pages to achieve optimal crawling quality on large websites, comparable
to what was done for iRobot [12] (1,000 pages) and a supervised structure driven
crawler [10] (2,000 pages).

We consider several settings for our proposed Algorithm 1. The additional
parameters d, cr, k, and a form several variants of our technique: The sitemap d
may be dynamic (limiting to 3,000 webpages; default if not otherwise specified)
or complete (whole website mirror). The completion ration cr may take values
85%, 90%, 95% (default). The level depth k is set to either 2, 3 (default), or 4.
The attributes used, a, will be set to id.

We have compared the performance of ACEBot with AAH and GNU wget by
evaluating the number of HTTP requests made by these crawlers vs the number
of useful content retrieved. We have considered the same performance metrics
used by AAH [14], where the evaluation of number of HTTP requests is per-
formed by simply counting the requests. In the case of ACEBot, we distinguish
between the number of HTTP requests made during the intensive downloading
phase (or that would have made during this phase but were already done during
that phase) and the overhead of requests made during the learning phase for
content not relevant in the massive downloading phase (which is bounded by
the sample size, i.e., 3,000 in general). Coverage of useful content is evaluated
by the proportion of 2-grams in the crawl result of three systems, as well as by
the proportion of external links (links to external websites) retrieved.

Crawl Efficiency. We have computed the number of pages crawled with ACEBot,
AAH, and GNU wget, to compare the crawl efficiency of the three systems (see
Fig. 7). Here, wget (or any other crawler not aware of the structure of the website)
obviously crawls 100% of the dataset. ACEBot makes 5 times fewer requests
than a blind crawl, and slightly more than AAH, the latter being only usable for
the three CMS it handles. The numbers in Fig. 7 do not include overhead, but
we measured the overhead to be 8% of the number of useful requests made by
ACEBot on a diversified sample of websites, which does not significantly change

Adaptive Web Crawling Through Structure-Based Link Classification 49

Table 1. Performance of ACEBot for different levels with dynamic sitemap for the
whole data set

Level Requests Content (%) External Links (%) Completion ratio (%)

2
376632 95.7 98.6 85
377147 95.8 98.7 90
394235 96.0 99.1 95

3
418654 96.3 99.2 85
431572 96.6 99.3 90
458547 96.8 99.3 95

4
491568 96.9 99.4 85
532358 97.1 99.4 90
588512 97.2 99.4 95

the result: this is because the considered websites were generally quite large (on
average 40,000 pages per site, to compare with the sample size of 3,000, which
means that on the total dataset the overhead cannot exceed 7.5%).

The results shown in Fig. 8 plot the number of seen 2-grams and HTTP
requests made for a selected number of navigation patterns. The numbers of
HTTP requests and discovered 2-grams for a navigation pattern impact its score,
and thus its selection. Therefore a navigation patterns with one single page, but
with many new 2-grams may be selected ahead of a navigation pattern with
many HTTP requests. Fig. 8 elaborates that prospect, where the 10th selected
navigation pattern crawls a large number of pages but this navigation pattern
was selected only because of a higher completion ratio.

Crawl Effectiveness. ACEBot crawling results in terms of coverage of useful
content are summarized in Fig. 1 and 9. The coverage of useful content and
external links for different navigation steps (levels) is shown in Fig. 1. Limiting
the navigation patterns to level k = 2 or 3 results in fewer HTTP requests, and
a performance of 96% content with cr = 95% completion ratio. However, level
3 performs better across many websites in terms of effectiveness, as important
contents exist at link depth 3. Once the learned navigation patterns achieve the
95% coverage of 2-grams vs whole blind crawl, they will be stored in a knowledge
base for future re-crawling. The proportion of external link coverage by ACEBot
is also given in Table 1. Since ACEBot selects the best navigation patterns and
achieves higher content coverage, over 99% of external links are present in the
content crawled by ACEBot for the whole dataset.

Fig. 9 depicts the performance of ACEBot for different completion ratios
for 10 selected websites, each with 50,000 webpages. The selection of navigation
patterns ends when the completion ratio has been achieved. The experiments
have shown that a higher (and stable) proportion of 2-grams is seen with a
completion ratio of over 80%.

Comparison to AAH. The experiments of AAH [14] are performed for 100 web-
sites. To compare ACEBot to AAH more globally, we have crawled 10 of the same

50 M. Faheem and P. Senellart

0 5 10
0

2

4

6

8

10

Number of selected navigation patterns

N
um

be
r
of

H
T
T
P
re
qu
es
ts
(×

1,
00
0)

requests
0

20

40

60

80

100
2-grams

Fig. 8. HTTP requests and proportion of
seen 2-grams for 10 websites

Pr
op

or
tio

n
of

se
en

2-
gr
am

s
(%

)

0 20 40 60 80 100
0

20

40

60

80

100

Completion ratio (%)

Fig. 9. Proportion of seen 2-grams for dif-
ferent completion ratios for 10 websites

websites (nearly 0.5 million webpages) used in AAH [14]. ACEBot is fully auto-
matic, whereas the AAH is a semi-automatic approach (still domain dependent)
and thus requires a hand-crafted knowledge base to initiate a bulk download-
ing of known web applications. Over 96 percent crawl effectiveness in terms of
2-grams, and over 99 percent in terms of external links is achieved for ACEBot,
as compared to over 99 percent content completeness (in terms of both 2-grams
and external links) for AAH. The lower content retrieval for ACEBot than for
AAH is naturally explained by the 95% target completion ration considered for
ACEBot. However the performance of AAH relies on the hand written crawling
strategy described in the knowledge base by a crawl engineer. The crawl engi-
neer must be aware of the website structure for the crawled website, to effectively
download the important portion, as contrasted to our fully automatic approach,
where one does not need to know such information for effective downloading
and the crawler automatically learns the important portions of the website. The
current approach makes 5 times fewer HTTP requests as compared to 7 times
for AAH (See Fig. 7).

Comparison to iRobot. We have performed the comparison of our approach with
the iRobot system [12]. iRobot is not available for testing because of intellectual
property reasons. The experiments of [12] are performed just for 50,000 web-
pages, over 10 different forum websites (to compare with our evaluation, on 2.0
million webpages, over 50 different websites). To compare ACEBot to iRobot,
we have crawled the same web forum used in [12]: http://www.tripadvisor.com/
ForumHome (over 50,000 webpages). The completeness of content of the our
system is nearly 97 percent in terms of 2-grams, and 100 percent in terms of
external links coverage; iRobot has a coverage of valuable content (as evaluated
by a human being) of 93 percent on the same website. The number of HTTP
requests for iRobot is claimed in [12] to be 1.73 times less than a regular web

http://www.tripadvisor.com/ForumHome
http://www.tripadvisor.com/ForumHome

Adaptive Web Crawling Through Structure-Based Link Classification 51

crawler; on the http://www.tripadvisor.com/ForumHome web application, ACE-
Bot makes 5 times fewer requests than wget does.

6 Conclusions

We have introduced an Adaptive Crawler Bot for data Extraction (ACEBot),
that relies on the inner structure of webpages, rather than on their content or
on URL-based clustering techniques, to determine which pages are important to
crawl. Extensive experiments over a large dataset have shown that our proposed
system performs well for websites that are data-intensive and, at the same time,
present regular structure.

Our approach is useful for large sites, for which only a small part (say, 3,000
pages) will be crawled during the learning phase. Further work could investigate
automatic adjustment of the number of pages crawled during learning to the size
of the website.

References

1. Gibson, D., Punera, K., Tomkins, A.: The volume and evolution of web page tem-
plates. In: WWW (2005)

2. Q-Success: Usage of content management systems for websites (2015). http://
w3techs.com/technologies/overview/content management/all

3. Alpert, J., Hajaj, N.: We knew the web was big (2008). http://googleblog.blogspot.
co.uk/2008/07/we-knew-web-was-big.html

4. Faheem, M.: Intelligent Content Acquisition in Web Archiving. PhD thesis,
Télécom ParisTech (2014)

5. Liu, Z.-H., Ng, W.-K., Lim, E.: An automated algorithm for extracting website
skeleton. In: Lee, Y.J., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS,
vol. 2973, pp. 799–811. Springer, Heidelberg (2004)

6. Kao, H.Y., Lin, S.H., Ho, J.M., Chen, M.S.: Mining web informative structures
and contents based on entropy analysis. IEEE Trans. Knowl. Data Eng. (2004)

7. Crescenzi, V., Merialdo, P., Missier, P.: Fine-grain web site structure discovery. In:
WIDM (2003)

8. Crescenzi, V., Merialdo, P., Missier, P.: Clustering web pages based on their struc-
ture. Data Knowl. Eng. 54(3) (2005)

9. Bertoli, C., Crescenzi, V., Merialdo, P.: Crawling programs for wrapper-based appli-
cations. In: IRI (2008)

10. Vidal, M.L.A., da Silva, A.S., de Moura, E.S., Cavalcanti, J.M.B.: Structure-driven
crawler generation by example. In: SIGIR (2006)

11. Jiang, J., Song, X., Yu, N., Lin, C.Y.: Focus: Learning to crawl web forums. IEEE
Trans. Knowl. Data Eng. (2013)

12. Cai, R., Yang, J.M., Lai, W., Wang, Y., Zhang, L.: iRobot: an intelligent crawler
for web forums. In: WWW (2008)

13. Blanco, L., Dalvi, N.N., Machanavajjhala, A.: Highly efficient algorithms for struc-
tural clustering of large websites. In: WWW (2011)

14. Faheem, M., Senellart, P.: Intelligent and adaptive crawling of web applications
for web archiving. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol.
7977, pp. 306–322. Springer, Heidelberg (2013)

15. Lin, C.Y., Hovy, E.: Automatic evaluation of summaries using n-gram co-
occurrence statistics. In: HLT-NAACL (2003)

http://www.tripadvisor.com/ForumHome
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all
http://googleblog.blogspot.co.uk/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.co.uk/2008/07/we-knew-web-was-big.html

	Adaptive Web Crawling Through Structure-Based Link Classification
	1 Introduction
	2 Related Work
	3 Model
	4 Deriving the Crawling Strategy
	5 Experiments
	6 Conclusions
	References

