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ABSTRACT
Harnessing a crowd of Web users for data collection has
recently become a wide-spread phenomenon. A key challenge
is that the human knowledge forms an open world and it is
thus difficult to know what kind of information we should be
looking for. Classic databases have addressed this problem
by data mining techniques that identify interesting data
patterns. These techniques, however, are not suitable for
the crowd. This is mainly due to properties of the human
memory, such as the tendency to remember simple trends
and summaries rather than exact details.

Following these observations, we develop here for the first
time the foundations of crowd mining. We first define the
formal settings. Based on these, we design a framework of
generic components, used for choosing the best questions
to ask the crowd and mining significant patterns from the
answers. We suggest general implementations for these com-
ponents, and test the resulting algorithm’s performance on
benchmarks that we designed for this purpose. Our algorithm
consistently outperforms alternative baseline algorithms.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
crowd mining, crowdsourcing, association rule learning

1. INTRODUCTION
Problem. Social scientists, micro-economists, journalists,
marketers, public health specialists, and politicians alike
routinely analyze people’s behaviors to find new trends, un-
derstand and document behaviors, and possibly put forward
adequate policies in response. Discovering statistically signif-
icant patterns in the crowd’s habits is however a challenging
task, and traditional tools (interviews, polls, surveys) to
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collect data from individuals about their daily life are costly
to implement, and moreover, it is often hard to know which
are the best questions to ask. This is in part due to the fact
that human knowledge forms an open world [13]; it is often
the case that one wants to use the crowd to find out what is
interesting and significant about a particular topic, without
full knowledge about what the topic consists of.

In traditional settings where one has access to a database
of all relevant information, the problem of finding significant,
as-yet-unknown patterns has been addressed via data mining.
In particular, association rules [1], which capture when one
set of data items indicates the presence (or values) of another
set, were shown to be useful in identifying significant patterns.
The typical application is shopping baskets: a store can, by
analyzing purchase records, mine rules about which items are
bought together. In this traditional setting, the significant
rules are assumed to be initially unknown, and data mining
algorithms dynamically construct database queries to identify
them, relying on indicators such as support and confidence.

However, association rule mining is based on the assump-
tion that transactions (e.g., sets of items bought together
in the shopping basket application) are available. When
dealing with the crowd’s behavior, it is often impossible to
have access to these transactions, i.e., to ask individuals for
extensive descriptions of their past activities.

As a motivating example, consider a health researcher,
Alice, who is interested in discovering and testing new drugs
by analyzing the practices of folk medicine (also known as
traditional medicine, i.e., medicinal practice that is neither
documented in writing nor tested out under a scientific pro-
tocol). Alice is interested in discovering association rules
such as “Garlic and oregano leaves can be used to treat a
sore throat” or “Chamomile tea drinkers tend to experience
sleepiness” together with their support and confidence. Al-
ice can interview folk healers, but it is unrealistic for her
to ask them for an exhaustive list of all cases they treated
over the years. A database of transactions, each correspond-
ing to the symptoms and treatments of a particular illness
case, simply cannot be constructed. As another example,
consider a social scientist analyzing life habits of people,
in terms of activities (watching TV, jogging, reading, etc.)
correlated with their contexts (time of the day, weather, pres-
ence of friends, etc.). Here too it is impossible to obtain a
comprehensive database of transactions, representing all the
“events” (mornings, evenings. . . ) with their context and all
the activities performed in them, for a large community. Or



consider a public health researcher studying a population’s
eating habits to understand how best to fight an obesity
epidemics (in which case transactions correspond to types
of food eaten or cooked together); an ergonomics consultant
who surveys work habits in a company to detect positive or
negative patterns in work organization that should be en-
couraged or corrected (transactions correspond to events in
the day-to-day work life, e.g., a particular meeting with the
communication means used for it). In all these cases, we deal
with an open world (no pre-existing list of relevant activities,
foodstuff, or work environment factors) and it is impossible
to obtain an exhaustive database of all transactions.

Crowd-based data sourcing is a new and powerful data
procurement paradigm that engages Web users to collectively
contribute data [12]. Information is often gathered by posing
questions to users, which they may answer for some small
payment, for social or moral reasons, or in the context of
a game [17, 25]. Even though people cannot recall all of
their transactions, social studies show that they can often
provide simple summaries, and even more complicated ones
when asked targeted questions [5]. Summaries can be viewed
as rules that apply to individuals, or personal rules. As an
example, a folk healer may be able to tell Alice, when asked
which symptoms he usually encounters (an open question),
that he deals with nausea cases almost every week. He can
also answer perhaps more complex but targeted questions
(named closed questions), such as “When a patient has both
headaches and fever, how often do you use a willow tree bark
infusion to treat him?” The answer might be something like
“A few times a year, that is, perhaps for a half of all such
patients.” Mining the crowd thus differs from traditional
data mining in two fundamental ways: on the one hand, one
cannot have access to the transactions in extension, but on
the other hand, summaries allow obtaining, with one request,
information that encapsulates many transactions.

The problem we address is thus: How to exploit the unique
capabilities of the crowd to mine data from the crowd?

Note that even when transactions are partly available, we
can use the crowd to gather complementary information:
a store might have easy access to its consumers’ shopping
baskets and use classic mining approaches on them, but it
does not know what its consumers buy outside of its stores
and cannot grasp the subjective consumer experience; for
this, stores and marketing agencies use consumer panels and
surveys. However, these may be time-consuming, expensive
and inaccurate, and we would like to use crowdsourcing for
a more efficient alternative.

If people are aware of the rules that apply to them, why
mine these rules? First and most importantly, our goal is to
identify trends in the entire population. Each person is only
familiar with her own habits, which form partial information
about the general trends. Mining many users allows us to
piece together the complete picture. Second, it is hard for
people to list even their personal rules – only prominent rules
may be recalled in this manner [5]. Our mining process asks
users concrete, well-defined questions, which help digging
deeper into their memory.

Contributions. To tackle the crowd mining problem, we
present in this article the following contributions:

1. We define a model for the average behavior of the crowd.
We model the types of questions a user may be asked
(open and closed), and the data we retrieve as a result.

This relies on per-user notions if pattern significance.
The formal model allows defining the ultimate goal of
crowd mining: finding the association rules that are
overall significant. This highlights the required changes
in the data mining paradigm to make it suitable for
the crowd. (Section 2)

2. We present an effective crowd-mining framework. The
generic components of this framework can be used for
iteratively choosing the best crowd questions, process-
ing the answers, and upon demand, deciding which
rules are the significant ones. Some framework compo-
nents are“black boxes”which allow plugging in different
implementations for different applications. (Section 3)

3. Since computing the exact overall significance of a rule
would require posing questions to all the users, it is
infeasible for large crowds. As an important component
of our framework, we perform a probabilistic model-
ing of the crowd and their behavior, and develop a
formulation for well-founded probabilistic estimates of
the significance of a rule, the potential error in this
estimation, and the impact of asking a given question
on this significance and uncertainty. (Section 4)

4. We also propose a specific implementation of the re-
maining components of the framework, based on adap-
tations of classic mining algorithms [2], and general
techniques from sequential sampling [24]. The unique
settings of crowd mining prevent us from using existing
data mining algorithms as-is. The main reason is that
at each point we may have only discovered a subset
of the items domain and, for the rules composed of
the items discovered so far, estimations are always in-
accurate to some degree. Our solution also serves as
an illustration of how to adapt classic association rule
mining algorithms to the crowd. (Section 5)

5. Finally, we propose benchmark datasets that enable
systematic evaluation of crowd-mining algorithms per-
formance. We show, by means of an extensive ex-
perimental evaluation on an implementation of our
algorithm, that it consistently outperforms alternative
baseline algorithms, and identifies significant rules with
greater accuracy, while asking fewer questions. The re-
sults also demonstrate the viability of our crowd-mining
framework, even with simple implementations of some
of the black boxes. (Section 6)

We discuss related work in Section 7 and conclude with
possible extensions in Section 8.

2. PRELIMINARIES
We are interested in asking users about personal rules, and

inferring about overall important rules and general trends.
For that, we start with basic definitions of association rules
and their quality measurements per individual. We claim
that these simple definitions, based on classic association
rule theory [1], can capture the summarized manner in which
people tend to record certain types of information. This also
guides us in the types of questions we ask the crowd and the
interpretation we give to their answers.

Let U be a set of human users, and let I = {i1, i2, i3, . . . }
be a non-empty finite set of unique items. Define a trans-
action t as a subset of I. Each user u is associated with a
personal database Du, which is a bag (multiset) of transac-
tions. |Du| denotes the number of transactions in Du.

Let A,B ⊆ I, A∩B = ∅. Then A→B is an association rule,



which may be used to signify that in a personal database Du,
A ⊆ t implies B ⊆ t, for any t ∈ Du. From this point we
sometimes use the notation a, b→ c, d instead of {a, b}→
{c, d}, for brevity.

When mining folk medicine, for instance, items may rep-
resent symptoms, treatments and medicine ingredients. An
association rule might be flu→garlic, signifying that when a
user has the flu, she takes garlic.

In data mining, rules are considered interesting when they
occur frequently in the data. We recall the standard defi-
nitions of support and confidence, which are used here as
indicators for rule significance per user.

Definition 2.1 (User Confidence and Support).
Given a user u with database Du and a rule A→B, let the
user support of A→B in the transactions of u be defined as:

supp
u

(A→B) :=
|{t ∈ Du | A,B ⊆ items(t)}|

|Du|

and similarly, define the user confidence of A→B as:

confu(A→B) :=
|{t ∈ Du | A,B ⊆ items(t)}|
|{t ∈ Du | A ⊆ items(t)}|

Questions and answers. Data mining techniques generally
rely on processing transactions for association rule learn-
ing. While we model the knowledge of every user from the
crowd as an underlying personal database of transactions,
this database is completely virtual, and not available to us for
mining directly. For instance, a transaction in folk medicine
may represent a particular case of the flu with all the symp-
toms and treatments used. People usually do not remember
many such elaborate details, and instead tend to remember
summaries, which can be viewed as rules.

Consequently, we give a definition for the method of ac-
cessing personal databases based on association rules (rather
than transactions) and their user support and confidence. For
a given rule, users can tell us the significance of the rule in
their personal databases. Moreover, users can spontaneously
recall rules. Thus, the two following types of questions to
users are considered.

• Closed questions. Questions modeled as A→?B. We
interpret the answer of a user u as the support and
confidence of the rule A→B w.r.t. Du, i.e., the pair〈
supp

u
(A→B) , confDu

(A→B)
〉
.

• Open questions. Questions modeled as ?→??. The
answer of a user u is interpreted as some A,B, along
with the confidence and support of A→B in Du.

We show in the sequel how these types of questions can
be used for mining interesting rules from the crowd.

In order to be presented to users, questions must be phrased
in natural language. For instance, consider the closed ques-
tion flu→?garlic. One way of displaying it is by two natural
language questions, corresponding to the support of “flu” and
the confidence of flu→?garlic, respectively: “How often do
you usually have the flu?” and “When you have the flu, how
often do you take garlic?” An open question may be formed
as “Tell us about an illness, the way you treat it and how
often this occurs.” Users may then enter their answer in nat-
ural language, e.g., “When I have the flu I take garlic about
80% of the time. This usually happens twice a year.” In such
a case, NLP tools must be used for interpreting the answer.
Alternatively, users may also be given multiple options to

choose from (e.g., “always”, “often”, “sometimes”, “rarely”);
or fill in the frequency by providing a number of occurrences
and the time period from closed lists.

The way in which people answer the questions in practice
reveals another challenge: people mostly give only rough
estimations for the support and confidence of rules. For
instance, when the exact support is 0.879 they may give an
approximate answer (“about 90% of the time”), a range (“80–
100% of the time”) or even be slightly off the correct answer
(“90–100% of the time”) [5]. In our definitions we assume
that both user support and confidence are provided to us as a
single, perhaps approximate, number.1 One way of modeling
the error in user answers might be, e.g., assuming some error
range per user. As we explain next, our choice of overall
quality measures for rules allows us to ignore individual user
errors and still obtain good estimations.

Note that support and confidence of different associa-
tion rules may be dependent. For instance, the support of
A∪B→C is bounded by the support of A→C. We consider
these dependencies in asking about rules for which we have
no samples (see Section 5), but not in our approximations
(for computation simplicity). This means that we gather
information on each rule separately from the crowd. Note
that this does not affect the algorithm correctness, but gath-
ering information on several rules at once could be a further
optimization (see extensions in Section 8).

Overall Rule Significance. We are interested in inferring
general trends, i.e., rules that have overall significance in
a group of users. For that, we first need to choose how to
aggregate user answers into an overall quality measure per
rule. Since our focus in this work is on users rather than
transactions, we define significant rules as rules with high
average user support and confidence.2 Formally:

Definition 2.2 (Significant Rules). Let U be a group
of users. We say that a rule r = A→B is significant in U if
it satisfies avgu∈U supp

u
(r) > Θs and avgu∈U confu(r) > Θc,

where 0 6 Θs,Θc 6 1 are predetermined threshold values.

Note that in order to obtain the true average support
and confidence one must ask every user in U about r. In
practice this is impossible, since the number of relevant users
and rules may be huge. Thus, we resort to sample-based
empirical estimations. As described in Section 4, the choice
of average as the aggregation function allows us to employ
rigorous statistical tools for such estimations.

Another advantage of choosing avg here is for handling the
error in individual user answers. In many case studies, it was
shown that on average, individual user errors “cancel” each
other out such that the average of the answers is very close
to the truth. This phenomenon forms the foundations for
the theory of the wisdom of the crowd [22]. It is particularly
relevant in situations when user answers are independent,
and indeed, as the answers we seek are personal, there is a
good reason to assume such independence.

The choice of thresholds for the average support and confi-
dence in Definition 2.2 is taken from classic data mining. We
note that the solution we present can be adapted to support
other functions on the average support and confidence, e.g.,
a threshold on their sum or product.
1Answers that describe the frequency of habits may be in-
terpreted w.r.t. a fixed time period. For instance, “x times a
week” may be interpreted as x

7
.

2Other possible aggregates are discussed in Section 8.



Choice of users. Different works in the area of crowdsourc-
ing focus either on the choice of questions, the choice of
users to ask, or both [19, 8, 4]. While the ability to choose
the questions to ask the users always exists, the ability to
choose users is inherently limited. This is due to the fact
that particular users may not always be available, or willing
to answer more than a few questions. We therefore make
the least restrictive assumption, namely that the users who
answer our questions are chosen randomly each time. As we
show next, this assumption is actually useful in our settings,
since it allows treating user answers as random samples.

3. FRAMEWORK
Having identified the general settings in which our crowd

mining algorithm works, we turn to design the general struc-
ture of a novel crowd-mining framework. This framework is
composed of theoretical components that are used as black-
boxes. Depending on prior knowledge, particular estimations
about the data distribution, a different choice of the target
function, etc. – different implementations of the black-boxes
may be preferred. This observation is not unique to crowd
mining, and also applies to different data mining algorithms,
machine learning algorithms, etc.

The framework structure we suggest is designed to facilitate
a crowd-mining algorithm. A few unique properties of crowd
mining (as opposed to classic data mining) guide the course
of this algorithm, as follows.

1. Using the crowd wisely. The most costly resource
in our settings, both in latency and possibly monetary
cost, are the crowd questions. Thus, we aim to minimize
the number of questions by maximizing the knowledge
gain per question.

2. Data access model. As defined in Section 2, a user
answer gives us information only w.r.t. a particular rule.
Thus, the algorithm is directed by the choice of rules
to ask about.

3. Estimated quality. As it is impossible to ask all users
each question, our algorithm relies on estimations for
rule significance, as well as for the effect of a question
on our confidence.

Based on these characteristics, our algorithm is an interactive
one, and works in iterations. At each iteration, we use the
knowledge gained so far to decide which question to ask next.
The question should be chosen so as to maximize knowledge
gain. This is the most challenging part of the algorithm, and
the main role of the component framework. Once the user
answer is obtained, the framework components can be used
to update our estimations for the significance of different
rules. In addition, at each point of the algorithm, we can
rely on these estimations for computing and returning the
set of significant rules.

Remark. For simplicity, we assume that the algorithm only
selects one question at a time. We briefly discuss the selection
of the best bulk of K next questions, which may be then
posed to the crowd in parallel, in Section 8.

Our framework components are organized in a hierar-
chy. Each black-box implementation in this hierarchy may
use lower-tier black-boxes. If the implementation of this
black-box is replaced, the lower-level black-boxes may not
be required anymore. An overview of the hierarchy of our
framework components is given in the diagram in Figure 1.
The boxes with light background are boxes for which the

Choose the 
next question

Choose the next 
closed question

Open or closed 
question?

Choose 
candidate rules

Rank the
rules by grade

[a]

[c][b]

[e][d]

Estimate
next quality

Estimate
current quality[f] [g]

estimate mean 
distribution[i]

estimate sample 
distribution[h]

estimate rule 
significance[j]

Figure 1: Framework Component Hierarchy

Data: Set of users U , a budget N
Result: S: a set of association rules
Initialize Enabled [d];
for every i ∈ {1, . . . , N} OR until stopped do

u← a random user;
if Ask open question? [b] then

q ← an open question;
(r′, s, c)← the answer of u for q;

else
r′ ← arg maxr∈Enabled grade(r) [e];
q ← a closed question about r′;
(s, c)← the answer of u for q;

Update Enabled [d];
Add (s, c) to the samples of r′;

S ← ∅ ;
for every r ∈ Enabled do

if r is significant [j] then
Add r to S;

return S;

Algorithm 1: Crowd-mining association rules

implementation is straightforward, using the boxes of the
level below. The black-box components are colored black.

Algorithm 1 gives a high-level description of a crowd-
mining algorithm using the framework components. The use
of a particular component is indicated by marking the rele-
vant lines with the component letter. Some of the components
are called implicitly, such as in the call to the grade function
[e], which involves components [f-j], or the choice of the
next question [a] which appears decomposed and spans over
the if-then-else part inside the loop.

The course of the algorithm. Given a budget of N ques-
tions to pose to the crowd, the algorithm completes at most
N iterations. It may be stopped at any point, e.g., if too
much time has elapsed or if we have obtained satisfactory
accuracy. At each iteration we first choose a random user u,
according to our assumption from Section 2. Then, we use
the framework components to decide which question to ask.

Note that, as in many other learning problems, we have
a tradeoff between obtaining (possibly) new information by
asking open questions, and refining the accuracy of our es-
timations by asking closed questions. In particular, items
of the domain, which are initially unknown, can only be
discovered by open questions, thus expanding the set of rules
which we can compose and evaluate. On the other hand, the
fact that we can cleverly select where to refine our knowledge
(by asking closed questions) gives us the advantage over ran-
dom sampling (asking only open questions). Thus, the first
black-box component used in the algorithm is responsible for



choosing between closed and open questions (box [b]), while
aiming to balance the tradeoff. Its particular implementation
may depend on assumptions about answers to open questions
(according to which distribution they are selected), and on
the need in exploration (e.g., how much of the item domain
has been discovered).

If the chosen type is open, an open question is posed to the
user u, who returns a rule r′ with its support and confidence
(according to Section 2).

The case of a closed question is the more algorithmically
challenging one. When selecting the next closed question to
ask, we do not want to consider all the possible rules that
can be composed of the known data items. This is because
1) there is a huge amount of rules, and 2) most of them are
not interesting. Instead, we can focus on a small subset of
more interesting rules, called enabled rules (box [d]). The
choice of which rules to enable can be inspired by the rule
exploration order of existing data mining algorithms (See
Section 5). However, it must also take into account unique
features of the crowd mining scenario, such as the fact that
no full information about a rule is ever collected.

Now, among the enabled rules, we ask about the rule with
the highest grade (box [e]). The grade is computed in an
elaborate way so as to reflect the effect of asking a question
on r′. We would like to choose the rule that, if this were the
final iteration, would maximize our overall output quality.
After selecting a rule r′, we ask the user u about it and
record his answer (user support and confidence).

At the end of Algorithm 1, the set of significant rules is
computed and returned as the output. Component [j] is
reused here for finding significant rules.

The lower tiers. We now turn to explain the lower level
components in the hierarchy, which are used in the imple-
mentation of box [e]. See Section 4, where we describe the
non-trivial implementation for these components, which is a
key contribution of this paper.

The second-lowest-level components in Figure 1 refer to
estimation of the current quality of the algorithm output
(box [f]), and the “next” quality, namely the quality after
asking one more question on a particular rule r′ (box [g]).
The difference between those measures, i.e., the effect of the
answer about r′ on the quality, may be used for rule ranking.

To estimate the quality before and after asking about r′,
we must first estimate the overall support and confidence of
each rule (recall Definition 2.2). For generality, instead of
computing just one estimation, we compute a distribution
that reflects the probability for different values of the means,
given the collected knowledge (box [i]). Next, we decide
whether r′ is significant (box [j]). The decision method
should minimize the probability of making an error. Finally,
the estimation of the next quality depends on the next user
answer about r′ (box [h]). We can use the samples (user
answers) and any standard fitting method for estimating the
distribution of the next user answer.

4. ERROR ESTIMATION, RULE RANKING
In order to rank closed questions (box [e]), we need to

predict the expected effect of each answer on the overall
output quality. We suggest, as a possible quality measure,
the expected total number of errors (to be formally defined
in the sequel). We show that this simple option proves to be
a useful and practical one.

Table 1: Running Example for rule r̂

current next
(expected)

Sample mean µ = (0.5125, 0.5125) µ

Sample covariance Σ = 10−2 ·
(

1.72 0.39
0.39 1.72

)
Σ

fr̂ covariance
Σ

4

Σ

5
Perr(r̂) 0.367 0.332

We next describe in detail a key contribution of this paper,
namely, suggested implementations for components [e-j],
which work together to minimize the expected output error.
For generality, our choices are based on the assumption of zero
prior knowledge, and some of them include parameters that
may be tweaked experimentally. This way, and as we show
in our experiments (See Section 6), we construct a general-
purpose crowd-mining algorithm. The implementations are
explained in a bottom-up fashion, with the letter of the
relevant component next to each section title.

Estimating the mean [i]. According to Section 2, we are
interested in approximating the average support and confi-
dence. When we ask a closed question about a particular
rule r, we in fact choose a user randomly (uniformly) out
of a huge number of users, and obtain his user support and
confidence for r. This may be modeled as sampling from an
unknown distribution g̃r, the distribution of the user answers.
Each sample is a 2D vector, where the first dimension is
the support and the second is the confidence. According
to the central limit theorem, the sample mean, denoted fr,
approaches a normal distribution. We thus approximate the
distribution of the sample mean fr by the bivariate normal
distribution with mean vector µ̃ and covariance matrix 1

N
Σ̃,

where µ̃ is the (unknown) mean of g̃r, Σ̃ is the (unknown) co-

variance of g̃r and N is the sample size. I.e., fr ∼ N(µ̃, 1
N

Σ̃).

Both µ̃ and Σ̃ are unknown but, using the samples for rule r,
we can approximate µ̃ as the sample average µ and Σ̃ as the
sample covariance Σ. Now the sample mean distribution fr
may be approximated as a normal distribution with mean µ
and covariance 1

N
Σ. I.e., fr ∼ N(µ, 1

N
Σ).

Example 4.1. Assume that for a particular rule r̂ = A→
B, we have obtained so far the answers of 4 users:

User support User confidence

User 1 0.4 0.4
User 2 0.4 0.6
User 3 0.6 0.4
User 4 0.65 0.65

The sample mean and covariance are shown in Table 1,
under the column “current”. The rest of the table is not
necessary at this point, but will be useful as we continue with
this example throughout the section. The obtained estimated
Gaussian distribution of the mean fr̂ is depicted in Fig. 2(a).
The dark circle is the mean, the light circles are the actual
samples, and the background is darker according to where the
probability mass lies.

This estimation of the mean is based on the fact that,
other than samples, we have no information about the mean.
If we had some prior estimation for the mean distribution,
this method could be extended to take it into account.
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Figure 2: Distribution figures for rule r̂ (x-axis is
confidence, y-axis is support)

Estimating the sample distribution [h]. In order to choose
the best next question, we need to estimate what the next
answer might be for each rule. Recall that g̃r is an unknown
distribution. We already know that the sample mean µ and
sample covariance Σ are unbiased estimators for its mean µ̃
and covariance Σ̃, respectively. Here, we choose to roughly
approximate g̃r by gr ∼ N(µ,Σ). Note that gr cannot be
precisely normal, since the support and confidence values are
taken from the range [0, 1]. Thus, for a sample (s, c) we use
the PDF gr((s, c) | s, c ∈ [0, 1]) (truncated Gaussian). The
notation | s, c is omitted for brevity.

A normal distribution is a simple and general choice for
describing the distribution of real-life data. However, other
distributions may make good choices as well. For instance,
it may be the case that user either have frequent or rare
headaches. This produces two groups of samples, one with
high values, and another with low ones. Such a situation
may be better described by a bimodal distribution rather
than a normal one.

Example 4.2. Consider again the samples from Ex. 4.1.
The distribution of gr̂, computed using µ and Σ as mean and
covariance, is depicted in Fig. 2(b). Compare to Fig. 2(a) to
see the difference in variance w.r.t. fr̂.

Estimating rule significance [j]. At any point of the al-
gorithm, based on the current best estimations for the overall
confidence and support, we would like to decide for every rule
r whether it is significant or not. Note that the probability
of the mean being above both thresholds is the unbiased
estimator for whether the mean is above both thresholds,
since for a binary random variable, the probability for 1 is
also the expectation. In addition, note that as the number
of samples N grows, the covariance approaches the 0 ma-
trix; this happens since the sample covariance Σ approaches
the constant, real covariance Σ̃, and we divide it by N to
estimate the covariance of the mean.

Thus, to decide on rule significance, we check whether,
according to fr, the probability for the mean to be above
both thresholds is greater than 0.5. This is done by testing

whether
∞∫

Θs

∞∫
Θc

fr(s, c) dcds > 0.5 (numerical integration

of bivariate normal distributions is well-studied and fast
algorithms exist to reach a very high precision [14]).

Example 4.3. Let us return to our running example. As-
sume that Θs = Θc = 0.5. The probability that the mean is
above both thresholds, computed using the formula above, is
0.367. This means that there is a greater probability for the
overall support and confidence of r̂ to be below one of the
thresholds, and thus our algorithm decides that it is not a
significant rule.

Example 4.3 provides another important observation: al-
though the sample mean µ = (0.5125, 0.5125) is above both
thresholds, the probability of being below one of the thresh-
olds is greater than 0.5. Thus, using the mean itself to decide
whether a rule is significant may be misleading.

Estimating current quality[f]. We suggest, as an output
quality measure, the total number of errors. Recall that
the ground truth in our case is unknown, rendering exact
computation impossible; instead, we compute the expected
number of errors, according to the probability of giving an
erroneous answer on each rule. Let Xi be a random variable
whose value is 1 if our algorithm makes an error in classifying
rule ri. Denote the error probability for rule ri by Perr(r),
and the domain of all possible rules by R. The expected
total number of errors is given by the formula

E

∑
ri∈R

Xi

 =
∑
ri∈R

E [Xi] =
∑
ri∈R

Perr(ri) (1)

Let us now develop the formula for Perr(r). In the case
that our algorithm decides that a rule r is significant, the
error probability is the probability for r not to be significant,
i.e., Perr(r) = 1 −

∫∞
Θc

∫∞
Θs
fr(s, c) dcds. In the case when

the algorithm decides r is not significant, the complement of
this formula to 1 is used. Note that if the decision method
described above is used, Perr(r) is the probability of being
on the side of the thresholds with the smaller distribution
mass. In particular, it is guaranteed to be 0.5 or less.

Example 4.4. Returning to our running example, we can
now easily compute the error probability. The algorithm
decides that r̂ is not significant, the error probability is the
probability of being above both thresholds – 0.367. This also
appears in Table 1.

The computation explained above works only for rules
that have at least two samples (this is necessary for fr to
be well-defined). In order to handle rules without any user
samples, we allot each rule an initial set of samples by a new
user u∗ 6∈ U . These samples can be chosen such that the
initial error probability is maximal (0.5) and the covariance
is large, to reflect the fact that we have no information about
this rule, yet. This also means that the next user answer
is likely to reduce the error probability and covariance, i.e.,
our estimation becomes more accurate, as we would expect
when knowledge is gained. As we obtain more user samples,
the effect of these initial samples becomes negligible.

Estimating next quality [g]. We next want to estimate
the effect of the next question on the total number of errors.
First, we need to know how an additional sample may affect
the error probability of rule r. Recall that we have estimated



the sample distribution as gr. Given one more sample from
gr in addition to the collected user samples, we are able to
compute a new sample mean µ′, a new sample covariance Σ′,
and based on these two – a new distribution of the mean f ′r.
Since every sample may result in a different f ′r, we aim at
finding the expected error E [P ′err(r)], over all possible next
samples. We split the computation into two cases, depending
on the probability of µ̃ to be above both thresholds given
the new average µ′. Formally, let s and c be the support
and confidence of the next sample, drawn from gr, and f ′r
the new sample mean distribution based on them. Denote
by ϕ(s, c) the area of the next sample values for which r is
estimated to be significant. Then,

E
[
P ′err(r)

]
=

∫∫
ϕ(s,c)

gr(s, c) ·
[
1−

∫ ∞
Θc

∫ ∞
Θs

f ′r(s′, c′) dc′ds′
]

dcds

+

∫∫
¬ϕ(s,c)

gr(s, c) ·
[∫ ∞

Θc

∫ ∞
Θs

f ′r(s′, c′) dc′ds′
]

dc ds

The first summand refers to the error probability if the
rule is significant after the next sample. In the outer integral
we integrate over all relevant values of the next sample, and
in the inner integral we compute the error probability as the
chance of the mean not being above both thresholds. We
compute the average of such error probabilities, weighted
according to the probability of the particular next sample.
Similarly, the second summand refers to the error probability
if the rule is not significant after the next sample.

This integral cannot be computed directly, and thus we
use a numerical Monte Carlo method to estimate its value
[18]. This is done by repeatedly sampling s, c from gr. For
each such sample, we add it as the ith sample to the i− 1
samples obtained from the users. From this set of i samples
we compute a new sample mean and sample covariance, to
find the new distribution f ′r. Now we can compute the error
probability of f ′r in the exact same manner as we did with fr
above. Finally, after taking enough samples, we can average
the error probabilities computed for each sample and obtain
the estimator for E [P ′err(r)].

This estimator can then be plugged into formula 1 to
compute the expected next total number of errors. We
are now in fact computing the expectation of the expected

total number of errors E
[
E
[∑

ri∈RXi

]]
=
∑

ri∈R E [E [Xi]].

Note that we only ask on r, and since we treat the rules as
independent, the answer only impacts r’s error probability.
Thus, if ri = r, then E [E [Xi]] = E [P ′err(r)], and E [E [Xi]] =
Perr(ri) otherwise.

Example 4.5. Returning to our running example, we ex-
amine the effect of an additional sample on the mean distri-
bution. Assume that the fifth sample is (0.55, 0.55). The new
sample mean and covariance would be

µ′ = (0.52, 0.52), Σ′ = 10−3 ·
(

2.64 0.65
0.65 2.64

)
Fig. 2(c) depicts the new distribution f ′r̂, where notably the
covariance decreases w.r.t. fr̂ (Fig. 2(a)). The expected next
error, 0.332 is lower than the current one, 0.367.

Final ranking of the rules [e]. Given the estimations dis-
cussed thus far, we want to rank the association rules. The
grade used for ranking a rule r should reflect the expected
effect of an answer about r, on some global output quality

measure, in our case the total number of errors. The chosen
closed question is about the highest-ranked rule.

We explained in the previous two sections how to esti-
mate the current error probability for a rule r and the ex-
pected error probability after one more question. Based
on these two values, we can compute the expected error
probability decrease resulting from one question on r, as
grade(r) = E [Perr(r)− P ′err(r)] = Perr(r)− E [P ′err(r)]. This
error decrease also reflects the effect on the total number of
errors, since the only summand in formula 1 that changes
when we ask about r is Perr(r), which is replaced with the
expected value of P ′err(r).

The total number of errors has practical advantages as
the quality measure. Given the current and next error prob-
abilities for every rule, the effect on this measure is easy
to compute. Consider an alternative quality measure for
the output. In search algorithms such as ours, two types
of quality measures are typically noted: precision, or the
ratio of relevant results within the output, and recall, or
the ratio of output data within the relevant data. Since
there is typically a tradeoff between the two, it is common
for algorithms to optimize a measure that balances between
them. The standard such measure is the F-measure, defined
as 2 · precision·recall

precision+recall
.3 One may choose the question to ask

based on the answer’s expected effect on the F-measure. We
found this approach less practical, since precision and recall
can only be estimated very roughly, when the ground truth
is unknown. Moreover, due to computation complexity, sig-
nificant numerical errors may be encountered. In tests, while
the general trends were similar, using the former approach
provided higher-quality results, also w.r.t. the F-measure.
See Section 6.

5. OTHER COMPONENTS
We next describe implementations for the two remaining

black-boxes that are independent of ranking.

Choosing the enabled rules [d]. The following challenge
is classic in association rule learning. Making computations
(e.g., error estimations) for the entire domain of rules is
infeasible, since it is huge. We would like to consider only
a relatively small subset of rules, that are more likely to be
significant than others, at each point of the algorithm. We
refer to these rules as enabled. A closed question may only
be asked on an enabled rule.

Classic data mining algorithms rely on different strategies
for choosing the order in which rules are considered. Denote
by k-rule a rule A→ B such that |A ∪B| = k. Apriori
and following works consider first only 1-rules, then only
2-rules, etc [2]. This relies on the fact that according to the
definition of support, if a k + 1-rule has a high support, all
its k-sub-rules (made of subsets of its items) also have high
support values. Other data mining algorithms may “jump”
from k to k + k′, where k′ > 1 [3]. While these jumps lead
to rules that are less likely to be significant, if they turn
out to be significant, we gain information not only on the
considered rule but also on all of its sub-rules .

The unique settings of crowd mining prevents us from
using existing strategies as-is. First, at any point we never
gain “enough” information about significant k-rules. The
reason is the approximate nature of our algorithm, which

3In our experiments in Section 6, we use the F-measure to
test the performance of our algorithm.



always involves some degree of uncertainty. Thus, “exhaus-
tive” approaches such as Apriori cannot be used. Second, the
ability of people to remember large rules is limited, which
calls to a focus on smaller rules. Last, we treat the rules as
independent in our estimations. This renders jumps rather
useless, as they increase the risk of wasting a question, with-
out the benefit of gaining more information. How to utilize
rule dependencies in our settings is left for future work.

We suggest the following variation for the order of con-
sidered rules, designed for our settings as described above.
Note that unlike Apriori, the set of enabled rules at each
point contains rules of different sizes.

1. We enable smaller rules first, starting from all 1-rules
(using discovered items).

2. In Apriori, a k + 1-rule is considered only if all its k-
sub-rules have a high support. In crowd mining, rather
than waiting for all significant k-rules to be known, we
enable a k+ 1-rule as soon as two of its k-sub-rules are
enabled, and have a high support. We need at least
two rules in order to “cover” the k + 1 items.

3. No jumps are taken.

This strategy is rather simple, but performs well for our
settings, see Section 6. More sophisticated strategies will be
considered in future work.

Deciding open vs closed questions [b]. So far, we have
only focused on asking closed questions. However, as ex-
plained in Section 3, open questions are also a vital part
of crowdsourcing. One reason is that open questions allow
discovering new items from I. Another pragmatic reason
is that people tend to spontaneously recall only prominent
rules – with very low or very high support and confidence (for
instance, “When I have a stomach ache, I almost always drink
tea”). Thus, an answer to an open question may improve our
recall, by discovering an unknown significant rule.

On the other hand, open questions are closer to random
samples, since the rule in the answer is unknown. As we show
in Experiment 4 in Section 6, asking only open questions
results in low precision and does not measure up to algorithms
with closed questions. This is true even when we assume
that the user answers always regard significant rules.

The decision between open and closed questions relates to
the general, well-studied, problem of exploration vs. exploita-
tion in sequential sampling [24]. The tradeoff is between
gaining more information (in our case, finding where uncer-
tainty exists), and utilizing existing information (in our case,
reducing the uncertainty). To optimally balance the two,
one must make specific assumptions on the answer distribu-
tion. Since we do not make such assumptions, we experiment
with two general strategies of the exploration-exploitation
paradigm, which provide approximate solutions [24].

One possible strategy, called the ε-greedy strategy is choos-
ing a constant proportion of the questions to be open. This
can be done by flipping a weighted coin with probability
1− ε at each iteration. This option is the simplest one, and
balances the number of closed and open questions. A more
sophisticated strategy, called the ε-decreasing strategy, relies
on the fact that as we gain more information, less explo-
ration is required. The weight for choosing an open question
is initially high, and gradually decreases as more knowledge
is collected. In Section 6 we compare the performance of the
two strategies and show that the simple approach performs

just as well as the more sophisticated one. This is also in
accordance with the empirical studies in [24].

6. EXPERIMENTS
We introduce CrowdMiner , a system for mining associ-

ation rules from the crowd. The CrowdMiner system is
implemented in Python using an SQLite database. Exter-
nal libraries used were StatsModels4, containing an imple-
mentation of multivariate Gaussian integration through MC
sampling [14], and the Orange data mining library [9]. Ex-
periments were executed on a Lenovo ThinkPad with 8GB
of RAM and a 2.80 GHz Intel Core i7 processor, running
Windows 7 x64. All results are averaged over 5 executions
per algorithm for accuracy.

6.1 Benchmark Datasets
Since the concept of mining rules from the crowd is a new

one, no benchmark datasets currently exist in the form of
rules assigned to users. We propose 3 benchmark datasets
upon which we run our experiments. The benchmarks are
constructed in the following way.

To simulate the real world, we begin with a transaction
dataset. Each user is assigned a set of transactions, which
are then translated into personal association rules using the
standard Apriori algorithm. Each user u now has a set
of rules Ru which represent the user’s “world”, and their
respective confidence and support values; these values are
stored in what we refer to as the real-world database. They
may then be queried as part of the crowd-mining process.

Recall that Apriori itself uses thresholds in order to decide
which rules to generate. We therefore supply the Apriori
algorithm with support and confidence thresholds, lower than
the thresholds used to determine rule significance. We refer
to these thresholds as the Apriori thresholds. The support
threshold for each user was set to 2

#transactions
, to ensure that

each rule is supported by at least two different transactions.
The confidence threshold may vary per dataset, but was
generally set to 0.1 to ensure a database of manageable size.

Given the users’ individual rule sets, we simulate the an-
swers to questions as follows. When a user u is asked a closed
question about some rule r ∈ Ru, she returns the support
and confidence supp

u
(r), confu(r). If u is asked about a rule

r 6∈ Ru, she returns “don’t-know”, a default value having
low support and confidence. A user u who is asked an open
question returns one of her k-best rules, sorted first by sup-
port and then by confidence (k was usually set to 50). This
is because support is generally the dominant factor when
deciding whether a rule is significant or not.

The support and confidence thresholds are determined
based on the data distribution so as to ensure an adequate
number of significant rules. If the threshold is set too low,
the difference between a significant and a non-significant rule
may be negligible; if the threshold is set too high, we may
not obtain enough significant rules.

Synthetic Dataset. This dataset contains transactions that
were generated using the IBM Quest Data Generator [2]. We
have generated three types of transactions, such that the
items in the transactions of each type were selected from
a domain of a different size: 200K transactions over a do-
main of 20 items, 100K transactions over 100 items and 50K
transactions over 500 items. By combining the 3 types, we

4http://statsmodels.sourceforge.net/

http://statsmodels.sourceforge.net/


ensured the existence of rules with low, medium and high
support and confidence. This transaction set was then uni-
formly assigned to a set of 1,000 users. The resulting dataset
is sparse, but well distributed: some rules are common to
almost all the users, but most of the rules are known to only
a few. We experimented with different subsets of these users,
of sizes between 100 and 1,000 (over the same transaction
distribution). Since the results did not change significantly,
we present the results for the entire set of 1,000 users.

Retail Dataset. The retail dataset was constructed from a
list of transactions representing purchases at a retail store [6].
This real-world dataset is available online, and used for bench-
marking in many data mining applications. The dataset re-
flects the transactions of approximately 3,000 users. Since the
data was anonymized, transactions were uniformly assigned
to a set of users.

Wikipedia Dataset. The third dataset was extracted from
Wikipedia and contains a list of real Wikipedia users and the
categories they edited (each transaction is an edit session,
with the categories of edited articles). We chose Simple
English Wikipedia5 because of its smaller scale, making the
extraction of contributors for every article more manageable.
However, the obtained database was overly specific and noisy,
containing multiple categories representing the same concept
(such as “movie” and “film”), and required cleaning. To
do this, we made use of YAGO [21], a massive semantic
taxonomy constructed from Wikipedia. First, we mapped
Simple English Wikipedia articles to YAGO entities. We
then used the YAGO taxonomy to “climb up” the category
hierarchy, selecting for each category in each article the
relevant high-level categories. This provided cleaner data
with a greater degree of similarity between users, enabling
meaningful rule mining. This database contains roughly 600
users, all of whom have at least one association rule.

6.2 Experimental results
Algorithms. We compare three different algorithms, each
of which selects the queries in a different way:
• Random is a näıve algorithm that asks at each point

about a random rule in the known database.
• Greedy is a simple algorithm that asks about the rule

with the fewest samples at each point.
• CrowdMiner uses all the techniques detailed in Sec-

tions 4 and 5. At each point, it selects the question
that maximizes our grade function.

The output of each algorithm is a list of its significant rules:
rules which satisfy the threshold with probability > 0.5.
Each experiment below compares the performance of these
algorithms over time, given different scenarios.

Metrics. We evaluate our experiments using two metrics.
Errors represents the absolute number of errors made by each
algorithm: it is calculated as the sum of false-positives and
false-negatives. F-measure is the harmonic mean of precision
and recall, used to characterize the results more accurately.
Naturally, we also measured precision and recall for all the
experiments; some of the graphs are not shown for lack of
space. All metrics were re-measured after every iteration
of the algorithm. Combining all results provided us with a
progression chart, showing how the F-measure / number of

5http://simple.wikipedia.org/

errors progressed over time in the execution of the algorithm.
Every test used 2,000 crowd questions.

We now present the results of our empirical evaluation.

Experiment 1: Zero-Knowledge Mining. This experiment
tests the performance of the 3 algorithms over a dataset for
which they have no prior information: i.e., they begin with
an empty sample database, and fill it by querying the real-
world database. This experiment allows us to examine how
accurately the algorithms mine association rules while simul-
taneously constructing a database.

Figure 3 shows the results for this experiment over the
three benchmark datasets, for both F-measure and error
metrics. Note that the error and F-measure graphs behave in
a symmetric fashion (when the F-measure is high, the error
number is low), and therefore in future experiments we show
only the F-measure. During the execution of the algorithms,
open questions and newly enabled rules increase the number
of rules in the database, while closed questions improve
the knowledge about existing rules. As the experiments
show, the noted improvement is derived primarily from recall
obtained from the enabling of larger rules: our algorithm is
able to extract the largest number of significant rules. The
precision differences are somewhat smaller. An example of
precision–recall breakdown is shown in Figure 3(g) and 3(h)
respectively. The Wikipedia dataset (Figure 3(f)) exhibits
lower F-measure levels for all algorithms, since this data is
highly distributed and there are many rules that apply only
to small groups or even single users. Even so, CrowdMiner
outperforms the other two algorithms.

Experiment 2: Mining Over Known Item-Domains. In
contrast to the previous scenario, we now examine a scenario
in which the domain of items is given in advance. This
simulates a case where, for example, there exists a large
catalog listing all the items available for purchase in Chicago,
while no information exists about consumer habits. The
execution of the algorithms thus starts with a database where
all the items in the domain exist as 1-rules, having initial
“don’t know” values.

Figure 4 shows the results for this experiment over the
three benchmarks. These results are very similar to the
zero-knowledge experiment, but it appears that in the first
few crowd questions, the greedy algorithm benefits from the
additional information provided by the catalog. Since initially
all the 1-rules are in the same state, asking about the rule
with the least samples is pretty much the best that can be
done, and the precision of the greedy algorithm is relatively
high. However, it is soon overtaken by CrowdMiner , which
discovers more rules by enabling larger rules with a high
potential for being significant.

Experiment 3: Refinement for a Given Set of Rules. In
this experiment, we are interested in isolating and exam-
ining the performance of the closed question functionality
in CrowdMiner vs. the two competitor algorithms. All the
algorithms are given an initial, randomly selected set of 400
rules. They then ask a series of closed questions only. For
lack of space, we only show results for the synthetic dataset.

Figure 4 shows the results for this experiment in two
metrics: (i) F-measure and (ii) errors. Since there are no
open questions and no enabling of larger rules, the scope
of the recall is limited.This means that the change in the
F-measure graph is mainly caused by the change in precision.

http://simple.wikipedia.org/
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Figure 3: Zero-knowledge rule mining
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Figure 4: Rule mining for known items
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Figure 5: Rule mining over initial sample
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Figure 6: Determining the coin flip value

The advantage of CrowdMiner here is statistically significant,
and is preserved across additional experiments that were run
using different initial sample sizes.

Experiment 4: Choosing Open or Closed Questions.
As described in Section 5, we study two strategies of deciding
between open and closed questions, and their effect on the
performance of CrowdMiner . Both strategies rely on flipping
a weighted coin, where the weight represents the probability
of asking an open question.

The first strategy, ε-greedy, assigns the coin a constant
weight which we range from 0 (ask only closed questions)
to 1 (ask only open questions). In effect, a coin flip of 0
cannot introduce any new information into the system, while
a coin flip of 1 is equivalent to sampling rules at random
from users. The second strategy, ε-decreasing reduces the
coin flip weight as a function of time: weight(t) = C

C+t
. This

function was run for different values of C. The first 4 values
in the legends of Figure 6 represent the results for particular
ε-greedy coin flip values. The last represents the best results
for ε-decreasing, which were obtained for C = 200.

We use an initial database as in Experiment 3.
Figure 6(a) shows the precision of the results, for different

weights of the coin flip. The highest precision of ε-greedy
is achieved when the weight is 0, and CrowdMiner asks
only closed questions. This makes sense, since asking closed
questions leads to higher confidence within the set of known
rules, and in particular within the rules estimated to be
significant. In general, the higher the weight is, the lower
the precision is. Figure 6(b) shows the recall of the results.
Note that the highest recall is achieved when the weight is 1
(CrowdMiner asks only open questions), and the lowest when
the weight is 0. However, note that there is a significant gap
between the recall for a weight of 0 (no new information is
introduced into the system) and the recall for a weight of 0.2
(a small amount of new information is introduced into the
system). We also observe that a varying coin flip value does
not yield better results than a fixed value. The best results,
for C = 200, were similar to those of a fixed weight of 0.6.

We set the default weight of the coin flip to a fixed value
of 0.1 for all the other experiments. This is done in order to
reduce randomness in the execution of CrowdMiner , while
still allowing enough exploration of rules and items.

7. RELATED WORK
Data procurement is one of the most important and chal-

lenging aspects of crowdsourcing [12]. Some recent works
(e.g., [11, 13, 16, 19]) suggest the construction of database
platforms where some components of the database (e.g., val-
ues, query parts) are crowdsourced. In such platforms, the
choice of crowd questions by the query plan has to take into
account various aspects such as the monetary cost, latency,

accuracy, etc. For the same reasons, in the current work
we attempt to maximize the accuracy of the output while
asking a minimal number of crowd questions. The works of
[4, 10] deal with deciding which user should be asked what
questions, with the particular goal of minimizing uncertainty.
However, the settings for crowd mining are more complicated:
we do not know in advance what knowledge we are looking
for, and in particular, which questions may be asked, or what
the answers might be (for open questions).

To support the collection of open-world data, several plat-
forms (e.g., Wikipedia) allow users to decide what data
to contribute. Such platforms may collect an unbounded
amount of valuable data, solely depending on contributor
efforts. In contrast, our algorithm poses targeted questions,
which help users recall information they may have not pro-
vided spontaneously. The knowledge gain maximization at
each question leads, in particular, to user effort minimization.

Our motivation for turning to the crowd is similar to that
of surveys. In surveys, the set of questions is usually small,
and is chosen in advance, typically by experts (e.g., [7]).
However, in an open world, it may be hard to know what to
ask in advance. We deal with this difficulty by dynamically
constructing questions based on collected knowledge.

This work has strong connections with association rule
learning. As we noted, some principles of our algorithm are
inspired by the Apriori algorithm [2]. A particularly relevant
line of works [23, 27] considers cases when accessing the
entire database is impossible, and learning must be done
based on data samples. While they sample transactions,
such information is not available in our settings at all. One
could sample rules, which corresponds to asking only open
questions. However, this allows much less control over the
collected information. Our experiments (where the flip coin
weight is 1, see Sec. 6) show that this approach performs
worse than ours, and in particular leads to a low precision.

The goal in active learning [15], another related research
field, is incrementally choosing data items that should be
labeled by an expert, in a manner that maximizes the knowl-
edge gain. Some works in this field are focused on scenarios
with human experts, whose labels may be erroneous [8, 20,
26]. They address this problem by trying to identify preferred
experts, or to filter the noise (error rate) in the answers. In
contrast, we try to learn about the distribution of user an-
swers, and there are no “wrong” answers. An interesting
research direction would be utilizing techniques from these
works for identifying, e.g., “representative” users, whose per-
sonal rules tend to reflect the population average. Giving
more weight to these users may improve our algorithm’s
learning curve, but is non-trivial as explained in Section 8.

The well-studied multi-armed bandit [24] problem is: given
a set of slot-machines, which should be played at each step to



maximize reward? In Sections 5 and 6.2 we examine strate-
gies for balancing exploration and exploitation, developed
for this kind of problems.

8. CONCLUSION AND EXTENSIONS
This work studies, for the first time, mining association

rules from the crowd, in common scenarios where transac-
tions are not available. We have defined a formal model
for crowd mining, and identified the differences from the
classic data mining paradigm; presented the generic com-
ponents of an effective crowd-mining framework; suggested
an implementation for these components, including error
probability estimation where the ground truth is unknown;
and conducted an experimental study with the prototype
system CrowdMiner , proving that our algorithm outperforms
baseline competitor algorithms for different data benchmarks.
In particular, it outperforms an algorithm which relies solely
on rule sampling (via open questions). In our experiments
we also show the importance of cleverly choosing closed
questions, and gradually enabling larger rules.

We note that our algorithm, as presented in the paper,
can be extended in a natural manner from choosing a single
question to choosing the best bulk of next K questions, by
means of dynamic programming. Such an extension may
improve the latency of the algorithm, since it allows posing
the K questions in parallel. Details about the required
adjustments to the error estimations and the algorithm are
omitted because of lack of space.

One possible optimization for our algorithm is by taking
into account the dependencies between rules when interpret-
ing user answers. In this manner, more knowledge may be
extracted and utilized from each answer.

We have chosen the aggregation function to be the average,
which gives all the users equal weights. For some applications,
however, one may want to give more weight to users who are
trusted, or have more underlying transactions (e.g., users that
practice folk medicine more often). Extending our results to
this case is not trivial, since when the distribution of weights
is not known in advance, it is hard to predict the effect of a
user answer. We leave this for future research.

Finally, our framework consists of many black-boxes. We
presented one promising implementation for them, but it is
interesting to study other implementations, which use prior
knowledge on the data distribution, the users, etc.
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