Crowd Mining

Yael Amsterdamer, Yael Grossman, Tova Milo, and Pierre Senellart
Crowd data sourcing - Background

• Outsourcing data collection to the crowd of Web users
 – When people can provide the data
 – When people are the only source of data
 – When people can efficiently clean and/or organize the data
Crowdsourcing in an open world

- Human knowledge forms an open world
- Assume we know nothing, e.g., on folk medicine
- We would like to find what is interesting and important about folk medicine practices around the world.

What questions should be asked?
Back to classic settings

• Significant data patterns are identified using data mining techniques.

• Consider: association rules
 – E.g., “heartburn” → “lemon”, “baking soda”

• Queries are dynamically constructed in the course of the learning process

• Is it possible to mine the crowd?
Asking the crowd

Let us model the history of every user as a *personal database*

<table>
<thead>
<tr>
<th>Treated a sore throat with garlic and oregano leaves...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated a sore throat and low fever with garlic and ginger ...</td>
</tr>
<tr>
<td>Treated a heartburn with water, baking soda and lemon...</td>
</tr>
<tr>
<td>Treated nausea with ginger, the patient experienced sleepiness...</td>
</tr>
</tbody>
</table>

- Every case = a *transaction* consisting of *items*
- Not recorded anywhere – a *hidden* DB
- It is hard for people to recall many details about many transactions!

But,
they can often provide summaries, in the form of *personal rules*

- *To treat a sore throat I often use garlic*
- *Interpretation:* “sore throat” → “garlic”
Two types of questions

- Free recollection (mostly simple, prominent patterns)
 - Open questions
 - Tell me how you treat a particular illness
 - "I typically treat nausea with ginger infusion"
 - Closed questions
 - When a patient has both headaches and fever, how often do you use a willow tree bark infusion?

We use the two types interleavingly.
Personal Rules

• If people know which rules apply to them, why mine them?
 – Personal rules may or may not indicate general trends
 – Concrete questions help digging deeper into users’ memory
Crowd Mining - Contributions (at a very high level)

- **Formal model** for crowd mining.
- **A Framework** of the generic components required for mining the crowd.
- **Significance and error estimations.** Given the knowledge collected from the crowd, which rules are likely to be significant and what is the probability that we are wrong. [and, how will this change if we ask more questions...]
- **Crowd-mining algorithm.** Iteratively choosing the best crowd question and estimating significance and error.
- **Implementation & benchmark.**
The model: User support and confidence

• A set of users U

• Each user $u \in U$ has a (hidden) transaction database D_u

• Each rule $X \rightarrow Y$ is associated with:

 $\text{supp}_u(X \rightarrow Y) := \frac{|\{t \in D_u | X \cup Y \subseteq t\}|}{|D_u|}$

 user support

 $\text{conf}_u(X \rightarrow Y) := \frac{|\{t \in D_u | X \cup Y \subseteq t\}|}{|\{t \in D_u | X \subseteq t\}|}$

 user confidence
Model for closed and open questions

- **Closed questions**: $X \rightarrow ? Y$
 - **Answer**: (approximate) user support and confidence

- **Open questions**: $? \rightarrow ? ?$
 - **Answer**: an arbitrary rule with its user support and confidence

“I typically have a headache once a week. In 90% of the times, coffee helps.

\[
\text{supp}_u (\text{headache} \rightarrow \text{coffee}) = \frac{1}{7} \cdot \frac{9}{10} \quad \text{conf}_u (\text{headache} \rightarrow \text{coffee}) = \frac{9}{10}
\]
Significant rules

- Overall support and confidence defined as the **mean** user support and confidence

- Significant rules are those whose overall support and confidence are both above specified thresholds Θ_s, Θ_c.

- **Goal**: estimating rule significance while asking **the smallest possible number of questions** to the crowd
Framework components

- One generic framework for crowd-mining
- One particular choice of implementation of all black boxes
Estimating the mean distribution

- Treating the current answers as a random sample of a hidden distribution \(g_r \), we can approximate the distribution of the hidden mean \(f_r \).
- \(\mu \) – the sample average
- \(\Sigma \) – the sample covariance
- \(K \) – the number of collected samples

\[
f_r \sim N \left(\mu, \frac{\Sigma}{K} \right)
\]

- In a similar manner we estimate the hidden distribution \(g_r \).
Rule Significance and error probability

- Define M_r as the probability mass above both thresholds for rule r

\[M_r = \int_{\Theta_s}^{1} \int_{\Theta_c}^{1} f_r(s, c) dc ds \]

- r is significant iff M_r is greater than 0.5

- The error probability is

\[P_{err}(r) = \min\{M_r, 1 - M_r\} \]
The next error probability

- The current distribution g_r for some rule can also be used for estimating what the next answer would be.
- We integrate the resulting error probability over the possible next answers, to get the expected next error $E[P_{err}^\prime (r)]$.

Optimization problem: The best rule to ask about leads to the best output quality.
- For quality := overall error, this is the rule that induces the largest error reduction.

$$\text{argmax}_{r \in R} P_{err} (r) - E[P_{err}^\prime (r)]$$
Completing the picture

• Which rules should be considered as candidates for the next question?
 – Small rules, rules similar to significant rules are most likely to be significant
 – Similarly to classic data mining

• Should we ask an open or closed question?
 – Keeping a fixed ratio of open questions balances the tradeoff between precision and recall
 – Similarly to sequential sampling
Experiments

• 3 new benchmark datasets
 – Synthetic
 – Retail (market basket analysis)
 – Wikipedia editing records

• A system prototype, CrowdMiner, and 2 baseline alternatives
 – Random
 – Greedy (that asks about the rules with fewest answers)
Experimental Results

![Graphs showing F-measure vs. number of samples for Retail and Wikipedia datasets.]

- **Retail Dataset**
 - CrowdMiner
 - Random
 - Greedy

- **Wikipedia Dataset**
 - CrowdMiner
 - Random
 - Greedy
• Better precision – Greedy loses precision as new rules are explored
• Much better recall – due to adding new rules as candidates.
Experimental Results

- An open questions ratio of 0.2-0.6 yields the best quality
Summary

- The goal: learning about new domains from the crowd
- By identifying significant data patterns
- Data mining techniques cannot be used as-is
- Our solution includes
 - A model for the crowd behavior
 - A crowd mining framework and concrete component implementations
 - Benchmark datasets and a prototype system CrowdMiner used for experimentation
Related work

- **Declarative crowdsourcing frameworks** [e.g., Doan et. Al PVLDB’11, Franklin et. Al SIGMOD’11, Marcus et. Al CIDR’11, Parameswaran et. Al CIDR’11]
 - We consider identifying **patterns in unknown domains**

- **Association rule learning** [e.g., Agrawal et. Al VLDB’94, Toivonen VLDB’96, Zaki et. Al RIDE’97]
 - **Transactions are not available** in our context, sampling rules does not perform as well as interleaving closed and open questions

- **Active Learning** [e.g., Dekel et. Al COLT’09, Sheng et. Al SIGKDD’08, Yan et. Al ICML’11]
 - In our context every user has a partial picture, **no “right” or “wrong”**

- **Sequential Sampling** [Vermorel et. Al ECML’05]
 - Combining the exploration of new knowledge with the exploitation of collected knowledge
Ongoing and Future work

• Leveraging on rule dependencies
 – From an answer on one rule we can learn about many others
 – Semantic dependencies between rules

• Leveraging on user info

• Other types of data patterns
 – Sequences, action charts, complex relationships between items

• Mining given a query
 – Data mining query languages

• ... and many more
Thank You!

Questions?