Introduction

Crowd data sourcing collects data from the crowd, often by asking questions.

- We want to learn about new domains from the crowd.
- E.g., health-related habits in some population.
- Data is not recorded anywhere.
- The contents of the domain are unknown.
- Discover what is interesting about this domain.

What should we ask the crowd?

The model

We learn association rules of the form $a,b \rightarrow c,d$.

- E.g., “heartburn” \rightarrow “baking soda”, “lemon”

The answers contain:

- **Rule support** – frequency of a,b,c,d.
- **Rule confidence** – frequency of c,d given a,b.
- **Items** (for an open question)

Significant rules – average user support and confidence exceed fixed thresholds.

- Users treated as random samples.

Choosing the Questions

A hierarchy of components that allow estimating the effect of the next question and choosing accordingly.

Data mining for the crowd?

- The discovery of data patterns in databases is done by **data mining**.
- Not suitable for our case.
 - People do not remember enough details!
 - For example, it is unrealistic to expect people to remember every activity they did in the past, everything they have eaten, etc.
 - They are far more likely to remember **personally prominent patterns**.

“I drink red wine about once a week”

Our approach

- Use **personal summaries** to learn about **general trends**.
- Treat individual answers as samples.
- Combine two types of questions.
 - **Open questions**
 - “Complete: When I feel **tired**, I usually **go for a walk**.”
 - **Closed questions**
 - “When you have a heartburn, do you take baking soda and lemon?”

- Easier for users to answer.
- Help digging deeper into their memories.

We develop a system prototype **CrowdMiner** that interactively decides what to ask in order to discover significant data patterns.

Error Estimations

- Not all the users can be asked about every rule.
- We want to estimate the probability of making an error – given the current knowledge.
 - We learn a distribution of the answer support and confidence.
 - **Significance estimation** – by the position of >0.5 of the distribution mass.
 - **Error probability** – for the true mean to be on the other side of the thresholds.
 - The next question is the one expected to minimize the overall error.

System Architecture

- **Ask question**
- **Answer question**
- **User question results**

- **Question Display**
- **User Interface**

- **Best Rules Extractor**
- **Rule Database**
- **Rule Aggregator**

- **Rule-learning workflow**
- **Rule extraction & view**

Well-Being Portal

- Learn about the **health habits** of others – by browsing the portal.
- Sports activities, eating habits, natural treatments.
- ...

- Portal users are occasionally prompted with questions.
- About their personal habits.
- Computed by our algorithm.

- User **answers** are processed to deduce rules (associations) between well-being concepts in the portal.

- The portal allows browsing the learned rules.