
ProFoUnd:
Program-analysis-based
Form Understanding

ProFoUnd:
Program-analysis-based
Form Understanding

http://diadem.cs.ox.ac.uk/profound/

Michael Benedikt, Tim Furche,
Andreas Savvides, Pierre Senellart

Authors

Digital Home

Motivation and
Contributions

Architecture

Experiments and
Results

Future Work

 An Example

ProFoUnd Architecture

Entry Points

Conditions

Interceptions

Constraints

Assignments of JavaScript function handlers to a particular event for a specific DOM
element. The two most common ways to do such assignments:

· Attribute-based assignment – directly attached to the HTML:

· Script-based assignment – programmatically doing the assignment
with the help of a JavaScript library:

Numerous syntactic statements can offer conditional behaviour; we focus on three
JavaScript-specific:

· if – else
· Ternary operators
· Return statements involving comparison operators

Variables used in conditions might be aliased, hence aliasing analysis is used prior to
searching for conditional statements

Clues which signal that a form may be restrained from being submitted, depending if a
(set of) condition(s) is/are met. Two types of interceptions have been identified:

· Submission Interception – code that prevents the form from being
submitted

· Interception notification – code that notifies a user of the
interception

Error message analysis is used in order to confirm the analysis done up until this point
or to identify a constraint.

From our annotated Abstract Syntax Tree (AST) we create a Condition Control Flow
Graph (CCFG) in order to deduce what behaviour is yielded according to if a condition
was met or not.

Having identified client-side validation code based on the analysis, we need to translate
conditional statements to corresponding constraints.

Binary constraints are first identified, followed by a refinement stage to deduce
disjunctive constraints. The end result is a disjunction of constraints as follows:

Where each constraint can be either:

· An atomic constraint
· A conjunction of atomic constraints

Experimental Set-up

A total of 70 randomly selected real-estate websites with deep web search interfaces
from DIADEM's repository that lists all UK real estate websites made up our data set.

· From the total data set, we manually identified that 30 had validation code on the
client-side, while the other 40 had no client-side validation code.

· For the 30 search interfaces with client-side validation code, we identified all
individual integrity constraints enforced on the client-side by hand.

Our aim was to test ProFoUnd’s precision when given interfaces with no integrity
constraints, but also its combined precision and recall (the default balanced F measure)
for interfaces with client-side validation code.

Results Where did we struggle?

· Score of 1.0 for precision; no false
positives identified for all 70 search
interfaces

· Score of 0.628571429 for recall
· The harmonic mean was calculated as

below, where P is the precision and R is
the recall:

Our score is very close to the
arithmetic mean between the precision
and recall indicating a good balance.

· Dealing with obfuscated validation code

· Dynamic creation of objects
· Complex JavaScript features, e.g. eval

· Conditional statements within the
scope of for loops

· Limitations of the system itself!

Obfuscated using
JavaScript Obfuscator

Background and Motivation

In the context of information extraction, in order to return all information that is
relevant from a given website there are usually two necessary steps:
· Crawling the website, which is the traditional and more straightforward approach
· Tapping into the “deep” or “hidden” web via the available search interfaces

A typical search interface with some deep web content
“hidden” behind it.

Dealing with a deep web search interface entails, roughly, the following steps:
· Find relevant website for a particular domain
· Identify a search interface (potentially leading to deep web content)
· Deduce input fields for an identified search interface and figure out corresponding

meta-data with regards to labels and candidate domains of each such field
· Fill in the search form with appropriate input values and submit it (i.e. query a hidden

database)

Querying a hidden database

Contributions

Finding constraints associated with a particular search form prior to querying its hidden
database (i.e. before submission) would be useful in a variety of different areas:

· Vertical search and information extraction
· Content surfacing
· Assistive technologies

This lead us to the following problem statement:

Given a search interface (i.e., a web form), can we infer integrity
constraints from carrying out static JavaScript analysis?

· A novel integrity constraint
identification system based on pattern
matching and JavaScript analysis.

· A system able to deal with a plethora of
methods available for enforcing
integrity constraints on the client-side
(i.e., standard and non-standard
JavaScript, JavaScript libraries and web
frameworks)

· A system capable of deducing relations
(conjunctive or disjunctive) amongst
integrity constraints identified.

· Thorough experimental evaluation of
ProFoUnd on a real-world data set,
achieving integrity constraint
identification with 100% accuracy and
an F1 score of over 0.77

Moving Forward

Interface

ProFoUnd’s Interface Views

1. Browser view – a full-fledged Mozilla-based browser component
2. Constraint view – shows all entry points, conditions, interception points and constraints
identified by ProFoUnd
3. Code View – presents relevant HTML and JavaScript fragments for the selection in the
constraint view
4. List of URLs
5. Control over highlighted elements
6. Detailed DOM access

To the best of our knowledge, ProFoUnd is the first system to provide integrity constraint
identification for search interfaces in the context of deep web extraction based on
JavaScript analysis. We have demonstrated how shallow program analysis in this context is a
viable solution for integrity constraint identification, achieving good results. However, this is
just the first step – there are various future directions to overcome limitations and take this
work a step further:

· Moving beyond pattern matching; develop a more generic framework,
possibly supported by both supervised and unsupervised machine learning

· Combining static analysis with runtime execution
· JavaScript parsing; Rhino has a number of limitations, we aim to try

SpiderMonkey, Mozilla’s JavaScript engine
· Utilise error messages better beyond keyword-based error message

analysis
· Looking at the server-side for integrity constraints

We take a two-tiered approach of library-specific ad-hoc detectors coupled with
program analysis.

Entry point

Condition

Interception Notification &
Submission Interception

Deep web search interface from http://howkinsandharrison.co.uk/

Constraint found: minprice < maxprice

Impact on Extraction

Cartesian product over all form elements would yield 5328 queries for extracting all
content hidden behind this search interface.

Knowing the constraint identified above, 1,110 meaningless queries would be avoided;
over 20% reduction in the number of queries necessary.

ProFoUnd is a standalone
system built in the context of:

michael.benedikt@cs.ox.ac.uk
tim.furche@cs.ox.ac.uk

andreas.savvides@uk.ibm.com
pierre.senellart@telecom-paristech.fr

Contact

	ProFoUnd.vsd
	Page-1

