Cost-Model Oblivious
Database Tuning with Reinforcement Learning

Debabrota Basu1, Qian Lin1, Weidong Chen1, Zihong Yuan1, Hoang Tam Vo3, Pierre Senellart1,2, Stéphane Bressan1

1School of Computing, National University of Singapore, Singapore
2Institut Mines–Téléc2com; Téléc2com ParisTech; CNRS LTCI, France
3SAP Research and Innovation, Singapore
Motivation

Is Query Optimization a “solved” problem? If not, are we attacking the “right” problems? How should we identify the “right” problems to solve?
Motivation

- Current query optimizers depend on pre-determined cost models

- But cost models can be highly erroneous

the cardinality model. In my experience, the cost model may introduce errors of at most 30% for a given cardinality, but the cardinality model can quite easily introduce errors of many orders of magnitude! I’ll give a real-world example in a moment. With such errors, the wonder isn’t “Why did the optimizer pick a bad plan?” Rather, the wonder is “Why would the optimizer ever pick a decent plan?”
We propose and validate a tuning strategy to do without such a pre-defined model.

The process of database tuning is modelled as a Markov decision process (MDP).

A reinforcement learning based algorithm is developed to learn the cost function.

COREIL replaces the need of pre-defined knowledge of cost in index tuning.
Problem

Database Schema:

- **Warehouse**
- **Customer 1**
- **Customer 2**
- **Customer 3**

Queries:
1) New order
2) Delivery
3) Stock

Tables:
1) History
2) Stock
3) New orders
4) Stocks

Set of all Database Configurations: \(S = \{s\} \)

Schedule of queries and updates: \(Q \)
Transition

Query q_t

Configuration update $\delta(s_{t-1}, s_t)$

DB configuration s_{t-1}

Per-stage cost $C(s_{t-1}, s_t, q_t) = \delta(s_{t-1}, s_t) + \text{cost}(s_t, q_t)$

Updated DB configuration s_t

Query execution $\text{cost}(s_t, q_t)$
Mapping to MDP

Per-stage cost: $C(s_{t-1}, s_t, q_t) = \delta(s_{t-1}, s_t) + \text{cost}(s_t, q_t)$

Penalty function

States

Action

Query execution

Configuration update

September 4, 2015
Debabrota Basu
Cost-Model Oblivious Database Tuning
MDP Formulation

- **State**: Database configurations $s \in S$

- **Action**: Configuration changes $s_{t-1} \rightarrow S_t$ along with query q_t execution

- **Penalty function**: Per-stage cost of the action $C(s_{t-1}, s_t, \hat{q}_t)$

- **Transition function**: Transition from one state to another on an action are deterministic

- **Policy**: A sequence of configuration changes depending on the incoming queries
Problem Statement

- For a policy π and discount factor $0 < \gamma < 1$ the cumulative penalty function or the **cost-to-go function** can be defined as,

$$V^\pi(s) \triangleq \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} C(s_{t-1}, s_t, \hat{q}_t) \right]$$

satisfying

$$\begin{cases}
 s_0 = s \\
 s_t = \pi(s_{t-1}, \hat{q}_t), \\
 t \geq 1
\end{cases}$$

- **Goal**: Find out an optimal policy π^* that minimizes the cumulative penalty or the cost-to-go function
Features of The Model

- The schedule is sequential
- The issue of concurrency control is orthogonal
- Query q_t is a random variable generated from an unknown stochastic process
- It is always cheaper to do a direct configuration change
- There is no free configuration change
Policy Iteration

A dynamic programming approach to solve MDP.

- Begin with an initial policy π_0 and initial configuration s_0

- Find an estimate $V^{\pi_0}(s_0)$ of the cost-to-go function

- Incrementally improve the policy using the current estimate of the cost-to-go function. Mathematically,

$$V^{\pi_t}(s) = \min_{s' \in S} \left(\delta(s, s') + \mathbb{E} \left[\text{cost}(s', q) \right] + \gamma V^{\pi_{t-1}}(s') \right)$$

- Carry on the improvement till there is no (or ϵ) change in policy
Problems with Policy Iteration

- **Problem 1**: The **curse of dimensionality** makes direct computation of \overline{V} hard.

- **Problem 2**: There may be **no proper model** available beforehand for the **cost function** $cost(s, q)$.

- **Problem 3**: The **probability distribution of queries** being **unknown**, it impossible to compute the expected cost of query execution.
Solution: Reducing the Search Space

Theorem

Let s be any configuration and \hat{q} be any observed query. Let π^* be an optimal policy. If $\pi^*(s, \hat{q}) = s'$, then $\text{cost}(s, \hat{q}) - \text{cost}(s', \hat{q}) \geq 0$. Furthermore, if $\delta(s, s') > 0$, i.e., if the configurations certainly change after query, then $\text{cost}(s, \hat{q}) - \text{cost}(s', \hat{q}) > 0$.

Thus, the **reduced subspace** of interest

$$S_{s, \hat{q}} = \{ s' \in S \mid \text{cost}(s, \hat{q}) > \text{cost}(s', \hat{q}) \}$$
Solution: Learning the Cost Model

- Changing the configuration from s to s' can be considered as executing a special query $q(s, s')$

- Then the cost model can be approximated as

$$\delta(s, s') = \text{cost}(s, q(s, s')) \approx \zeta^T \eta(s, q(s, s'))$$

- This approximation can be improved recursively using Recursive Least Square Estimation (RLSE) algorithm

- Similar linear projection $\phi(s)$ can be used to approximate the cost-to-go function $V^\pi_t(s)$
What is COREIL?

COREIL is an index tuner, that

- instantiates our reinforcement learning framework
- tunes the configurations differing in their secondary indexes
- handles the configuration changes corresponding to the creation and deletion of indexes
- inherently learns the cost model and solve a MDP for optimal index tuning
COREIL: Reducing the State Space

- I be the set of all possible indexes

- Each configuration $s \in S$ is an element of the power set $2^{|I|}$

- $r(\hat{q})$ be the set of recommended indexes for a query \hat{q}

- $d(\hat{q})$ be the set of indexes being modified (update, insertion or deletion) by \hat{q}

- The reduced search space is

$$S_{s,\hat{q}} = \{ s' \in S \mid (s - d(\hat{q})) \subseteq s' \subseteq (s \cup r(\hat{q})) \}$$

- For B^+ trees, prefix closure $\langle r(\hat{q}) \rangle$ replaces $r(\hat{q})$ for better approximation
We can define

\[\phi_{s'}(s) \triangleq \begin{cases} 1, & \text{if } s' \subseteq s \\ -1, & \text{otherwise.} \end{cases} \forall s, s' \in S \]

Theorem

There exists a unique \(\theta = (\theta_{s'})_{s' \in S} \) *which approximates the value function as*

\[V(s) = \sum_{s' \in S} \theta_{s'} \phi_{s'}(s) = \theta^T \phi(s) \]
COREIL: Feature Mapping Per-stage Cost

- \(\beta(s, \hat{q})\) captures the **difference between the index set** recommended by the database system and that of the current configuration.

- \(\alpha(s, \hat{q})\) take values either 1 or 0 whether a **query modifies any index** in the current configuration.

- We define the feature mapping

\[\eta = (\beta^T, \alpha^T)^T \]

to approximate the functions \(\delta\) and **cost**
The dataset and workload conform to the TPC-C specification.

They are generated by the OLTP-Bench tool.

Each of the 5 transactions are associated with 3 ~ 5 SQL statements (query/update).

Response time of processing corresponding SQL statement is measured using IBM DB2.

The scale factor (SF) used here is 2.
Efficiency

![Graph showing efficiency comparison between COREIL and WFIT]

- **COREIL**
- **WFIT**

<table>
<thead>
<tr>
<th>Query #</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>5,000</td>
</tr>
<tr>
<td>1,000</td>
<td>4,000</td>
</tr>
<tr>
<td>1,500</td>
<td>3,000</td>
</tr>
<tr>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>2,500</td>
<td>1,000</td>
</tr>
<tr>
<td>3,000</td>
<td>0</td>
</tr>
</tbody>
</table>
Box-plot Analysis
Overhead Cost Analysis

![Graph comparing COREIL and WFIT over time for query #]
Effectiveness

![Effectiveness Graph](image)

- **COREIL**
- **WFIT**

- **Query #**
- **Time (ms)**

- **Y-axis:** \(10^0, 10^1, 10^2, 10^3\)
- **X-axis:** \(0, 500, 1,000, 1,500, 2,000, 2,500, 3,000\)
Conclusion

- Database tuning can be modelled as a Markov decision process.
- Our reinforcement learning algorithm solves the problem of cost-model oblivious database tuning.
- COREIL instantiates the approach for index tuning problem.
- It shows competitive performance with respect to the state-of-the-art WFIT algorithm.
Future Work

- Study the trade-off of effectiveness and efficiency of COREIL
- Validate this algorithm on different datasets like TPC-H and benchmark for online index tuning
- Check sensitivity of COREIL on set-up and parameters
- Extend our approach to other aspects of database configuration, including partitioning and replication
Questions?
Thank you
Algorithm: Least Square Policy Iteration with RLSE

1: Initialize the configuration s_0.
2: Initialize $\theta^0 = \theta = 0$ and $B^0 = \epsilon I$.
3: Initialize $\zeta^0 = 0$ and $\overline{B}^0 = \epsilon I$.
4: for $t=1,2,3,\ldots$ do
5: Let \hat{q}_t be the just received query.
6: $s_t \leftarrow \arg\min_{s \in S_{s_{t-1}, \hat{q}_t}} (\zeta^{t-1})^T \eta(s_{t-1}, q(s_{t-1}, s)) + (\zeta^{t-1})^T \eta(s, \hat{q}_t) + \gamma \theta^T \phi(s)$
7: Change the configuration to s_t.
8: Execute query \hat{q}_t.
9: $\hat{C}^t \leftarrow \delta(s_{t-1}, s_t) + \text{cost}(s_t, \hat{q}_t)$.
10: $\hat{\epsilon}^t \leftarrow (\zeta^{t-1})^T \eta(s_{t-1}, \hat{q}_t) - \text{cost}(s_{t-1}, \hat{q}_t)$
11: $B^t \leftarrow B^{t-1} - \frac{B^{t-1} \phi(s_{t-1})(\phi(s_{t-1})-\gamma \phi(s_t))^{T} B^{t-1}}{1+(\phi(s_{t-1})-\gamma \phi(s_t))^{T} B^{t-1} \phi(s_{t-1})}$.
12: $\theta^t \leftarrow \theta^{t-1} + \frac{\hat{C}^t - (\delta(s_{t-1}) - \gamma \phi(s_t))^{T} \theta^{t-1} B^{t-1} \phi(s_{t-1})}{1+(\phi(s_{t-1})-\gamma \phi(s_t))^{T} B^{t-1} \phi(s_{t-1})}$.
13: $(\overline{B}^t, \zeta^t) \leftarrow \text{RLSE}(\hat{\epsilon}^t, \overline{B}^{t-1}, \zeta^{t-1}, \eta^t)$
14: if (θ^t) converges then
15: $\theta \leftarrow \theta^t$.
16: end if
17: end for
Cost of Configuration Change Analysis
Theorem

If for any policy π, there exist a vector vector θ such that $V^\pi(s) = \theta^T \phi(s)$ for any configuration s, then the proposed algorithm will converge to an optimal policy.