
Intelligent and Adaptive Crawling
of Web Applications for Web Archiving

Muhammad Faheem1 and Pierre Senellart1,2

1 Institut Mines–Télécom, Télécom ParisTech, CNRS LTCI, Paris, France
2 The University of Hong Kong, Hong Kong
firstname.lastname@telecom.paristech.fr

Abstract. Web sites are dynamic in nature with content and structure
changing overtime. Many pages on the Web are produced by content
management systems (CMSs) such as WordPress, vBulletin, or phpBB.
Tools currently used by Web archivists to preserve the content of the
Web blindly crawl and store Web pages, disregarding the CMS the site
is based on (leading to suboptimal crawling strategies) and whatever
structured content is contained in Web pages (resulting in page-level
archives whose content is hard to exploit). We present in this paper an
application-aware helper (AAH) that fits into an archiving crawl pro-
cessing chain to perform intelligent and adaptive crawling of Web appli-
cations (e.g., the pages served by a CMS). Because the AAH is aware
of the Web application currently crawled, it is able to refine the list of
URLs to process and to extend the archive with semantic information
about extracted content. To deal with possible changes in structure of
Web applications, our AAH includes an adaptation module that makes
crawling resilient to small changes in the structure of Web site. We show
the value of our approach by comparing the output and efficiency of
the AAH with respect to regular Web crawlers, also in the presence of
structure change.

1 Introduction

Social Web Archiving. The World Wide Web has become an active publishing
system and is a rich source of information, thanks to contributions of hundreds
of millions of Web users. Part of this public expression is carried out on social
networking and social sharing sites (Twitter, Facebook, Youtube, etc.), part of
it on independent Web sites powered by content management systems (CMSs,
including blogs, wikis, news sites with comment systems, Web forums). Content
published on this range of Web applications includes information that is news-
worthy today or valuable to tomorrow’s historians. Barack Obama thus first an-
nounced his 2012 reelection as US president on Twitter [1]; blogs are more and
more used by politicians both to advertise their political platform and to listen
to citizens’ feedback [2]; Web forums have become a common way for political
dissidents to discuss their agenda [3]; user-contributed wikis such as Wikipedia
contain quality information to the level of traditional reference materials [4].

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 306–322, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 307

Because Web content is distributed, perpetually changing, often stored in
proprietary platforms without any long-term access guarantee, it is critical to
preserve this valuable material for historians, journalists, or social scientists of
future generations. This is the objective of Web archiving [5], which deals with
discovering, crawling, storing, and ensuring long-term access to Web data.

Application-Aware Archiving. Current archival crawlers, such as Internet
Archive’s Heritrix [6], function in a conceptually simple manner. They start from
a seed list of URLs to be stored in a queue. Web pages are then fetched from
this queue one after the other (respecting crawling ethics, limiting the number
of requests per server), stored as is, and links are extracted from them. If these
links point to resources in the scope of the archiving task, they are added to the
queue. This process ends after a specified time or when no new relevant URL
can be found.

This approach does not confront the challenges of modern Web application
crawling: the nature of the Web application crawled is not taken into account to
decide the crawling strategy or the content to be stored; Web applications with
dynamic content (e.g., Web forums, blogs, etc.) may be crawled inefficiently, in
terms of the number of HTTP requests required to archive a given site; content
stored in the archive may be redundant, and typically does not have any structure
(it consists of flat HTML files), which makes access to the archive cumbersome.

The aim of this work is to address this challenge by introducing a
new application-aware approach to archival Web crawling. Our system, the
application-aware helper (AAH for short) relies on a knowledge base of known
Web applications. A Web application is any HTTP-based application that uti-
lizes the Web and Web browser technologies to publish information using a
specific template. We focus in particular on social aspects of the Web, which are
heavily based on user-generated content, social interaction, and networking, as
can be found for instance in Web forums, blogs, or on social networking sites.
Our proposed AAH only harvests the important content of a Web application
(i.e., the content that will be valuable in a Web archive) and avoids duplicates,
uninteresting URLs and templates that just serve a presentational purpose. In
addition the application-aware helper extracts from Web pages individual items
of information (such as blog post content, author, timestamp).

To illustrate, consider the example of a Web forum, say, powered by a con-
tent management system such as vBulletin. On the server side, forum threads
and posts are stored in a database; when a user requests a given Web page, the
response page is automatically generated from this database content, using a
predefined template. Frequently, access to two different URLs will end up pre-
senting the same or overlapping content. For instance, a given user’s posts can
be accessed both through the classical threaded view of forum posts or through
the list of all his or her post displayed on the user profile. This redundancy
means that an archive built by a classical Web crawler will contain duplicated
information, and that many requests to the server do not result in novel pieces
of content. In extreme cases, the crawler can fall into a spider trap because it
has infinitely many links to crawl. There are also several noisy links such as to a

308 M. Faheem and P. Senellart

print-friendly page or advertisement, etc., which would be better to avoid during
the constitution of the archive. On the contrary, a Web crawler that is aware
of the information to be crawled can determine an optimal path to crawl all
posts of a forum, without any useless requests, and can store individual posts,
together with their authors and timestamps, in a structured form that archivists
and archive users can benefit of.

Template Change. Web applications are dynamic in nature; not only their con-
tent changes over time, but their structure and template does as well. Content
management systems provide several templates that one can use for generating
wiki articles, blog posts, forum messages, etc. These systems usually provide a
way for changing the template without altering the informational content, to
adapt to the requirements of a specific site. The layout may also change as a
new version of the CMS is installed. All these layout changes result in possible
changes in the DOM tree of the Web page, usually minor. This makes it more
challenging to recognize and process in an intelligent manner all instances of a
given content management systems, as it is hopeless to hope to manually de-
scribe all possible variations of the template in a Web application knowledge
base. Another goal of this work is an intelligent crawling approach that is re-
silient to minor template changes, and, especially, automatically adapts to these
changes, updating its knowledge of CMSs in the process. Our adaptation tech-
nique relies on both relaxing the crawling and extraction patterns present in the
knowledge base, and on comparing successive versions of the same Web page.

Outline. After presenting the related work (Sect. 2) and giving some prelimi-
nary definitions (Sect. 3), we describe our knowledge base of Web applications
in Sect. 4. The methodology that our application-aware helper implements is
then presented in Sect. 5. We discuss the specific problem of adaptation to tem-
plate changes in Sect. 6 before covering implementation issues and explaining
how the AAH fits into a crawl processing chain in Sect. 7. We finally compare
the efficiency and effectiveness of our AAH with respect to classical crawling
approach in crawling blogs and Web forums in Sect. 8. Initial ideas leading to
this work were presented as a PhD workshop article in [7]; the description of the
algorithms and system, adaptation to template change, experimental results, are
fully novel.

2 Related Work

Web Crawling. Web crawling is a well-studied problem with still ongoing chal-
lenges. A survey of the field of Web archiving and archival Web crawling is
available in [5]. A focused, or goal-directed, crawler, crawls the Web according
to a predefined set of topics [8], and thus influences the crawler behavior not
based on the structure of Web applications as is our aim, but on the content of
Web pages. Our approach does not have the same purpose as focused crawling:
it aims at better archiving of known Web applications. Both strategies for are
thus complementary.

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 309

Content in Web applications or content management systems is arranged with
respect to a template (which may include left or right sidebar of the Web page,
navigation bar, header and footer, main content, etc.). Among the various works
on template extraction, Gibson et al. [9] have performed an analysis of the extent
of template-based content on the Web. They have found that 40–50% of the Web
content (in 2005) is template-based (i.e., part of some Web application), which
is growing at the rate of 6–8% per year. This research is a strong hint at the
benefit of handling Web application crawling in a specific manner.

Forum Crawling. Though application-aware crawling in general has not yet been
addressed, there have been some efforts on content extraction from Web forums.
One such approach [10], dubbed Board Forum Crawling (BFC), leverages the
organized structure of Web forums and simulates user behavior in the extraction
process. BFC deals with the problem effectively, but is still confronted to limi-
tations as it is based on simple rules and can only deal with forums with some
specific organized structure.

Another technique [11], however, does not depend on the specific structure of
the Web forum. The iRobot system assists the extraction process by providing
the sitemap of the Web application being crawled. The sitemap is constructed
by randomly crawling a few pages from the Web application. After sitemap gen-
eration, iRobot obtains the structure of the Web forum in the form of a directed
graph consisting of vertices (Web pages) and directed arcs (links between differ-
ent Web pages). Furthermore a path analysis is performed to provide an optimal
traversal path which leads the extraction process in order to avoid duplicate and
invalid pages. A later effort [12] identified a few drawbacks in iRobot and im-
proved the original system in a number of way: a better minimum spanning tree
discovery technique [13], a better measure of the cost of an edge in the crawling
process as an estimation of its approximate depth in the site, and a refinement
of the detection of duplicate pages. iRobot [11,12] is probably the work clos-
est to ours. In contrast with that system, the AAH we propose is applicable to
any kind of Web application, as long as it is described in our knowledge base.
Also differently from [11,12], where the analysis of the structure of a forum has
to be done independently for each site, the AAH exploits the fact that several
sites may share the same content management system. Our system also extracts
structured and semantic information from the Web pages, where iRobot stores
plain HTML files and leaves the extraction for future work. We finally give in
Sect. 8 a comparison of the performance of iRobot vs AAH to highlight the
superior efficiency of our approach. On the other hand, iRobot aims at a fully
automatic means of crawling a Web forum, while the AAH relies on a knowl-
edge base (manually constructed but automatically maintained) of known Web
applications or content management systems.

Web Application Detection. As we shall explain, our approach relies on a generic
mechanism for detecting the kind of Web application currently crawled. Again
there has been some work in the particular cases of blogs or forums. In particular,
[14] uses support vector machines (SVM) to detect whether a given page is a

310 M. Faheem and P. Senellart

blog page. In [14], SVMs are trained using various traditional feature vectors
formed of the content’s bag of words or bag of n-grams, and some new features
for blog detection are introduced such as the bag of linked URLs and the bag of
anchors. Relative entropy is used for feature selection.

Wrapper Adaptation. Wrapper adaptation, the problem of adapting a Web in-
formation extractor to (minor) changes in the structure of considered Web pages
or Web sites, has received quite some attention in the research community. An
early work is that of Kushmerick [15] who proposed an approach to analyze Web
pages and already extracted information, so as to detect changes in structure. A
“wrapper verification” method is introduced that checks whether a wrapper stops
extracting data; if so, a human supervisor is notified so as to retrain the wrapper.
Chidlovskii [16] introduced some grammatical and logic-based rules to automate
the maintenance of wrappers, assuming only slight changes in the structure of
Web pages. Meng, Hu, and Li [17] suggested a schema-guided wrapper main-
tenance approach called SG-WRAM for wrapper adaptation. Lerman, Minton,
and Knoblock [18] developed a machine learning system for repairing wrapper for
small markup changes. Their proposed system first verifies the extraction from
Web pages, and if the extraction fails then it relaunches the wrapper induction
for data extraction.

Our template adaptation technique is inspired by the previously cited works:
we check whether patterns of our wrapper fail, and if so, we try fixing them
assuming minor changes in Web pages, and possibly using previously crawled
content on this site. One main difference with existing work is that our approach
is also applicable to completely new Web sites, never crawled before, that just
share the same content management system and a similar template.

Data Extraction from Blogs, Forums, etc. A number of works [19,20,21] aim at
automatic wrapper extraction from CMS-generated Web pages, looking for re-
peated structure and typically using tree alignment or tree matching techniques.
This is out of scope of our approach, where we assume that we have a preex-
isting knowledge base of Web applications. Gulhane et al. [22] introduced the
Vertex wrapper induction system. Vertex detects site changes by monitoring a
few sample pages per site. Any structural change can result in changes in page

〈expr〉 ::= 〈step〉 | 〈step〉 "/" 〈expr〉
〈step〉 "//" 〈expr〉

〈step〉 ::= 〈nodetest〉 | 〈step〉 "[" 〈 predicate 〉 "]"
〈nodetest〉 ::= tag | "@" tag | "*" | "@*" | "text()"
〈 predicate 〉 ::= "contains(" 〈value〉 "," string ")" |

〈value〉 "=" string | integer | "last()"
〈value〉 ::= tag | "@" tag

Fig. 1. BNF syntax of the XPath fragment used. The following tokens are used: tag
is a valid XML identifier; string is a single- or double-quote encoded XPath character
string; integer is any positive integer.

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 311

shingle vectors that may render learned rules inapplicable. In our system, we do
not monitor sampled Web pages but dynamically adapt to pages as we crawl
them. The AAH also applies adaptation to different versions of a content man-
agement system found on different Web sites, rather than to just a specific Web
page type.

3 Preliminaries

This section introduce some definitions that we will use throughout this paper. A
Web application is any application or Web site that uses Web standards such as
HTML and HTTP to publish information on the Web in a specific template, in
a way that is accessible by Web browsers. Examples include Web forums, social
networking sites, geolocation services, etc. A Web application type is the content-
management system or server-side technology stack (e.g., vBulletin, WordPress,
the proprietary CMS of Flickr, etc.) that powers this Web application and pro-
vides interaction with it. Several different Web applications can share the same
Web application type (all vBulletin forums use vBulletin), but some Web appli-
cation types can be specific to a given Web application (e.g., the CMS powering
Twitter is specific to that site).

We use a simple subset of the XPath expression language to describe patterns
in the DOM of Web pages that serve either to identify a Web application type,
or to determine navigation or extraction actions to apply to that Web page. A
grammar for the subset we consider is given in Fig. 1. Basically, we only allow
downwards axes and very simple predicates that perform string comparisons.
The semantics of these expressions is the standard one. In the following, an
XPath expression is always one of this sublanguage.

A detection pattern is a rule for detecting Web application types and Web
application, based on the content of a Web page, HTTP metadata, URL com-
ponents. It is implemented as an XPath expression over a virtual document that
contains the HTML Web page as well as all other HTTP metadata.

A crawling action is an XPath expression over an HTML document that
indicates which action to perform on a given Web page. Crawling actions can be
of two kinds: navigation actions point to URLs to be added to the crawling queue;
extraction actions point to individual semantic objects to be extracted from the
Web page (e.g., timestamp, blog post, comment). For instance, div [contains(
@class ,’post’)]//h2[@class=’post-message’]//a/@href is a navigation action
to follow certain types of links.

The application-aware helper distinguishes two main kinds of Web application
levels: intermediate pages, such as lists of forums, lists of threads, can only
be associated with navigation actions; terminal pages, such as the individual
posts in a forum thread, can be associated with both navigation and extraction
actions. For intelligent crawling, our AAH needs not only to distinguish among
Web application types, but among the different kinds of Web pages that can
be produced by a given Web application type. The idea is that the crawler will
navigate intermediate pages until a terminal page is found, and only content

312 M. Faheem and P. Senellart

from this terminal page is extracted; the terminal page may also be navigated,
e.g., in the presence of paging.

Given an XPath expression e, a relaxed expression for e is one where one or
several of the following transformations has been performed:

– a predicate has been removed;
– a tag or string token has been replaced with another such token.

A best-case relaxed expression for e is one where at most one of these transfor-
mations has been performed for every step of e. A worst-case relaxed expression
for e is one where potentially multiple transformations have been performed on
any given step of e.

To illustrate, consider e =div [contains(@class ,’post’)]//h2[@class=’post-
message’]. Examples of best-case relaxed expressions are div [contains(@class
,’post’)]//h2 or div [contains(@class ,’post’)]//h2[@id=’post-content’]; on
the other hand, div [contains(@class ,’message’)]//div[@id=’post-content’] is
an example worst-case relaxed expression.

4 Knowledge Base

The AAH is assisted by a knowledge base of Web application types. This knowl-
edge base specifies how to detect specific Web applications and which crawling
actions should be executed. Types are arranged in a hierarchical manner, from
general categorizations to specific instances (Web sites) of this Web application.
The knowledge base also describes the different levels under a Web application
type and then, based on this, different crawling actions that should be executed
against this specific page level. The knowledge base is specified in a declara-
tive language, so as to be easily shared and updated, hopefully maintained by
non-programmers, and also possibly automatically learned from examples. The
W3C has normalized a Web Application Description Language (WADL) [23] for
describing resources of HTTP-based applications. WADL does not satisfy all
our needs: in particular, there is no place for the description of Web applica-
tion recognition patterns. Consequently, our knowledge-based is described in a
custom XML format.

For each Web application type, and for each level, the knowledge base contains
a set of detection patterns that allows to recognize whether a given page is of that
type or that level. The vBulletin Web forum CMS can for instance be identified
by searching for a reference to a specific script with the detection pattern: script
[contains(@src,’vbulletin_global.js’)]. Pages of the “list of forums” type are
identified1 when they match the pattern a[@class="forum"]/@href.

Similarly, for each Web application type and level, a set of navigation and
extraction actions (for the latter, only in the case of terminal levels) is provided.

1 The example is simplified for the sake of presentation; in reality we have to deal with
several different layouts that vBulletin can produce.

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 313

5 Application-Aware Helper (AAH)

Our main claim is that different crawling techniques should be applied to dif-
ferent types of Web applications. This means having different crawling strate-
gies for different forms of social Web sites (blogs, wikis, social networks, social
bookmarks, microblogs, music networks, Web forums, photo networks, video net-
works, etc.), for specific content management systems (e.g., WordPress, phpBB),
and for specific sites (e.g., Twitter, Facebook). Our proposed approach will de-
tect the type of Web application (general type, content management system, or
site) currently processed by the crawler, and the kind of Web pages inside this
Web application (e.g., a user profile on a social network) and decide on further
crawling actions (following a link, extracting structured content) accordingly.
The proposed crawler is intelligent enough to crawl and store all comments re-
lated to a given blog post in one place, even if comments stays on several Web
pages.

The AAH detects the Web application and Web page type before deciding
which crawling strategy is appropriate for the given Web application. More pre-
cisely, the AAH works in the following order:

1. it detects the Web application type;
2. it detects the Web application level;
3. it executes the relevant crawling actions: extracting the outcome of extrac-

tion actions, and adding the outcome of navigation actions to the URL queue.

The AAH loads the Web application type detection patterns from the knowledge
base and executes them against the given Web application. If the Web applica-
tion type is detected, the system executes all the possible Web application level
detection patterns until it gets a match.

The number of detection patterns for detecting Web application type and
level will grow with the addition of knowledge about new Web applications. In
order to optimize this detection, the system needs to maintain an index of these
patterns. To this aim, we have integrated the YFilter system [24] (an NFA-
based filtering system for XPath expressions) with slight changes according to
our requirements, for efficient indexing of detection patterns, in order to quickly
find the relevant Web application types and levels. YFilter is developed as part of
a publish–subscribe system that allows users to submit a set of queries that are
to be executed against streaming XML pages. By compiling the queries into an
automaton to index all provided patterns, the system is able to efficiently find the
list of all users who submitted a query that matches the current document. In our
integrated version of YFilter, the detection patterns (either for Web application
type or level) will be submitted as queries; when a document satisfy a query,
the system will stop processing the document against all remaining queries (in
contrast to the standard behavior of YFilter), as we do not need more than one
match. In addition, to deal with predicates that are present in our language but
that YFilter does not support, we modify the system so that additional filters
can be tested before validating a match.

314 M. Faheem and P. Senellart

Input: a URL u, sets of detection patterns D and crawling actions A
if alreadyCrawled(u) then

if hasChanged(u) then
markedActions ← detectAndMarkStructuralChanges(u, A);
newActions ← alignCrawlingActions(u, D, markedActions);
addToKnowledgeBase(newActions);

Algorithm 1. Adaptation to template change (recrawl of a Web application)

6 Adaptation to Template Change

We describe here how the AAH adapts to changes in the structure of Web
applications. Structural changes w.r.t. the knowledge base may come from vary-
ing versions of the content management system, or from alternative templates
proposed by the CMS or developed for specific Web applications. The AAH
determines when a change has occurred and tries adapting patterns and actions.

We deal with two different cases of adaptation: first, when (part of) a Web
application has been crawled before the template change and a recrawl is carried
out after that (a common situation in real-world crawl campaigns); second, when
crawling a new Web application that matches the Web application type detection
patterns but for which (some of) the actions are inapplicable.

Recrawl of a Web Application. We first consider the case when part of a Web
application has been crawled successfully using the patterns and actions of the
knowledge base. The template of this Web application then changes (because of
an update of the content management system, or a redesign of the site) and it is
recrawled. Our core adaptation technique relearns appropriate crawling actions
for each crawlable object; the knowledge base is then updated by adding newly
relearned actions to it.

As later described in Sect. 7, crawled Web pages with their Web objects
and metadata are stored in the form of RDF triples into a RDF store. Our
proposed system detects structural changes for already crawled Web applications
by looking for the content (stored in the RDF store) in the Web pages with the
crawling actions used during the previous crawl. If the system fails to extract
the same content with these actions, the structure of the Web site has changed.

Algorithm 1 gives a high-level view of the template adaptation mechanism
in the case of a recrawl. It first checks whether a given URL has already been
crawled by calling the alreadyCrawled Boolean function, which just looks for the
existence of the URL in the RDF store. An already crawled Web page will then
be checked for structured changes with the hasChanged Boolean function.

Structural changes are detected by searching for already crawled content
(URLs corresponding to navigation actions, Web objects, etc.) in a Web page
by using the existing and already learned crawling actions (if any) for the cor-
responding Web application level. The hasChanged function takes care of the
fact that failure to extract deleted information should not be considered as a

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 315

Input: a URL u and a sets of crawling actions A
if not alreadyCrawled(u) then

for a ∈ A do
if hasExtractionFailed (u, a) then

relaxedExpressions ← getRelaxedExpressions(a);
for candidate ∈ relaxedExpressions do

if not hasExtractionFailed(u, candidate) then
addToKnowledgeBase(candidate);
break;

Algorithm 2. Adaptation to template change (new Web application)

structural change. For instance, a Web object such as a Web forum’s comment
that was crawled before may not exist anymore.

In the presence of structural changes, the system calls the detectAndMark-
StructuralChanges function which detects inapplicable crawling actions and
mark them as “failed”. All crawling actions which are marked as failed will be
aligned according to structural changes. The alignCrawlingActions function will
relearn the failed crawling actions.

Crawl of a New Web Application. We are now in the case where we crawl a
completely new Web applications whose template is (slightly) different from
that present in the knowledge base. We assume that the Web application type
detection patterns fired, but either the application level detection patterns or
the crawling actions do not work on this specific Web application.

Let us first consider the case where the Web application level detection pattern
works. Recall that there are two classes of Web application levels: intermediate
and terminal. We make the assumption that on intermediate levels, crawling
actions (that are solely navigation actions) do not fail – on that level, naviga-
tions actions are usually fairly simple (they typically are simple extensions of
the application level detection patterns, e.g., //div[contains(@class ,’post’)] for
the detection pattern and //div[contains(@class ,’post’)]//a/@href for the nav-
igation action). In our experiments we never needed to adapt them. We leave
the case where they might fail to future work. On the other hand, we consider
that both navigation actions and extraction actions from terminal pages may
need to be adapted. The main steps of the adaptation algorithm are described
in Algorithm 2. getRelaxedExpressions creates two set of relaxed expression (for
best-case and worst-case). For each set, different variations of crawling action
will be generated by relaxing predicates and tag names, enumerated by the
number of relaxation needed (simple relaxations come first). Tag names are re-
placed with existing tag names of the DOM tree so that the relaxed expression
matches. When relaxing an attribute name inside a predicate, the AAH only sug-
gests candidates that would make the predicate true; to do that, the AAH first
collects all possible attributes and their values from the page. We favor relax-
ations that use parts from crawling actions in the knowledge base for other Web

316 M. Faheem and P. Senellart

application types of the same general category (e.g., Web forum). The system or-
ders expressions by the number of required relaxations (best-case ones first). Any
expression which succeeds in the extraction will still be tested with a few more
pages of the same Web application level before being added to the knowledge
base for future crawling.

If the system does not detect the Web application level, then the crawling
strategy cannot be initiated. First, the system tries adapting the detection pat-
tern before fixing crawling actions. The idea is here the same as in the previ-
ous part: the system collect all candidate attributes, values, tag names from the
knowledge base for the detected Web application type (e.g., WordPress) and then
creates all possible combinations of relaxed expressions, ordered by the amount
of relaxation, and test them one by one until one that works is found. To illus-
trate, assume that the candidate set of attributes and values are: @class=’post’,
@id=’forum’, @class=’blog’ with candidate set of names article ,div, etc. The
set of relaxed expression will be generated by trying out each possible combi-
nation: // article [contains(@class ,’post’)], // article [contains(@id,’forum’)],
// article [contains(@class ,’blog’)], etc.

7 System

The application-aware helper is implemented in Java. On startup, the sys-
tem first loads the knowledge base and indexes detection patterns us-
ing a YFilter [24] implementation adapted from the one available at
http://yfilter.cs.umass.edu/. Once the system receives a crawling request,
it first makes a lookup to the YFilter index to detect the Web application type
and level. If the Web application type is not detected, the AAH applies the
adaptation strategy to find a relaxed match as previously described. If no match
is found (i.e., if the Web application is unknown), a generic extraction of links
is performed.

When the Web application is successfully detected, the AAH loads the corre-
sponding crawling strategy from the knowledge base and crawls the Web appli-
cation accordingly, possibly using the adaptation strategy. Crawled Web pages
are stored in the form of WARC [25] files – the standard preservation format for
Web archiving – whereas structured content (individual Web objects with their
semantic metadata) is stored in an RDF store. The knowledge base is potentially
updated with new detection patterns or crawling actions.

The AAH is integrated with Heritrix [6], the open-source crawler2 developed
by the Internet Archive. In the crawl processing chain, the AAH replaces the
conventional link extraction module. Crawling actions determined by the AAH
are fed back into the URL queue of Heritrix.

The open-source AAH code and the list of all sites in our experimental dataset
are available at http://perso.telecom-paristech.fr/~faheem/aah.html.

2 http://crawler.archive.org/

http://yfilter.cs.umass.edu/
http://perso.telecom-paristech.fr/~faheem/aah.html
http://crawler.archive.org/

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 317

8 Experiments

We present in this section experimental performance of our proposed system on
its own and with respect to a baseline crawler, GNU wget3 (since the scope of
the crawl is quite simple – complete crawling of specific domain names – wget
is as good as Heritrix here).

Experiment Setup. To evaluate the performance of our system, we have crawled
100 Web applications (totaling nearly 3.3 millions Web pages) of two forms
of social Web sites (Web forum and blog), for three specific content manage-
ment system (vBulletin, phpBB, and WordPress). The Web applications of type
WordPress (33 Web applications, 1.1 million of Web pages), vBulletin (33 Web
applications, 1.2 million of Web pages) and phpBB (34 Web applications, 1 mil-
lion Web pages) were randomly selected from three different sources:

1. http://rankings.big-boards.com/, a database of popular Web forums.
2. A dataset related to European financial crisis.
3. A dataset related to the Rock am Ring music festival in Germany.

The second and third datasets were collected in the framework of the AR-
COMEM project4. In these real-world datasets corresponding to specific archival
tasks, 68% of the seed URLs of Web forum type belongs to either vBulletin or
phpBB, which explains while we target these two CMSs. WordPress is also a
prevalent CMS: the Web as a whole has over 61 million Wordpress sites [26] out
of a number of blogs indexed by Technorati [27] of around 133 million. Moreover,
Wordpress has a 48% market share of the top 100 blogs [28]. All 100 Web appli-
cations were both crawled using wget and the AAH. Both crawlers are configured
to retrieve only HTML documents, disregarding scripts, stylesheets, media files,
etc.

The knowledge base is populated with detection patterns and crawling actions
for one specific version of the three considered CMSs (other versions will be
handled by the adaptation module). Adding a new Web application type to the
knowledge base takes a crawl engineer of the order of 30 minutes.

Performance Metrics. The performance of the AAH will be mainly measured by
evaluating the number of HTTP requests made by both systems vs the amount
of useful content retrieved. Evaluating the number of HTTP requests is easy to
perform by simply counting requests made by both crawlers. Coverage of useful
content is more subjective and we use the following proxies:

1. Counting the amount of textual content that has been retrieved. For that,
we compare the proportion of 2-grams (sequences of two consecutive words)
in the crawl result of both systems, for every Web application.

2. Counting the number of external links (i.e., hyperlinks to another domain)
found in the two crawls. The idea is that external links are a particularly
important part of the content of a Web site.

3 http://www.gnu.org/software/wget/
4 http://www.arcomem.eu/

http://rankings.big-boards.com/
http://www.gnu.org/software/wget/
http://www.arcomem.eu/

318 M. Faheem and P. Senellart

25 1,000 2,000 3,000 4,000 5,000
0

10

20

30

Number of detection patterns

T
im

e
sp

en
t

(s
ec

on
ds

) With indexing (YFilter)
Without indexing

Fig. 2. Performance of the detection
module

WordPress vBulletin phpBB
0

500

1,000

N
um

be
r

of
H

T
T

P
re

qu
es

ts
(×

1,
00

0)

AAH
wget

Fig. 3. Total number of HTTP requests
used to crawl the dataset

WordPress vBulletin phpBB
97

98

99

P
ro

po
rt

io
n

of
se

en
n

-g
ra

m
s

(%
)

Fig. 4. Box chart of the proportion of
seen n-grams for the three considered
CMSs. We show in each case the min-
imum and maximum values (whiskers),
first and third quartiles (box) and median
(horizontal rule).

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

Number of HTTP requests

N
um

be
r

of
di

st
in

ct
2-

gr
am

s
(×

1,
00

0)

AAH
wget

Fig. 5. Crawling http://www.
rockamring-blog.de/

Efficiency of Detection Patterns. We first briefly discuss the use of YFilter to
speed up the indexing of detection patterns. In Fig. 2 we show the time required
to determine Web application type in a synthetically generated knowledge base
as the number of Web application types grows up to 5,000, with or without using
YFilter indexing. The system takes a time linear in the number of detection
patterns when indexing is turned off, taking up to several dozens of seconds. On
the other hand, detection time is essentially constant with YFilter activated.

Crawl Efficiency. We compare the number of HTTP requests required by both
crawlers to crawl each set of Web applications of the same type in Fig. 3. No-
tice how the application-aware helper makes much fewer requests (on average 7
times fewer) than a regular blind crawl. Indeed, for blog-like Web sites, a regular
crawler make redundant HTTP requests for the same Web content, accessing to
a post by tag, author, year, chronological order, etc. In a Web forum, many re-
quests end up being search boxes, edit areas, print view of a post, areas protected
by authentication, etc.

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 319

Table 1. Coverage of external links in the dataset crawled by the AAH

External links
CMS External links (w/o boilerplate)

WordPress 92.7% 99.8%
vBulletin 90.5% 99.5%
phpBB 92.1% 99.6%

Crawl Effectiveness. The crawling results, in terms of coverage of useful content,
are summarized in Fig. 4 and in Table 1. Figure 4 presents the distribution of
the proportion of n-grams crawled by the AAH with respect to those of the full
crawl. Not only are the numbers are generally very high (for the three types,
the median is greater than 98%), but the results are also very stable, with a
very low variance: the worst coverage score on our whole dataset is greater than
97% (typically, lower scores are achieved for small Web sites where the amount
of boilerplate text such as menus or terms of use remains non negligible). This
hints at the statistical significance of the results.

The proportion of external links covered by the AAH is given in Table 1. The
application-aware helper has ignored nearly 10 percent of external links since
every page may use widgets, such as those of Facebook, Amazon, etc., with
URLs varying from one page to another. Once we have excluded boilerplate
with defined set of patters, we see that more than 99.5% of the external links
are present in the content crawled by the AAH.

To reach a better understanding of how an application-aware crawl enfolds,
we plot in Fig. 5 the number of distinct 2-grams discovered by the AAH and
wget during one crawl (in this particular case, of a given WordPress blog), as the
number of requests increase. We see that the AAH directly targets the interesting
part of the Web application, with a number of newly discovered 2-grams that
grows linearly with the number of requests made, to reach a final level of 98%
2-gram coverage after 1,705 requests. On the other hand, wget discovers new
content with a lower rate, and, especially, spends the last 2/5 of its requests
discovering very few new 2-grams.

Comparison to iRobot. The iRobot system [11] that we discussed in Sect. 2 is
not available for testing because of intellectual property reasons. The experi-
ments of [11] are somewhat limited in scope, since only 50,000 Web pages are
considered, over 10 different forum Web sites (to compare with our evaluation,
on 3.3 million Web pages, over 100 different forum or blog Web sites). To com-
pare the AAH to iRobot, we have crawled one of the same Web forum used
in [11]: http://forums.asp.net/ (over 50,000 Web pages). The completeness
of content of the AAH (in terms of both 2-grams and external links, boilerplate
excluded) is over 99 percent; iRobot has a coverage of valuable pages (as evalu-
ated by a human being) of 93 percent on the same Web application. The num-
ber of HTTP requests for iRobot is claimed in [11] to be 1.73 times less than a

http://forums.asp.net/

320 M. Faheem and P. Senellart

Table 2. Examples of structural pattern changes: desktop vs mobile version of
http://www.androidpolice.com/

Desktop version Mobile version

div [@class=’post_title’]/h3/a div [@class=’post_title’]/h2/a
div [@class=’post_info’] div [@class=’post_author’]
div [@class=’post_content’] div [@class=’content’]

regular Web crawler; on the http://forums.asp.net/ Web application, the
AAH makes 10 times fewer requests than wget does.

Adaptation When Recrawling a Web Application. To test our adaptation tech-
nique in the case of a recrawl of a Web application in a realistic environment
(without having to wait for Web sites actually to change), we have considered
sites that have both a desktop and mobile version with different HTML con-
tent. These sites use two different templates to present what is essentially the
same content. We simulated a recrawl by first crawling the Web site with a
User-Agent: HTTP header indicating a regular Web spider (the desktop version
is then served) and then recrawling the mobile version using a mobile browser
User-Agent:.

Our system was not only able to detect the structural changes from one ver-
sion to another, but also, using already crawled content, to fix the failed crawling
actions. Table 2 presents one exemplary Web application that has both a desk-
top and mobile versions, with a partial list of the structural changes in the
patterns across the two versions. Our system was able to automatically correct
these structure changes in both navigation and extraction, reaching a perfect
agreement between the content extracted by the two crawls.

Adaptation for a New Web Application. As stated earlier, we have experimented
our system with 100 Web applications, starting from a straightforward knowledge
base containing information about one specific version of the three considered
content management systems. Among the 100 applications, 77 did not require
any adaptation, which illustrates that many Web applications share common
templates. The 23 remaining ones had a structure that did not match the crawl-
ing actions in the knowledge base; the AAH has applied adaptation successfully
to these 23 cases. Most of the adaptation consisted in relaxing the class or id
attribute rather than replacing the tag name of an element. When there was a
tag name change, it was most often from span to div to article or vice versa,
which is fairly straightforward to adapt. There was no case in the dataset when
more than one relaxation for a given step of an XPath expression was needed; in
other words, only best-case relaxed expressions were used. In 2 cases, the AAH
was unable to adapt all extraction actions, but navigation actions still worked
or could be adapted, which means the Web site could still be crawled, but some
structured content was missing.

http://www.androidpolice.com/
http://forums.asp.net/

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 321

9 Conclusions

In Web archiving, scarce resources are bandwidth, crawling time, and storage
space rather than computation time [5]. We have shown how application-aware
crawling can help reduce bandwidth, time, and storage (by requiring less HTTP
requests to crawl an entire Web application, avoiding duplicates) using lim-
ited computational resources in the process (to apply crawling actions on Web
pages). Application-aware crawling also helps adding semantics to Web archives,
increasing their value to users.

Our work can be extended in several ways, that we shall explore in future
work. First, we can enrich the pattern language we use to allow for more complex
detection and extraction rules, moving to a full support of XPath or even more
powerful Web navigation languages allowing to crawl complex Web applications
making use of AJAX or Web forms. There is a trade-off, however, between the
expressive power of the language and the simplicity of template adaptations.
Second, we want to move towards an automatically constructed knowledge base
of Web applications, either by asking a human being to automatically annotate
the part of a Web application to extract or crawl, using semi-supervised machine
learning techniques, or even by discovering in an unsupervised manner new Web
application types by comparing the structure of different Web sites, determining
the optimal way to crawl them by sampling, in the spirit of iRobot [11].

Acknowledgment. This work was funded by the European Union’s Seventh
Framework Program (FP7/2007–2013) under grant agreement 270239 (AR-
COMEM).

References

1. Jupp, E.: Obama’s victory tweet ‘four more years’ makes history. The Independent
(November 2012), http://ind.pn/RF5Q6O

2. Coleman, S.: Blogs and the new politics of listening. The Political Quarterly 76(2)
(2008)

3. Mulvenon, J.C., Chase, M.: You’ve Got Dissent! Chinese Dissident Use of the
Internet and Beijing’s Counter Strategies. Rand Publishing (2002)

4. Giles, J.: Internet encyclopaedias go head to head. Nature 438 (2005)
5. Masanès, J.: Web archiving. Springer (2006)
6. Sigurðsson, K.: Incremental crawling with Heritrix. In: IWAW (2005)
7. Faheem, M.: Intelligent crawling of Web applications for Web archiving. In: WWW

PhD Symposium (2012)
8. Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: A new approach

to topic-specific Web resource discovery. Comp. Networks 31(11-16) (1999)
9. Gibson, D., Punera, K., Tomkins, A.: The volume and evolution of Web page

templates. In: WWW (2005)
10. Guo, Y., Li, K., Zhang, K., Zhang, G.: Board forum crawling: A Web crawling

method for Web forums. In: Web Intelligence (2006)
11. Cai, R., Yang, J.M., Lai, W., Wang, Y., Zhang, L.: iRobot: An intelligent crawler

for Web forums. In: WWW (2008)

http://ind.pn/RF5Q6O

322 M. Faheem and P. Senellart

12. Ying, H.M., Thing, V.: An enhanced intelligent forum crawler. In: CISDA (2012)
13. Edmonds, J.: Optimum branchings. J. Res. Nat. Bureau Standards 71B (1967)
14. Kolari, P., Finin, T., Joshi, A.: SVMs for the blogosphere: Blog identification and

splog detection. In: AAAI (2006)
15. Kushmerick, N.: Regression testing for wrapper maintenance. In: AAAI (1999)
16. Chidlovskii, B.: Automatic repairing of Web wrappers. In: WIDM (2001)
17. Meng, X., Hu, D., Li, C.: Schema-guided wrapper maintenance for Web-data ex-

traction. In: WIDM (2003)
18. Lerman, K., Minton, S.N., Knoblock, C.A.: Wrapper maintenance: A machine

learning approach. J. A. I. Res. (2003)
19. Lim, S.J., Ng, Y.K.: An automated change-detection algorithm for HTML docu-

ments based on semantic hierarchies. In: ICDE (2001)
20. Artail, H., Fawaz, K.: A fast HTML Web page change detection approach based

on hashing and reducing the number of similarity computations. Data Knowl. Eng.
(2008)

21. Ferrara, E., Baumgartner, R.: Automatic wrapper adaptation by tree edit distance
matching. In: Hatzilygeroudis, I., Prentzas, J. (eds.) Combinations of Intelligent
Methods and Applications. SIST, vol. 8, pp. 41–54. Springer, Heidelberg (2011)

22. Gulhane, P., Madaan, A., Mehta, R., Ramamirtham, J., Rastogi, R., Satpal, S.,
Sengamedu, S.H., Tengli, A., Tiwari, C.: Web-scale information extraction with
vertex. In: ICDE (2011)

23. W3C: Web application description language (2009),
http://www.w3.org/Submission/wadl/

24. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.: Path sharing and
predicate evaluation for high-performance XML filtering. ACM TODS (2003)

25. ISO: ISO 28500:2009, Information and documentation – WARC file format
26. WordPress: WordPress sites in the world (2012),

http://en.wordpress.com/stats/
27. The Future Buzz: Social media, Web 2.0 and internet stats (2009),

http://goo.gl/H0FNF
28. Royal Pingdom: WordPress completely dominates top 100 blogs (2012),

http://goo.gl/eifRJ

http://www.w3.org/Submission/wadl/
http://en.wordpress.com/stats/
http://goo.gl/H0FNF
http://goo.gl/eifRJ

	Intelligent and Adaptive Crawling of Web Applications for Web Archiving
	Introduction
	Related Work
	Preliminaries
	Knowledge Base
	Application-Aware Helper (AAH)
	Adaptation to Template Change
	System
	Experiments
	Conclusions

