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Query evaluation in monadic second-order logic (MSO) is tractable on trees and
treelike instances, even though it is hard for arbitrary instances. This tractabil-
ity result has been extended to several tasks related to query evaluation, such as
counting query results [3] or performing query evaluation on probabilistic trees [10].
These are two examples of the more general problem of computing augmented query
output, that is referred to as provenance. This article presents a provenance frame-
work for trees and treelike instances, by describing a linear-time construction of a
circuit provenance representation for MSO queries. We show how this provenance
can be connected to the usual definitions of semiring provenance on relational in-
stances [20], even though we compute it in an unusual way, using tree automata;
we do so via intrinsic definitions of provenance for general semirings, independent
of the operational details of query evaluation. We show applications of this prove-
nance to capture existing counting and probabilistic results on trees and treelike
instances, and give novel consequences for probability evaluation.

1. Introduction

A celebrated result by Courcelle [11] has shown that evaluating a fixed monadic second-order
(MSO) query on relational instances, while generally hard in the input instance for any level

1

http://arxiv.org/abs/1511.08723v1


of the polynomial hierarchy [1], can be performed in linear time on input instances of bounded
treewidth (or treelike instances), by encoding the query to an automaton on tree encodings of
instances. This idea has been extended more recently to monadic Datalog [17]. In addition to
query evaluation, it is also possible to count in linear time the number of query answers over
treelike instances [3, 29].

However, query evaluation and counting are special cases of the more general problem of
capturing provenance information [9,20] of query results, which describes the link between input
and output tuples. Provenance information can be expressed through various formalisms, such
as provenance semirings [20] or Boolean formulae [34]. Besides counting, provenance can be
exploited for practically important tasks such as answering queries in incomplete databases [21],
maintaining access rights [28], or computing query probability [34]. To our knowledge, no
previous work has looked at the general question of efficient evaluation of expressive queries on
treelike instances while keeping track of provenance.

Indeed, no proper definition of provenance for queries evaluated via tree automata has been
put forward. The first contribution of this work (Section 3) is thus to introduce a general
notion of provenance circuit [13] for tree automata, which provides an efficiently computable
representation of all possible results of an automaton over a tree with uncertain annotations.
Of course, we are interested in the provenance of queries rather than automata; however, in
this setting, the provenance that we compute has an intrinsic definition, so it does not depend
on which automaton we use to compute the query.

We then extend these results in Section 4 to the provenance of queries on treelike relational
instances. We propose again an intrinsic definition of provenance capturing the subinstances
that satisfy the query. We then show that, in the same way that queries can be evaluated by
compiling them to an automaton on tree encodings, we can compute a provenance circuit for
the query by compiling it to an automaton, computing a tree decomposition of the instance,
and performing the previous construction, in linear time overall in the input instance. Our
intrinsic definition of provenance ensures the provenance only depends on the logical query, not
on the choice of query plan, of automaton, or of tree decomposition.

Our next contribution in Section 5 is to extend such definitions of provenance from Boolean
formulae to N[X], the universal provenance semiring [20]. This poses several challenges. First,
as semirings cannot deal satisfactorily with negation [2, 16], we must restrict to monotone
queries, to obtain monotone provenance circuits. Second, we must keep track of the multiplic-
ity of facts, as well as the multiplicity of matches. For this reason, we restrict to unions of
conjunctive queries (UCQ) in that section, as richer languages do not directly provide notions
of multiplicity for matched facts. We generalize our notion of provenance circuits for automata
to instances with unknown multiplicity annotations, using arithmetic circuits. We show that,
for UCQs, the standard provenance for the universal semiring [20] matches the one defined via
the automaton, and that a provenance circuit for it can be computed in linear time for treelike
instances.

Returning to the non-monotone Boolean provenance, we show in Section 6 how the tractabil-
ity of provenance computation on treelike instances implies that of two important problems:
determining the probability of a query, and counting query matches. We show that probability
evaluation of fixed MSO queries is tractable on probabilistic XML models with local uncer-
tainty, a result already known in [10], and extend it to trees with event annotations that satisfy
a condition of having bounded scopes. We also show that MSO query evaluation is tractable on
treelike block-independent-disjoint (BID) relational instances [34]. These tractability results for
provenance are achieved by applying message passing [25] on our provenance circuits. Last, we
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show the tractability of counting query matches, using a reduction to the probabilistic setting,
capturing a result of [3].

2. Preliminaries

We introduce basic notions related to trees, tree automata, and Boolean circuits.
Given a fixed alphabet Γ, we define a Γ-tree T = (V,L,R, λ) as a set of nodes V , two partial

mappings L,R : V → V that associate an internal node with its left and right child, and a
labeling function λ : V → Γ. Unless stated otherwise, the trees that we consider are rooted,
directed, ordered, binary, and full (each node has either zero or two children). We write n ∈ T
to mean n ∈ V . We say that two trees T1 and T2 are isomorphic if there is a bijection between
their node sets preserving children and labels (we simply write it T1 = T2); they have same
skeleton if they are isomorphic except for labels.

A bottom-up nondeterministic tree automaton on Γ-trees, or Γ-bNTA, is a tuple A = (Q,F, ι, δ)
of a set Q of states, a subset F ⊆ Q of accepting states, an initial relation ι : Γ → 2Q giving
possible states for leaves from their label, and a transition relation δ : Q2 × Γ→ 2Q determin-
ing possible states for internal nodes from their label and the states of their children. A run
of A on a Γ-tree T = (V,L,R, λ) is a function ρ : V → Q such that for each leaf n we have
ρ(n) ∈ ι(λ(n)), and for every internal node n we have ρ(n) ∈ δ(ρ(L(n)), ρ(R(n)), λ(n)). A run
is accepting if, for the root nr of T , ρ(nr) ∈ F ; and A accepts T (written T |= A) if there is
some accepting run of A on T . Tree automata capture usual query languages on trees, such as
MSO [35] and tree-pattern queries [27].

A Boolean circuit is a directed acyclic graph C = (G,W, g0, µ) where G is a set of gates,
W ⊆ G × G is a set of wires (edges), g0 ∈ G is a distinguished output gate, and µ associates
each gate g ∈ G with a type µ(g) that can be inp (input gate, with no incoming wire in W ), ¬
(NOT-gate, with exactly one incoming wire in W ), ∧ (AND-gate) or ∨ (OR-gate). A valuation
of the input gates Cinp of C is a function ν : Cinp → {0, 1}; it defines inductively a unique
evaluation ν ′ : C → {0, 1} as follows: ν ′(g) is ν(g) if g ∈ Cinp (i.e., µ(g) = inp); it is ¬ν ′(g′)
if µ(g) = ¬ (with (g′, g) ∈ W ); otherwise it is

⊙

(g′,g)∈W ν ′(g′) where ⊙ is µ(g) (hence, ∧ or
∨). Note that this implies that AND- and OR-gates with no inputs always evaluate to 1 and 0
respectively. We will abuse notation and use valuations and evaluations interchangeably, and
we write ν(C) to mean ν(g0). The function captured by C is the one that maps any valuation
ν of Cinp to ν(C).

3. Provenance Circuits for Tree Automata

We start by studying a notion of provenance on trees, defined in an uncertain tree framework.
Fixing a finite alphabet Γ throughout this section, we view a Γ-tree T as an uncertain tree,
where each node carries an unknown Boolean annotation in {0, 1}, and consider all possible
valuations that choose an annotation for each node of T , calling Γ the alphabet of annotated
trees:

Definition 3.1. We write Γ ··= Γ × {0, 1}. For any Γ-tree T = (V,L,R, λ) and valuation
ν : V → {0, 1}, ν(T ) is the Γ-tree with same skeleton where each node n is given the label
(λ(n), ν(n)).

We consider automata on annotated trees, namely, Γ-bNTAs, and define their provenance
on a Γ-tree T as a Boolean function that describes which valuations of T are accepted by the
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automaton. Intuitively, provenance keeps track of the dependence between Boolean annotations
and acceptance or rejection of the tree.

Definition 3.2. The provenance of a Γ-bNTA A on a Γ-tree T = (V,L,R, λ) is the function
Prov(A,T ) mapping any valuation ν : V → {0, 1} to 1 or 0 depending on whether ν(T ) |= A.

We now define a provenance circuit of A on a Γ-tree T as a circuit that captures the prove-
nance of A on T , Prov(A,T ). Formally:

Definition 3.3. Let A be a Γ-bNTA and T = (V,L,R, λ) be a Γ-tree. A provenance circuit of
A on T is a Boolean circuit C with Cinp = V that captures the function Prov(A,T ).

An important result is that provenance circuits can be tractably constructed:

Proposition 3.1. A provenance circuit of a Γ-bNTA A on a Γ-tree T can be constructed in
time O(|A| · |T |).

The proof is by creating one gate in C per state of A per node of T , and writing out in C
all possible transitions of A at each node n of T , depending on the input gate that indicates
the annotation of n. In fact, we can show that C is treelike for fixed A; we use this in
Section 6 to show the tractability of tree automaton evaluation on probabilistic XML trees
from PrXMLmux,ind [23].

It is not hard to see that this construction gives us a way to capture the provenance of any
query on trees that can be expressed as an automaton, no matter the choice of automaton.
A query q is any logical sentence on Γ-trees which a Γ-tree T can satisfy (written T |= q) or
violate (T 6|= q). An automaton Aq tests query q if for any Γ-tree T , we have T |= Aq iff
T |= q. We define Prov(q, T ) for a Γ-tree T as in Definition 3.2, and run circuits for queries as
in Definition 3.3. It is immediate that Proposition 3.1 implies:

Proposition 3.2. For any fixed query q on Γ-trees for which we can compute an automaton
Aq that tests it, a provenance circuit of q on a Γ-tree T can be constructed in time O(|T |).

Note that provenance does not depend on the automaton used to test the query.

4. Provenance on Tree Encodings

We lift the previous results to the setting of relational instances.
A signature σ is a finite set of relation names (e.g., R) with associated arity arity(R) > 1.

Fixing a countable domain D = {ak | k > 0}, a relational instance I over σ (or σ-instance) is a
finite set I of ground facts of the form R(a) with R ∈ σ, where a is a tuple of arity(R) elements
of D. The active domain dom(I) ⊆ D of I is the finite set of elements of D used in I. Two
instances I and I ′ are isomorphic if there is a bijection ϕ from dom(I) to dom(I ′) such that
ϕ(I) = I ′. We say that an instance I ′ is a subinstance1 of I, written I ′ ⊆ I, if it is a subset of
the facts of I, which implies dom(I ′) ⊆ dom(I).

A query q is a logical formula in (function-free) first- or second-order logic on σ, without free
second-order variables; a σ-instance I can satisfy it (I |= q) or violate it (I 6|= q). For simplicity,
unless stated otherwise, we restrict to Boolean queries, that is, queries with no free variables,
that are constant-free. This limitation is inessential for data complexity, namely complexity for
a fixed query: we can handle non-Boolean queries by building a provenance circuit for each
possible output result (there are polynomially many), and we encode constants by extending
the signature with fresh unary predicates for them.

1Subinstances are not necessarily “induced” by a subset of the domain, they can be arbitrary subsets of facts.
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As before, we consider unknown Boolean annotations on the facts of an instance. However,
rather than annotating the facts, it is more natural to say that a fact annotated by 1 is kept,
and a fact annotated by 0 is deleted. Formally, given an instance σ, a valuation ν is a function
from the facts of I to {0, 1}, and we define ν(I) as the subinstance {F ∈ I | ν(F ) = 1} of I.
We then define:

Definition 4.1. The provenance of a query q on a σ-instance I is the function Prov(q, I)
mapping any valuation ν : I → {0, 1} to 1 or 0 depending on whether ν(I) |= q. A provenance
circuit of q on I is a Boolean circuit C with Cinp = I that captures Prov(q, I).

We study provenance for treelike instances (i.e., bounded-treewidth instances), encoding
queries to automata on tree encodings. Let us first define this. The treewidth w(I) of an
instance I is a standard measure [31] of how close I is to a tree: the treewidth of a tree is 1,
that of a cycle is 2, and that of a k-clique or k-grid is k − 1; further, we have w(I ′) 6 w(I) for
any I ′ ⊆ I. It is known [11,14] that for any fixed k ∈ N, there is a finite alphabet Γk

σ such that
any σ-instance I of treewidth 6 k can be encoded in linear time [6] to a Γk

σ-tree TI , called the
tree encoding, which can be decoded back to I up to isomorphism (i.e., up to the identity of
constants). Each fact in I is encoded in a node for this fact in the tree encoding, where the
node label describes the fact.

The point of tree encodings is that queries in monadic second-order logic, the extension of
first-order logic with second-order quantification on sets, can be encoded to automata which
are then evaluated on tree encodings. Formally:

Definition 4.2. For k ∈ N, we say that a Γk
σ-bNTA Ak

q tests a query q for treewidth k if, for

any Γk
σ-tree T , we have T |= Ak

q iff T decodes to an instance I such that I |= q.

Theorem 4.1 [11]. For any k ∈ N, for any MSO query q, one can compute a Γk
σ-bNTA Ak

q

that tests q for treewidth 6 k.

Our results apply to any query language that can be rewritten to tree automata under a bound
on instance treewidth. Beyond MSO, this is also the case of guarded second-order logic (GSO).
GSO extends first-order logic with second-order quantification on arbitrary-arity relations, with
a semantic restriction to guarded tuples (already co-occurring in some instance fact); it captures
MSO (it has the same expressive power on treelike instances [19]) and many common database
query languages, e.g., guarded Datalog [18] or frontier-guarded Datalog [4]. We use GSO in
the sequel as our choice of query language that can be rewritten to automata. Combining the
result above with the results of the previous section, we claim that provenance for GSO queries
on treelike instances can be tractably computed, and that the resulting provenance circuit has
treewidth independent of the instance.

Theorem 4.2. For any fixed k ∈ N and GSO query q, for any σ-instance I such that w(I) 6 k,
one can construct a provenance circuit C of q on I in time O(|I|). The treewidth of C only
depends on k and q (not on I).

The proof is by encoding the instance I to its tree encoding TI in linear time, and compiling
the query q to an automaton Aq that tests it, in constant time in the instance. Now, Section 3

worked with Γk
σ-bNTAs rather than Γk

σ-bNTAs, but the difference is inessential: we can easily

map any Γk
σ-tree T to a Γk

σ-tree ǫ(T ) where any node label (τ, 1) is replaced by τ , and any label
(τ, 0) is replaced by a dummy label indicating the absence of a fact; and we straightforwardly

translate A to a Γk
σ-bNTA A′ such that T |= A′ iff ǫ(T ) |= A for any Γk

σ-tree T . The key point
is then that, for any valuation ν : T → {0, 1}, ǫ(ν(T )) is a tree encoding of ν(I) (defined in the
expected way), so we conclude by applying Proposition 3.1 to A′ and T . As in Section 3, our
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definition of provenance is intrinsic to the query and does not depend on its formulation, on
the choice of tree decomposition, or on the choice of automaton to evaluate the query on tree
encodings.

Note that tractability holds only in data complexity. For combined complexity, we incur the
cost of compiling the query to an automaton, which is nonelementary in general [26]. However,
for some restricted query classes, such as unions of conjunctive queries (UCQs), the compilation
phase has lower cost.

5. General Semirings

In this section we connect our previous results to the existing definitions of semiring provenance
on arbitrary relational instances [20]:

Definition 5.1. A commutative semiring (K,⊕,⊗, 0K , 1K) is a set K with binary operations
⊕ and ⊗ and distinguished elements 0K and 1K , such that (K,⊕) and (K,⊗) are commutative
monoids with identity element 0K and 1K , ⊗ distributes over ⊕, and 0K ⊗ a = 0K for all
a ∈ K.

Provenance for semiring K is defined on instances where each fact is annotated with an
element of K. The provenance of a query on such an instance is an element of K obtained by
combining fact annotations following the semantics of the query, intuitively describing how the
query output depends on the annotations (see exact definitions in [20]). This general setting
has many specific applications:

Example 5.1. For any variable set X, the monotone Boolean functions over X form a semiring
(PosBool[X],∨,∧, 0, 1). We write them as propositional formulae, but two equivalent formulae
(e.g., x∨x and x) denote the same PosBool[X] object. On instances where each fact is annotated
by its own variable in X, the PosBool[X]-provenance of a query q is a monotone Boolean
function on X describing which subinstances satisfy q. As we will see, this is what we defined
in Section 4, using circuits as compact representations.

The natural numbers N with the usual + and × form a semiring. On instances where facts are
annotated with an element of N representing a multiplicity, the provenance of a query describes
its number of matches under the bag semantics.

The security semiring [15] S is defined on the ordered set 1S < C < S < T < 0S (respectively:
always available, confidential, secret, top secret, never available) as ({1, C, S, T, 0},min,max, 0, 1).
The provenance of a query for S denotes the minimal level of security clearance required to see
that it holds. The fuzzy semiring [2] is ([0, 1],max,min, 0, 1). The provenance of a query for
this semiring is the minimal fuzziness value that has to be tolerated for facts so that the query
is satisfied.

The tropical semiring [13] is (N ⊔ {∞},min,+,∞, 0). Fact annotations are costs, and the
tropical provenance of a query is the minimal cost of the facts required to satisfy it, with multiple
uses of a fact being charged multiple times.

For any set of variables X, the polynomial semiring N[X] is the semiring of polynomials with
variables in X and coefficients in N, with the usual sum and product over polynomials, and with
0, 1 ∈ N.

Semiring provenance does not support negation well [2, 16] and is therefore only defined for
monotone queries: a query q is monotone if, for any instances I ⊆ I ′, if I |= q then I ′ |= q.
Provenance circuits for semiring provenance are monotone circuits [13]: they do not feature
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NOT-gates. We can show that, adapting the constructions of Section 3 to work with a notion
of monotone bNTAs, Theorem 4.2 applied to monotone queries yields a monotone provenance
circuit:

Theorem 5.1. For any fixed k ∈ N and monotone GSO query q, for any σ-instance I such
that w(I) 6 k, one can construct in time O(|I|) a monotone provenance circuit of q on I whose
treewidth only depends on k and q (not on I).

Hence, for monotone GSO queries for which [20] defines a notion of semiring provenance
(e.g., those that can be encoded to Datalog, a recursive query language that subsumes UCQs),
our provenance Prov(q, I) is easily seen to match the provenance of [20], specialized to the
semiring PosBool[X] of monotone Boolean functions. Indeed, both provenances obey the same
intrinsic definition: they are the function that maps to 1 exactly the valuations corresponding
to subinstances accepted by the query. Hence, we can understand Theorem 5.1 as a tractability
result for PosBool[X]-provenance (represented as a circuit) on treelike instances.

Of course, the definitions of [20] go beyond PosBool[X] and extend to arbitrary commutative
semirings. We now turn to this more general question.

N[X]-provenance for UCQs. First, we note that, as shown by [20], the provenance of Datalog
queries for any semiring K can be computed in the semiring N[X], on instances where each
fact is annotated by its own variable in X. Indeed, the provenance can then be specialized
to K, and the actual fact annotations in K, once known, can be used to replace the variables
in the result, thanks to a commutation with homomorphisms property. Hence, we restrict to
N[X]-provenance and to instances of this form, which covers all the examples above.

Second, in our setting of treelike instances, we evaluate queries using tree automata, which are
compiled from logical formulae with no prescribed execution plan. For the semiring N[X], this
is hard to connect to the general definitions of provenance in [20], which are mainly designed for
positive relational algebra operators or Datalog queries. Hence, to generalize our constructions
to N[X]-provenance, we now restrict our query language to UCQs, assuming without loss of
generality that they contain no equality atoms, We comment at the end of this section on the
difficulties arising for richer query languages.

We formally define the N[X]-provenance of UCQs on relational instances by encoding them
straightforwardly to Datalog and using the Datalog provenance definition of [20]. The resulting
provenance can be rephrased as follows:

Definition 5.2. The N[X]-provenance of a UCQ q =
∨n

i=1 ∃xi qi(xi) (where qi is a conjunction
of atoms with free variables xi) on an instance I is defined as:

ProvN[X](q, I) ··=
⊕n

i=1

⊕

f :xi→dom(I) such that I|=qi(f(xi))

⊗

A(xi)∈qi
A(f(xi)).

In other words, we sum over each disjunct, and over each match of the disjunct; for each match,
we take the product, over the atoms of the disjunct, of their image fact in I, identifying each
fact to the one variable in X that annotates it.

We know that ProvN[X](q, I) enjoys all the usual properties of provenance: it can be special-
ized to PosBool[X], yielding back the previous definition; it can be evaluated in the N semiring
to count the number of matches of a query; etc.

Example 5.2. Consider the instance I = {F1 ··= R(a, a), F2 ··= R(b, c), F3 ··= R(c, b)} and the
CQ q : ∃xy R(x, y)R(y, x). We have ProvN[X](q, I) = F 2

1 +2F2F3 and Prov(q, I) = F1∨(F2∧F3).
Unlike PosBool[X]-provenance, N[X]-provenance can describe that multiple atoms of the query
map to the same fact, and that the same subinstance is obtained with two different query matches.
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Evaluating in the semiring N with facts annotated by 1, q has 12 + 2× 1× 1 = 3 matches.

Provenance circuits for trees. Guided by this definition of N[X]-provenance, we generalize the
construction of Section 3 of provenance on trees to a more expressive provenance construction,
before we extend it to treelike instances as in Section 4.

Instead of considering Γ-trees, we consider Γ
p
-trees for p ∈ N, whose label set is Γ×{0, . . . , p}

rather than Γ × {0, 1}. Intuitively, rather than uncertainty about whether facts are present
or missing, we represent uncertainty about the number of available copies of facts, as UCQ
matches may include the same fact multiple times. We impose on Γ the partial order < defined
by (τ, i) < (τ, j) for all τ ∈ Γ and i < j in {0, . . . , p}, and call a Γ

p
-bNTA A = (Q,F, ι, δ)

monotone if for every τ < τ ′ in Γ
p
, we have ι(τ) ⊆ ι(τ ′) and δ(q1, q2, τ) ⊆ δ(q1, q2, τ

′) for every
q1, q2 ∈ Q. We write Valp(T ) for the set of all p-valuations ν : V → {0, . . . , p} of a Γ-tree T .
We write |aruns(A,T )| for a Γ

p
-tree T and Γ

p
-bNTA A to denote the number of accepting runs

of A on T . We can now define:

Definition 5.3. The N[X]-provenance of a Γ
p
-bNTA A on a Γ-tree T is

ProvN[X](A,T ) ··=
⊕

ν∈Valp(T ) |aruns(A, ν(T ))|
⊗

n∈T n
ν(n)

where each node n ∈ T is identified with its own variable in X. Intuitively, we sum over all
valuations ν of T to {0, . . . , p}, and take the product of the tree nodes to the power of their
valuation in ν, with the number of accepting runs of A on ν(T ) as coefficient; in particular, the
term for ν is 0 if A rejects ν(T ).

This definition specializes in PosBool[X] to our earlier definition of Prov(A,T ), but extends
it with the two features of N[X]: multiple copies of the same nodes (represented as nν(n)) and
multiple derivations (represented as |aruns(A, ν(T ))|). To construct this general provenance,
we need arithmetic circuits:

Definition 5.4. A K-circuit for semiring (K,⊕,⊗, 0K , 1K) is a circuit with ⊕- and ⊗-gates
instead of OR- and AND-gates (and no analogue of NOT-gates), whose input gates stand for
elements of K. As before, the constants 0K and 1K can be written as ⊕- and ⊗-gates with no
inputs. The element of K captured by a K-circuit is the element captured by its distinguished
gate, under the recursive definition that ⊕- and ⊗-gates capture the sum and product of the
elements captured by their operands, and input gates capture their own value.

We now show an efficient construction for such provenance circuits, generalizing the monotone
analogue of Proposition 3.1. The proof technique is to replace AND- and OR-gates by ⊗- and
⊕-gates, and to consider possible annotations in {0, . . . , p} instead of {0, 1}. The correctness is
proved by induction via a general identity relating the provenance on a tree to that of its left
and right subtrees.

Theorem 5.2. For any fixed p ∈ N, for a Γ
p
-bNTA A and a Γ-tree T , a N[X]-circuit capturing

ProvN[X](A,T ) can be constructed in time O(|A| · |T |).

Provenance circuit for instances. Moving back to provenance for UCQs on bounded-treewidth
instances, we obtain a linear-time provenance construction:

Theorem 5.3. For any fixed k ∈ N and UCQ q, for any σ-instance I such that w(I) 6 k, one
can construct a N[X]-circuit that captures ProvN[X](q, I) in time O(|I|).

The proof technique is to construct for each disjunct q′ of q a Γ
p
-bNTA Aq′ , where Γ ··= Γk

σ

is the alphabet for tree encodings of width k, and p is the maximum number of atoms in a
disjunct of q. We want Aq′ to test q′ on tree encodings over Γ, while preserving multiplicities:
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this is done by enumerating all possible self-homomorphisms of q′, changing σ to make the
multiplicity of atoms part of the relation name, encoding the resulting queries to automata as
usual [11] and going back to the original σ. We then apply a variant of Theorem 5.2 to construct
a N[X]-circuit capturing the provenance of Aq′ on a tree encoding of I but for valuations that
sum to the number of atoms of q′; this restricts to bag-subinstances corresponding exactly to
matches of q′. We obtain a N[X]-circuit that captures ProvN[X](q, I) by combining the circuits
for each disjunct, the distinguished gate of the overall circuit being a ⊕-gate of that of each
circuit.

Remember that an N[X]-circuit can then be specialized to a circuit for an arbitrary semiring
(in particular, if the semiring has no variable, the circuit can be used for evaluation); thus, this
provides provenance for q on I for any semiring.

Going beyond UCQs. To compute N[X]-provenance beyond UCQs (e.g., for monotone GSO
queries or their intersection with Datalog), the main issue is fact multiplicity: multiple uses of
facts are easy to describe for UCQs (Definition 5.2), but for more expressive languages we do
not know how to define them and connect them to automata.

In fact, we can build a query P , in guarded Datalog [18], such that the smallest number
of occurrences of a fact in a derivation tree for P cannot be bounded independently from the
instance. We thus cannot rewrite P to a fixed finite bNTA testing multiplicities on all input
instances. However, as guarded Datalog is monotone and GSO-expressible, we can compute
the PosBool[X]-provenance of P with Theorem 4.2, hinting at a difference between PosBool[X]
and N[X]-provenance computation for queries beyond UCQs.

6. Applications

In Section 5 we have shown a N[X]-provenance circuit construction for UCQs on treelike in-
stances. This construction can be specialized to any provenance semiring, yielding various
applications: counting query results by evaluating in N, computing the cost of a query in the
tropical semiring, etc. By contrast, Section 4 presented a provenance construction for arbitrary
GSO queries, but only for a Boolean representation of provenance, which does not capture
multiplicities of facts or derivations. The results of both sections are thus incomparable. In
this section we show applications of our constructions to two important problems: probability
evaluation, determining the probability that a query holds on an uncertain instance, and count-
ing, counting the number of answers to a given query. These results are consequences of the
construction of Section 4.

Probabilistic XML. We start with the problem of probabilistic query evaluation, beginning
with the setting of trees. We use the framework of probabilistic XML, denoted PrXMLfie, to
represent probabilistic trees as trees annotated by propositional formulas over independent
probabilistic events (see [23] for the formal definitions), and consider the data complexity of
the query evaluation problem for a MSO query q on such trees (i.e., computing the probability
that q holds).

This problem is intractable in general, which is not surprising: it is harder than determining
the probability of a single propositional annotation. However, for the less expressive local
PrXML model, PrXMLmux,ind, query evaluation has tractable data complexity [10]; this model
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restricts edges to be annotated by only one event literal that is only used on that edge (plus a
form of mutual exclusivity).

We can use the provenance circuits of Section 4 to justify that query evaluation is tractable
for PrXMLmux,ind and capture the data complexity tractability result of [10]. We say that an
algorithm runs in ra-linear time if it runs in linear time assuming that arithmetic operations
over rational numbers take constant time and rationals are stored in constant space, and runs
in polynomial time without this assumption. We can show:

Theorem 6.1 [10]. MSO query evaluation on PrXMLmux,ind has ra-linear data complexity.

We can also show extensions of this result. For instance, on PrXMLfie, defining the scope of
event e in a document D as the smallest subtree in the left-child-right-sibling encoding of D
covering nodes whose parent edge mentions e, and the scope size of a node n as the number of
events with n in their scope, we show:

Proposition 6.1. For any fixed k ∈ N, MSO query evaluation on PrXMLfie documents with
scopes assumed to have size 6 k has ra-linear data complexity.

BID instances. We move from trees to relational instances, and show another bounded-width
tractability result for block-independent disjoint (BID) instances (see [34], or [5, 30] for formal
definitions). We define the treewidth of a BID instance as that of its underlying relational
instance, and claim the following (remember that query evaluation on a probabilistic instance
means determining the probability that the query holds):

Theorem 6.2. For any fixed k ∈ N, MSO query evaluation on an input BID instance of
treewidth 6 k has ra-linear data complexity.

This implies the same claim for tuple-independent databases [12, 24].
All probabilistic results are proven by rewriting to a formalism of relational instances with

a circuit annotation, such that instance and circuit have a bounded-width joint decomposition.
We compute a treelike provenance circuit for the instance using Theorem 4.2, combine it with
the annotation circuit, and apply existing message passing techniques [25] to compute the
probability of the circuit.

Counting. We turn to the problem of counting query results, and reduce it in ra-linear time
to query evaluation on treelike instances, capturing a result of [3]:

Theorem 6.3 [3]. For any fixed MSO query q(x) with free first-order variables and k ∈ N, the
number of matching assignments to x on an input instance I of width 6 k can be computed in
ra-linear data complexity.

7. Related Work

Bounded treewidth. From the original results [11, 14] on the linear-time data complexity of
MSO evaluation on treelike structures, works such as [3] have investigated counting problems,
including applications to probability computation (on graphs). A recent paper [7] also shows
the linear-time data complexity of evaluating an MSO query on a treelike probabilistic network
(analogous to a circuit). Such works, however, do not decouple the computation of a treelike
provenance of the query and the application of probabilistic inference on this provenance, as we
do. We also note results from another approach [29] on treelike structures, based on monadic
Datalog (and not on MSO as the other works), that are limited to counting.
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Probabilistic databases. The intensional approach [34] to query evaluation on probabilistic
databases is to compute a lineage of the query and evaluate its probability via general purpose
methods; tree-like lineages allow for tractable probabilistic query evaluation [22]. Many works
in this field provide sufficient conditions for lineage tractability, only a few based on the data [32,
33] but most based on the query [12, 22]. For treelike instances, as we show, we can always
compute treelike lineages, and we can do so for expressive queries (beyond UCQs considered in
these works), or alternatively generalize Boolean lineages to connect them to more expressive
semirings.

Provenance. Our provenance study is inspired by the usual definitions of semiring provenance
for the relational algebra and Datalog [20]. Another notion of provenance, for XQuery queries
on trees, has been introduced in [15]. Both [20] and [15] provide operational definitions of
provenance, which cannot be directly connected to tree automata. A different relevant work on
provenance is [13], which introduces provenance circuits, but uses them for Datalog and only
on absorptive semirings. Last, other works study provenance for transducers [8], but with no
clear connections to semiring provenance or provenance for Boolean queries.

8. Conclusion

We have shown that two provenance constructions can be computed in linear time on trees
and treelike instances: one for UCQs on arbitrary semirings, the other for arbitrary GSO
queries as non-monotone Boolean expressions. A drawback of our results is their high combined
complexity, as they rely on non-elementary encoding of the query to an automaton. One
approach to fix this is monadic Datalog [17,29]; this requires defining and computing provenance
in this setting.

Acknowledgements. This work was partly supported by a financial contribution from the
Fondation Campus Paris-Saclay and the French ANR Aggreg project.
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A. Proofs for Section 3 (Provenance Circuits for Tree Automata)

Proposition 3.1. A provenance circuit of a Γ-bNTA A on a Γ-tree T can be constructed in
time O(|A| · |T |).

Throughout the appendix, we will call 0-gates (resp. 1-gates) OR-gates (resp. AND-gates)
with no inputs; they always evaluate to 0 (resp. to 1).

We first prove this result in the specific case of a monotone Γ-bNTA A (see Definition C.4),
showing the same result but for provenance circuits which are taken to be monotone Boolean
circuits (i.e., they do not feature NOT-gates).

Proposition A.1. A monotone provenance circuit C of a monotone Γ-bNTA A on a Γ-tree T
can be constructed in time O(|A| · |T |).

Proof. Fix T = (V,L,R, λ), A = (Q,F, ι, δ), and construct the provenance circuit C =
(G,W, g0, µ). For each node n of T , create one input gate gin in C (which we identify to n,
so that we have Cinp = V ), and create one gate gqn for every q ∈ Q. If n is a leaf node, for
q ∈ Q, set gqn to be:
• if q ∈ ι(λ(n), 0), a 1-gate;
• if q ∈ ι(λ(n), 1) but q /∈ ι(λ(n), 0), an OR-gate with sole input gin;
• if q /∈ ι(λ(n), 1), a 0-gate.

If n is an internal node, create gates gqL,qRn and gqL,qR,i
n for every pair qL, qR ∈ Q (that

appears as input states of a transition of δ), the first one being an AND-gate of gqL
L(n) and

gqR
R(n), the second one being an AND-gate of gqL,qRn and of gin. Now, for q ∈ Q, set gqn to be

an OR-gate of all the gqL,qRn such that q ∈ δ(qL, qR, (λ(n), 0)) and of all the gqL,qR,i
n such that

q ∈ δ(qL, qR, (λ(n), 1)).
Add gate g0 to be an OR-gate of all the gqr such that q ∈ F , where r is the root of T .

This construction is in time O(|A| · |T |): more precisely, for every node of the tree T , we
create a number of states that is linear in the number of states in Q and in the number of
transitions of δ.

Now we show that C is indeed a provenance circuit of A on T . Let ν : V → {0, 1} be a
valuation that we extend to an evaluation of C. We show by induction on n ∈ T that for any
q ∈ Q, we have ν(gqn) = 1 iff, letting Tn be the subtree of T rooted at n, there is a run ρ of A
on Tn such that ρ(n) = q.

For a leaf node n, choosing q ∈ Q, if ν(n) = 0 then ν(gqn) = 1 iff q ∈ ι(λ(n), 0), and if
ν(n) = 1 then ν(gqn) = 1 iff q ∈ ι(λ(n), 1), so in both cases we can define a run ρ as ρ(n) ··= q.
Conversely, the existence of a run clearly ensures that ν(gqn) = 1.

For an internal node n, choosing q ∈ Q, if ν(n) = 0 then ν(gqn) = 1 iff there are some
qL, qR ∈ Q such that q ∈ δ(qL, qR, (λ(n), 0)), ν(g

qL
L(n)) = 1, and ν(gqR

R(n)) = 1. By induction

hypothesis this implies the existence of a run ρL of A on TL(n) such that ρL(L(n)) = qL and
a run ρR of A on TR(n) such that ρR(R(n)) = qR, from which we construct a run ρ of A on
Tn such that ρ(n) = q, by setting ρ(n) ··= q and setting ρ(n′) either to ρL(n

′) or to ρR(n
′)

depending on whether n′ ∈ TL(n) or n′ ∈ TR(n). Conversely, the existence of such a run ρ
implies the existence of two such runs ρL and ρR, from which we deduce that ν(gqn) = 1.

If ν(n) = 1 then ν(gqn) = 1 iff there are some qL, qR ∈ Q such that ν(gqL
L(n)) = 1, ν(gqR

R(n)) = 1,

and either q ∈ δ(qL, qR, (λ(n), 0)) or q ∈ δ(qL, qR, (λ(n), 1)). By monotonicity of A, this is
equivalent to q ∈ δ(qL, qR, (λ(n), 1)). The rest is analogous to the previous case.
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The claim proven by induction clearly justifies that C is a provenance circuit, as, applying it
to the root of T , we deduce that, for any valuation ν, we have ν(C) = 1 iff there is an accepting
run of A on ν(T ).

We now generalize this result to automata and provenance circuits which are not necessarily
monotone.

Proof. We adapt the construction of Proposition A.1. The only difference is that we add, for
every node n ∈ T , a gate g¬in which is a NOT-gate of gi, and we modify the definition of the
following nodes:

• for leaf nodes n, for any state q, we set gqn to be an OR-gate of gi if q ∈ ι(λ(n), 1) (and a
0-gate otherwise), and g¬i if q ∈ ι(λ(n), 0) (and a 0-gate otherwise).

• for internal nodes n, for every pair qL, qR ∈ Q that appears as input states of a transition
of δ, create a gate gqL,qR,¬i

n which is an AND-gate of gqL,qRn and of g¬in . Now, for any state
q, we set gqn as before except that we use gqL,qRn instead of gqL,qR,¬i

n .

We show correctness as before, showing by induction on n ∈ T that for any q ∈ Q, ν(gqn) = 1
iff Aq accepts Tn, where Aq is obtained from A by letting q be the only final state. The property
is clearly true on leaf nodes, and at internal nodes, if ν(n) = 0 we have ν(gqn) = 1 iff there
exist qL, qR ∈ Q such that q ∈ δ(qL, qR, (λ(n), 0)), ν(g

qL
L(n)) = 1, which by induction hypothesis

implies the existence of sub-runs on TL(n) and TR(n) that we combine as before. If ν(n) = 0 we
have ν(gqn) = 1 iff there exist qL, qR ∈ Q such that q ∈ δ(qL, qR, (λ(n), 1)) (this time we cannot
have q ∈ δ(qL, qR, (λ(n), 0))) so we conclude in the same way. We conclude by justifying that
g0 is correctly defined, as before.

B. Proofs for Section 4 (Provenance on Tree Encodings)

B.1. Formal preliminaries

We start by giving the omitted formal definitions:

Definition B.1. A tree decomposition of an instance I is a T -tree T = (B,L,R,dom) where
T is the set of subsets of dom(I). The nodes of T are called bags and their label is written
dom(b). We require:

1. for every a ∈ dom(I), letting Ba ··= {b ∈ B | a ∈ dom(b)}, for every two bags b1, b2 ∈ Ba,
all bags on the (unique) undirected path from b1 to b2 are also in Ba;

2. for every fact R(a) of I, there exists a bag ba ∈ B such that a ⊆ dom(ba).

The width of T is w(T ) ··= k− 1 where k ··= maxb∈T |dom(b)|. The treewidth (or width) of an
instance I, written w(I), is the minimal width w(T ) of a tree decomposition T of I.

It is NP-hard, given an instance I, to determine w(I). However, given a fixed width k, one
can compute in linear time in I a tree decomposition of width 6 k of I if one exists [Bod96].

To represent bounded-treewidth instances as trees on a finite alphabet, we introduce the
notion of tree encodings. The representation is up to isomorphism, i.e., it loses the identity
of constants. Our finite alphabet Γk

σ is the set of possible facts on an instance of width fixed
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to k; following the definition of proof trees in [CV92] we use element co-occurrences between
one node and its parent in the tree as a way to encode element reuse. Formally, we take Γk

σ to
be the set defined as follows:

Definition B.2. The set of k-facts of the signature σ, written Γk
σ, is the set of pairs τ = (d, s)

where:
• the domain d is a subset of size at most k+1 of the first 2k+2 elements of the countable

domain D, a1, . . . , a2k+2;
• the structure s is a zero- or single-fact structure over σ such that dom(s) ⊆ d.

A tree encoding is just a Γk
σ-tree. We first explain how such a tree encoding E can be decoded

to a structure I = 〈E〉 (defined up to isomorphism) and a tree decomposition T of width k of
I. Process E top-down. At each (d, s)-labeled node of E that is child of a (d′, s′)-labeled node,
pick fresh elements in D for the elements of d\d′ (at the root, pick all fresh elements), add
the fact of s to I (replacing the elements in d by the fresh elements, and by the old elements
of dom(I) for d ∩ d′), and add a bag to T with the elements of I matching those in d. If we
ever attempt to create a fact that already exists, we abort and set 〈E〉 ··= ⊥ (we say that E is
invalid).

We can now define tree encodings in terms of decoding:

Definition B.3. We call a Γk
σ-tree T a tree encoding of width k of a σ-structure I if 〈T 〉 is

isomorphic to I.

We note that clearly if a structure I has a tree encoding of width k, then w(I) 6 k. Further,
observe that there is a clear injective function from 〈T 〉 to T , which maps each fact of 〈T 〉 to
the node of T which encoded this fact. This function is not total, because some nodes in T
contain no fact (their s is a zero-fact structure).

We now justify that one can efficiently compute a tree encoding of width k of I from a tree
decomposition of width k of I (this result is implicit in [CV92]).

Lemma B.1. From a tree decomposition T of width k of a σ-structure I, one can compute
in linear time a tree encoding E of width k of I with a bijection from the facts of I to the
non-empty nodes of E.

Proof. The intuition is that we assign each fact R(a) of I to a bag b ∈ T such that a ⊆ dom(b),
which can be done in linear time [FFG02]. We then encode each node of T as a chain of nodes
in E, one for each fact assigned to T .

Fix the σ-structure I and its tree decomposition T of width k. Informally, we build E by
walking through the decomposition T and copying it by enumerating the new facts in the
domain of each bag of T as a chain of nodes in E, picking the labels in Γk

σ so that the elements
shared between a bag and its parent in T are retained, and the new elements are chosen so as
not to overlap with the parent node. Overlaps between one node and a non-parent or non-child
node are irrelevant.

Formally, we proceed as follows. We start by precomputing a mapping that indicates, for
every tuple a of I such that some fact R(a) holds in I, the topmost bag node(a) of T such that
a ⊆ dom(node(a)). This can be performed in linear time by Lemma 3.1 of [FFG02]. Then, we
label the tree decomposition T with the facts of I as follows: for each fact F = R(a) of I, we
add F to the label of node(a).

Now, to encode a bag b of T , consider bp the parent of b in T and partition dom(b) = do ⊔ dn
where do are the old elements already present in dom(bp), and dn are the new elements that did
not appear in dom(bp). (If b is the root, then do = ∅ and dn = dom(b).) Under a specific node
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(dp, np) in E, with a bijection fp from dom(bp) to dp, choose a domain d of size |dom(b)| over
the fixed a1, . . . , a2k+2 whose intersection with fp(dom(bp)) is exactly fp(do) (this is possible,
as there are 2k + 2 elements to choose from and |dom(bp)| 6 k + 1) and extend the bijection
fp to f so that it maps dom(b) to d. At the root, choose an arbitrary bijection. Now, encode b
as a chain of nodes in E labeled with (d, si) where each si encodes one of the facts in the label
of b (thus defining the bijection from I to the non-empty nodes of E). If there are zero such
facts, create a (d, ∅) zero-fact node instead, rather than creating no node. Recursively encode
the children of b (if any) in T , under this chain of nodes in E. Add zero-fact (∅, ∅) child nodes
so that each non-leaf node has exactly two children. We assume that all arbitrary choices are
done in a consistent manner so that the process is deterministic.

Hence, when restricting to instances whose width is bounded by a constant k, one can
equivalently work with Γk

σ-trees which are encoding of these instances, instead of working with
the instances themselves.

We redefine properly the notion of an automaton testing a query:

Definition B.4. A Γk
σ-bNTA A tests a Boolean query q for treewidth k if for any Γk

σ-tree E,
E |= A iff 〈E〉 |= q. (In particular, if 〈E〉 = ⊥ then A rejects E.)

B.2. Proof of Theorem 4.1

We can now state and prove the theorem that says that MSO sentences can be tested by
automata for any treewidth. The main problem is to justify that MSO sentences can be
rewritten to MSO sentences on our tree encodings, as we can then use [TW68] to compile
them to a bNTA. We rely on [FFG02] for that result, but we must translate between our tree
encodings and theirs. We do so by a general technique of justifying that certain product trees
annotated with both encodings can be recognized by a bNTA. Let us state and prove the result:

Theorem 4.1 [Cou90]. For any k ∈ N, for any MSO query q, one can compute a Γk
σ-bNTA

Ak
q that tests q for treewidth 6 k.

Proof. In the context of this proof, we define a bDTA (bottom-up deterministic tree automaton)
as a bNTA but where ι and δ, rather than returning sets of reachable states, return a single
state. This implies that the automaton has a unique run on any tree.

Let us fix k ∈ N∗. We denote by [m] the set {1, . . . ,m} and by nσ the number of relations
in σ. Lemma 4.10 of [FFG02] shows that for a certain finite alphabet Γ(σ, k), for any MSO
formula ϕ over the signature σ, there exists an MSO formula ϕ∗ such that for any Γ(σ, k)-tree
t representing an instance I, t satisfies ϕ∗ iff I satisfies ϕ. More precisely, one can define a
partial 〈·〉′ function on Γ(σ, k)-trees such that for every instance I of treewidth 6 k there is a
Γ(σ, k)-tree t such that 〈T 〉′ is well-defined and isomorphic to I and for every Γ(σ, k)-tree T ,
we have T |= ϕ∗ iff 〈T 〉′ is well-defined and 〈T 〉′ |= ϕ.

We first describe the alphabet Γ(σ, k). A letter of Γ(σ, k) is of the form (γ1, γ2, . . . , γnσ+2).
The element γ1 belongs to 2[k]

2
and describes the equalities between the elements inside a bag;

the element γ2 belongs to 2[k]
2

and describes the equalities between the elements from this bag
and its parents; For i > 3, γi belongs to 2k

arity(Ri) and describes the tuples belonging to the
relation Ri. In the Γ(σ, k)-trees, the encoding of equalities between values of the bags and its
parents are described explicitly (by γ2) rather than implicitly (by element reuse between parent
and child, as in our encoding).
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We next describe for which Γ(σ, k) trees T is their encoding operation 〈T 〉′ well-defined, and
how it is then computed. We say that T is well-formed if 〈T 〉′ is well-defined. We accordingly
say that a Γk

σ-tree T is well-formed if 〈T 〉 is well-defined, namely, different from ⊥.
For a Γ(σ, k)-tree T , 〈T 〉′ is well-defined iff for each node n with γ ··= λ(n) and each child

n′ ∈ {L(n), R(n)} with γ′ ··= λ(n′):

• γ1 is closed by transitive closure, i.e., if (i, j) and (j, e) belong to γ1 then (i, e) belongs to
γ1

• γ2 is closed by transitive closure (to check this, we need to consider paths, rather than
the mere pair n and n′) γ2 is closed by transitive closure.

• for each (i, j) in γ1 and (j, e) in γ′2 then (i, e) belongs to γ′2 (and symmetrically, reversing
the roles of n and n′)

• for each pair (j1, . . . , jl) in γ′m and if for each b (ib, jb) in γ′2, then (i1, . . . , il) is in γm (and
vice-versa, reversing the roles of n and n′); a similar condition holds with γ1

Note that these conditions are clearly expressible in MSO. While [FFG02] does not precisely
describe the behavior of ϕ∗ on Γ(σ, k)-trees which are not well-formed, the above justifies our
assumption that ϕ∗ tests well-formedness and rejects the trees which are not well-formed.

We now define 〈T 〉′ as follows, if T is well-formed. Process E top-down. At each node n ∈ E
with γ ··= λ(n) with parent node n′ ∈ E with γ′ ··= λ(n′), pick fresh elements in D for the
positions j such that there is no pair (i, j) in γ′2 (at the root, pick all fresh elements) and if
(j1, j2) belongs to γ′1 then the same fresh element is assigned for the elements at both positions;
if there is such a pair, pick the existing elements used when decoding n′. These choices define
a mapping ν from the positions to the fresh elements and to existing elements. Now, for each
(j1, . . . , jm) in γi, then the fact Ri(ν(j1), . . . , ν(jm)) is added to I. If we ever attempt to create
a fact that already exists, we ignore it.

We have reviewed the alphabet Γ(σ, k) of [FFG02], the conditions for the well-definedness of
〈T 〉′ and the semantics of this operation. Now, following [TW68,FFG02], with an additional
step to determinize the resulting automaton to a bDTA, the formula ϕ∗ from [FFG02] can be
translated into a bDTA Atheirs on Γ(σ, k)-trees such that for any Γ(σ, k)-tree T , Atheirs accepts
T iff T |= ϕ∗, that is, iff 〈T 〉′ is well-defined and satisfies ϕ. Note that this implies that Atheirs

is encoding-invariant. We now explain how to translate Atheirs to our desired bDTA Aours over
Γk
σ such that for every Γk

σ-tree T , Aours accepts T iff 〈T 〉 |= ϕ.
We consider the alphabet Σ = Γk

σ × Γ(σ, k), and call π1 and π2 the operations on Σ-trees
that map them respectively to Γk

σ and Γ(σ, k) trees with same skeleton by keeping the first or
second component of the labels. Given a Γk

σ-tree T1 and a Γ(σ, k)-tree T2 with same skeleton,
we will write T1 × T2 the Σ-tree obtained from them.

We will do this by building a Σ-bDTA At with the following properties:

1. If At accepts T then 〈π1(T )〉 and 〈π2(T )〉
′ are well-defined and isomorphic.

2. For every Γk
σ-tree T1 such that 〈T1〉 is well-defined, there exists a Γ(σ, k)-tree T2 such that

At accepts T1 × T2.

Then, we can notice that from Atheirs, we can build an Σ-bDTA A′
theirs such that T is recognized

by A′
theirs iff π2(T ) is accepted by A′

theirs, and build Aours as the conjunction of At and A′
theirs,

projected to the first component (accept a Γk
σ-tree T1 iff there is some Γ(σ, k)-tree T2 such that

18



T1 × T2 is accepted, which is possible using non-determinism, and then determinizing). It is
now clear that Aours thus defined accepts a Γk

σ-tree T1 iff the Σ-tree T1 × T2 is accepted, for
some Γ(σ, k)-tree T2, by A′

theirs and At: if this happens then T2 is accepted by Atheirs and 〈T1〉
is isomorphic to 〈T2〉

′ so 〈T2〉 |= ϕ; and conversely, if 〈T1〉 models ϕ, there is some Γ(σ, k)-tree
T2 such that At accepts T1 × T2, and this implies that 〈T2〉

′ is isomorphic to 〈T1〉 so (as ϕ,
being a constant-free MSO query, is invariant under isomorphisms) 〈T2〉 satisfies ϕ∗ and A′

theirs

accepts T1 × T2. So it suffices to build the Σ-bDTA At with the desired properties.
We now define a simple encoding from Γk

σ to Γ(σ, k) describing what is the tree T2, given a
well-formed tree T1, such that At accepts T1 × T2. It will then suffice to see that it is possible,
with a MSO formula ψ, to check on a Σ-tree T whether π2(T ) is the encoding of π1(T ) in this
sense. Indeed, we can then compile ψ to a Γ-bDTA using [TW68].

Consider a node n1 ∈ T1 and let (d, s) ··= dom(n). We define the label of the corresponding
node n2 ∈ T2. We define γ1 so that the k+1−dom(d) last elements are all equal to the dom(d)-
th element (i.e., we complete dom(d) to always have k + 1 elements, by “repeating” the last
element, where “last” is according to an arbitrary order on domain elements). We define γ2 to
indicate which elements of n1 were shared with its parent node, completing it to be consistent
with respect to γ1. Last, we define γ3, . . . , γnσ+2 to be the tuples of elements in the various
relations of σ in 〈T1〉, with repetitions to be consistent according to γ1.

It is clear that this encoding maps every tree T1 such that 〈T1〉 is well-defined to a tree
T2 such that 〈T2〉 is well-defined and isomorphic to 〈T1〉. Now, to justify the existence of ψ,
observe that the only non-local condition to check on T is the definition of the γ3, . . . , γnσ+2;
but we can clearly define by an MSO formula, for a node n ∈ T with (d, s) ··= λ(n), the exact
set of facts stated by T for the elements represented by d (there are only a finite number of
such “types”): they are defined to check, for all facts of the putative type, whether a node with
the right fact is reachable following an undirected path where the same elements are kept along
the path. So we can define an MSO formula checking for each node n ∈ T whether the type of
π1(n) in π1(T ) in this sense matches the graph stated in π2(n).

B.3. Proof of Theorem 4.2

We first give the formal definition of the treewidth of a circuit, which we omitted. To do so, we
must first give a normal form for circuits:

Definition B.5. Let C = (G,W, g0, µ) be a Boolean circuit. The fan-in of a gate g ∈ G is
the number of gates g′ ∈ G, such that (g′, g) ∈W . Note that our definitions of circuits impose
that the fan-in of input gates is always 0 and the fan-in of NOT-gates is always 1. We say C
is arity-two if the fan-in of AND- and OR-gates is always 2, where we allow constant 0- and
1-gates as gate types of their own (but require that such gates have fan-in of 0).

Clearly this restriction is inessential as circuits can be rewritten in linear-time to an arity-two
circuit by merging AND- and OR-gates with fan-in of 1 with their one input, replacing those
with fan-in of 0 by a 0- or 1-gate, and rewriting those with fan-in > 2 to a chain of gates of the
same type with fan-in 2.

We now define tree decompositions of circuits, and their relational encoding:

Definition B.6. The relational signature σCircuit features one unary relation Ri which applies
to input gates, two unary relations R0 and R1 which apply to constant 0- and 1-gates, one binary
relation R¬(go, gi) which applies to NOT-gates (the first element is the output and the second
is the input), and two ternary relations R∧(go, gi, g

′
i) and R∨(go, gi, g

′
i) which apply respectively
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to AND- and OR-gates, with the first element being the input and the second and third being
the inputs. The relational encoding of an (arity-two non-monotone) Boolean circuit C is the
σCircuit-instance IC obtained in the expected way; we can clearly construct IC from C in linear
time. The treewidth w(C) of C is w(IC) (but we talk of tree decompositions of C as shorthand).

Now, to prove the theorem, we first take care of a technical issue. Given an instance I and
its tree encoding TI , we want to construct provenance circuits on TI , meaning that we wish to
consider Boolean-annotated versions of TI . However, the tree encodings of subinstances of I
are not annotated versions of TI . We need to justify that they can be taken to have the same
structure as TI , with some facts having been removed in nodes containing no fact.

Definition B.7. For any k-fact τ = (d, s) ∈ Γk
σ, we define the neutered k-fact τ as (d, ∅). In

particular, if s = ∅ then τ = τ . For τ ∈ Γk
σ and b ∈ {0, 1}, we write τ[b] to be τ if b is 1 and τ

if b is 0.
Given a Γk

σ-tree E, we define its evaluation ǫ(E) as the Γk
σ-tree that has same skeleton, where

for every node n ∈ E with corresponding node n′ in ǫ(E), letting λ(n) = (τ, b) ∈ Γk
σ × {0, 1},

we have λ(n′) = τ[b].

This definition allows us to lift Γk
σ-bNTAs, intuitively testing a query, to Γk

σ-bNTAs that
test the same query on Boolean-annotated tree encodings, seen via ǫ as the tree encoding of a
subinstance. Formally:

Lemma B.2. For any Γk
σ-bNTA A, one can compute in linear time a Γk

σ-bNTA A′ on such
that E |= A′ iff ǫ(E) |= A.

Proof. Let A = (Q,F, ι, δ). We construct the bNTA A′ = (Q,F, ι′, δ′) according to the following
definition: ι′((τ, b)) ··= ι(τ[b]) and δ′((τ, b), q1, q2) ··= δ(τ[b], q1, q2) for all b ∈ {0, 1}, τ ∈ Γk

σ, and
q1, q2 ∈ Q. The process is clearly in linear time in |A|. Now, it is immediate that E |= A′ iff
ǫ(E) |= A, because a run of A′ on E is a run of A on ǫ(E), and vice-versa.

We are now ready to state and prove the result:

Theorem 4.2. For any fixed k ∈ N and GSO query q, for any σ-instance I such that w(I) 6 k,
one can construct a provenance circuit C of q on I in time O(|I|). The treewidth of C only
depends on k and q (not on I).

Proof. Fix k ∈ N and the GSO query q. Using Theorem 4.1, let A be a Γk
σ-bNTA Ak

q that
tests q for treewidth k (remember that Theorem 4.1 extends from MSO to GSO because both

collapse on treelike instances [GHO02]). We lift A to a bNTA A′ on Γk
σ using Lemma B.2. This

is performed in constant time in the instance.
Now, given the input instance I such that w(I) 6 k, compute in linear time [Bod96] a

tree decomposition of I, and, from this, compute in linear time a tree encoding EI of I using
Lemma B.1. We now use Proposition 3.1 to construct a provenance circuit C of A′ on EI .
Consider now the injective function f that maps the facts of I to the nodes of EI where those
facts are encoded. We modify C to replace the input gate gin for any n ∈ EI not in the image of
f , setting it to be a 1-gate; and renaming the input gates gin for any n ∈ EI to be F , for F the
fact such that f(F ) = n. Let C ′ be the result of this process. C ′ is thus a Boolean circuit such
that C ′

inp = I, and it was computed in linear time from I. We claim that it captures Prov(q, I).

To check that it does, let ν : I → {0, 1} be a valuation of I. We show that ν(C ′) = 1 iff
ν(I) |= q. To do so, the key point is to observe that, letting ν ′ be the valuation of EI defined
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by ν ′(n) = ν(F ) if there is F ∈ I such that f(F ) = n, and ν ′(n) = 1 otherwise, we have
that ǫ(ν ′(EI)) is a tree encoding of ν(I). Indeed, ǫ(ν ′(EI)) and EI have same skeleton, the
elements that constitute the domains of node labels are the same, and a fact F ∈ I is encoded
in ǫ(ν ′(EI)) iff f(F ) is annotated by 1 in ν ′(EI) iff we have F ∈ ν(I). (Note that our choice
to extend ν ′ by setting it to be 1 on nodes that encode no facts makes no difference, as the
annotation of such nodes is projected to the same label by ǫ, i.e., for such labels τ in EI , we
have τ[0] = τ[1].)

Having observed this, we know that, because A tests q, ν(I) |= q iff ν ′(EI) |= A. Now, by
definition of Lemma B.2, we have ǫ(ν ′(EI)) |= A iff ν ′(EI) |= A′, which by definition of the
provenance circuit C is the case iff ν ′(C) = 1, which by definition of C ′ is the case iff ν(C ′) = 1.
Hence, C ′ is indeed a provenance circuit of q on I.

The only point left to justify is that the treewidth of the circuit C is indeed bounded. Indeed,
the number of gates that we create in C for each node n of E only depends on the automaton
A that tests q, and wires in C only go from gates for one node n to gates for nodes L(n) and
R(n), so that the tree decomposition T for C is obtained by putting, in each bag of the tree
decomposition corresponding to node n of E, the gates for node n, and L(n) and R(n) if they
exist. The additional distinguished gate g0 is added to the bag of the root node of E. This
construction is described on the circuit before translating to arity-two, but as the fan-in of the
gates of the original circuit is bounded by a constant, clearly rewriting to arity-two preserves
the property that the number of gates per bag of the decomposition is bounded by a constant.
This proves the claim.

B.4. Proof of EXPTIME rewriting of UCQs

Proposition B.1 [CV92]. For any UCQ q and k ∈ N, a Γk
σ-bNTA that tests q for treewidth

6 k can be computed in EXPTIME in q and k.

Proof. Let q be a UCQ and k be an integer.
This proof relies on the notion of proof trees introduced in [CV92]. The proof trees are

intuitively tree encodings of an unfolding, or expansion tree, of a Datalog query P (refer to
Definition C.1 for the definition of Datalog). An expansion tree of P is a ranked tree (not
binary in general) defined as follows: the node labels are pairs of a fact F from an intentional
predicate of σint and an instantiation of the body of a rule r ∈ P (i.e., the variables are mapped
to elements of the instance in a way that satisfies the body of r) such that the corresponding
instantiation of the head of r is F .

Such a tree is well-formed if for any node n labeled by (F, x) there is a bijection f between
the children of n and the intensional facts of the instantiation x such that for any node n, f(n)
is exactly the head fact of n. (In particular, if the same intensional fact is used multiple times
in the rule, then there are as many children as there are occurrences of this fact). We will
require that in the rules of the query P , every body contains either 0 or 2 intensional facts, so
that expansion trees are full binary trees.

From an expansion tree, it is possible to derive a proof tree, which is a Σ(P )-tree for some
finite set Σ(P ) (for fixed P ), as follows: the alphabet Σ(P ) is the set of pairs of tuples over
some fixed set of 2 |P | values and of a rule of P , and the intuition of a Σ(P )-tree, just like
for our notion of k-facts, is that sharing an element between one node and its parent encodes
that it is the same element, but elements shared between, e.g., siblings, are not necessarily the
same element. Note that proof trees, as expansion trees, are full binary trees. In this proof we
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use proof trees to mean this, as [CV92], and we do not mean the notion of proof tree used for
Datalog provenance in Definition C.1.

Having described how to encode an expansion tree to a proof tree, we describe the decoding
〈T 〉′ of a Σ(P )-tree T : first, apply a process analogous to our own notion of decoding, to obtain
an expansion tree T ′; second, consider the extensional facts that appear in the instantiation
of the bodies in the labels of T ′, and define 〈T 〉′ to be the instance formed of those facts. Of
course, if any of these processes fails, or if the intermediate expansion tree is not well-formed,
we abort and set 〈T 〉′ = ⊥.

Our goal is now to define a Datalog query P such that there is a surjective homomorphism
from Σ(P ) to Γk

σ. Fix σint to have intensional relations P0, . . . , Pk+1 of arity 0, . . . , k + 1. (We
technically disallowed predicates of arity 0 in our definition of instances, but there is clearly
no problem in this context.) For every tuples of variables x, y, z1, z2 taken from a set of
3k + aσ variables denoted by SX (where aσ is the arity of σ), with the condition y ⊆ x, for
every relation R of σ, and 0 6 i, j1, j2 6 k + 1, create the rules in P :

Pi(x)← R(y)Pj1(z1)Pj2(z2)

and
P (x)← R(y)

Finally, we create the rules
Pi(x)← Pj1(z1)Pj2(z2)

In terms of size, each rule of the query P contains a number of variables polynomial in k and
σ, and the overall size of the query is exponential in a polynomial of k and σ. Last, the size of
Σ(P ) is in O(|P | · |P |a(P )), where a(P ) is the maximal arity of the intentional relations. Let
β be a set of values of cardinality equal to 2k + 2. Then, Σ(P ) is equal to the pairs P (a), r
where r is a rule. We define the following homomorphism h from Σ(P ) to Γk

σ. Let (Pi(a), r)
be a element of Σ(P ). If r does not have an extensional fact then h(Pi(a), r) is equal to (a, ∅).
Otherwise, the atom R(y) occurs in the body of r, let ν be the valuation from the variables
of r defined according to the head atom Pi(a) (as we imposed y ⊆ x above) such that ν(x)
is equal to a: h(P (a), r) is equal to (a, R(ν(y)). h is thus defined from Σ(P )-trees to the Γk

σ,
and it is clearly surjective. Furthermore, it is clear that this application extends to a surjective
mapping h′ from Σ(P )-trees to Γk

σ-trees, with the property that whenever 〈h′(T )〉 is defined
then T is well-formed and 〈h′(T )〉 and 〈T 〉′ are isomorphic.

We now explain how we construct our automaton for the query q. Let us first assume that q is
a conjunctive query (CQ). We consider the Datalog query P that we constructed above. From
the proof of Proposition 5.10 of [CV92], we deduce that we can construct, in time polynomial
in its size, a bNTA AP on Σ(P ) whose number of states is in is in O(|Σ(P )| · 2|q|+Vq∗VP ), where
VP (resp., Vq) is the maximal number of variables in a rule of P (resp., in q) such that AP

recognizes the language of the well-formed Σ(P )-trees T such that 〈T 〉′ satisfies q. For our
query P , the size of AP is therefore exponential in a polynomial of k, σ and |q|.

Because h′ is an surjective homomorphism from Σ(P )-trees to Γk
σ-trees and AP is on Σ(P )

with the Property 1.4.3 of [CDG+07] that shows that bNTA are closed by homomorphism, we
compute in polynomial time in AP a bNTA A′

P on Γk
σ that has size exponential in a polynomial

of σ, |q| and k. We intersect it with a bNTA (clearly constructible in EXPTIME) that checks
whether a Γk

σ-tree is a valid encoding, and rejects otherwise. This yields the final automaton
A.
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We now check that A tests the query q. Let T be a Γk
σ-tree. If 〈T 〉 satisfies q, then it is

well-defined, Let T ′ be a preimage of T by h′. By our condition on h′, 〈T ′〉′ is well-defined
and isomorphic to 〈T 〉, so (as q features no constants and is thus preserved by isomorphisms)
it satisfies q, and therefore T ′ was accepted by AP , so T is accepted by A. Conversely, if A
accepts T , then let T ′ be a preimage of T by h such that A′ accepts T ′. As 〈T 〉 is well-defined,
T ′ is well-defined and 〈T ′〉′ and 〈T 〉 are isomorphic; but as T ′ is accepted by AP , we must have
〈T ′〉′ |= q, so 〈T 〉 |= q.

The result can be extended to an UCQ q by applying the result to every CQ and taking the
union of the resulting automata (whose size is the sum of the input automata).

C. Proofs for Section 5 (General Semirings)

Definition C.1. A Datalog query P over the signature σ consists of a signature σint of in-
tensional predicates with a special 0-ary relation Goal and a finite set of rules of the form
R(x) ← R1(y1), . . . , Rk(yk) where R ∈ σint, Ri ∈ σ ⊔ σint for 1 6 i 6 k, and each variable
in the tuple x also occurs in some tuple yi. The left-hand (resp., right-hand) side of a Datalog
rule is called the head (resp., body) of the rule.

A proof tree T of a Datalog query P over an instance I is a (non-binary) ordered tree with
nodes annotated by facts over σ ∪ σint on elements of dom(I) and internal nodes annotated by
rules, such that the fact of the root of T is Goal, and, for every internal node n in T with children
n1, . . . , nm, the indicated rule R(x) ← Ψ(y) on n in P is such that there is a homomorphism
h mapping R(x) to the fact of n and mapping Ψ(y) to the facts of the ni. (Note that this
definition implies that internal nodes are necessarily annotated by a fact of σint.) We write
I |= P if P has a proof tree on I.

The semiring provenance of a Datalog query on an instance is defined as follows:

Definition C.2. Given a semiring K and an instance I where each fact F carries an annota-
tion α(F ) ∈ K, the provenance of a Datalog query P on I is the following [GKT07]:

⊕

T proof tree of P

⊗

n leaf of T

α(n).

Note that this expression may not always be defined depending on the query, instance, and
semiring. In particular, the number of terms in the sum may be infinite, so that the result
cannot necessarily be represented in the semiring.

We now use this to define Datalog queries associated to conjunctive queries (CQs) and unions
of CQs (UCQs), which will be useful for provenance.

Definition C.3. We assume that CQs and UCQs contain no equality atoms. The Datalog
query Pq associated to a CQ q has only one rule, Goal ← q. The Datalog query Pq associated
to a UCQ q =

∨

i qi has rules Goal← q1, ..., Goal← qn.
Observe that in this case the provenance of Pq in the sense of Definition C.2 is always defined,

no matter the semiring, as the number of possible derivation trees is clearly finite.

Theorem 5.1. For any fixed k ∈ N and monotone GSO query q, for any σ-instance I such
that w(I) 6 k, one can construct in time O(|I|) a monotone provenance circuit of q on I whose
treewidth only depends on k and q (not on I).

We first define our notion of monotonicity for Γ-bNTAs. Intuitively, it implies that if a Γ-tree
is accepted by the automaton, it will not be rejected when changing annotations from 0 to 1.
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Formally:

Definition C.4. We consider the partial order < on Γ defined by (τ, 0) < (τ, 1) for all τ ∈ Γ.
We say that a Γ-bNTA A = (Q,F, ι, δ) is monotone if for every τ 6 τ ′ in Γ, we have ι(τ) ⊆ ι(τ ′)
and δ(q1, q2, τ) ⊆ δ(q1, q2, τ

′) for every q1, q2 ∈ Q.

It is easy to see that the provenance of a monotone Γ-bNTA A on any tree T is a monotone
function in the following sense: for any valuations ν and ν ′, if ν(g) = 1 implies ν ′(g) = 1 for
all g ∈ Cinp (which we write ν 6 ν ′), then (Prov(A,T ))(ν) = 1 implies (Prov(A,T ))(ν ′) = 1.
Indeed, for any monotone Γ-tree T and valuations ν 6 ν ′, ν(T ) |= A implies ν ′(T ) |= A.

We already know that the results of Section 3 also hold for monotone bNTAs and monotone
provenance circuits (see Proposition A.1). Hence, if we know that the monotone GSO sen-
tence q of interest can be tested (Definition B.4) by a monotone bNTA, i.e., if the analogue of
Theorem 4.1 holds for monotone queries and bNTAs, then clearly the reduction from treelike
instances to trees (Theorem 4.2) generalizes. We first prove an auxiliary lemma:

Lemma C.1. For every Γk
σ-trees E and E′, if E 6 E′ then 〈ǫ(E)〉 ⊆ 〈ǫ(E′)〉.

Proof. We follow the decoding process and notice that, as the domains of the Γk
σ node labels

in E and E′ are the same, the same fresh elements are used throughout, so the only difference
between 〈ǫ(E)〉 and 〈ǫ(E′)〉 is about the annotation of the created facts; and we notice that
whenever E 6 E′ then every fact created in E is also created in E′.

We now prove the analogue of Theorem 4.1 for monotone queries and automata. We imme-
diately generalize the notion of an automaton testing a query (Definition B.4) to Γk

σ-bNTAs

and trees, with 〈T 〉 for a Γk
σ-tree T defined as above.

Lemma C.2. Let k ∈ N, q be a monotone query, and A be a Γk
σ-bNTA that tests q for treewidth

k. One can compute in linear time from A a Γk
σ-bNTA A′ that tests q for treewidth k and is

monotone for the partial order on Γk
σ.

Proof. Fix k, q, and A = (Q,F, ι, δ) the Γk
σ-bNTA. We build the bNTA A′ = (Q,F, ι′, δ′)

by setting, for all (τ, i) ∈ Γk
σ, ι′((τ, i)) ··=

⋃

06j6i ι((τ, j)) and, for all q1, q2 ∈ Q, we pose:
δ′(q1, q2, (τ, i)) ··=

⋃

06j6i δ(q1, q2, (τ, j)).

Clearly A′ is monotone by construction for Γk
σ. Besides, for any Γk

σ-tree T , if A accepts T
then A′ accepts T , so to prove the correctness of A′ it suffices to prove the converse implication.

Let us consider such a T , and consider an accepting run ρ of A′ on T . We build a new
tree T ′ whose skeleton is that of T and where for any leaf (resp. internal node) n′ ∈ T ′ with
corresponding node n ∈ T with λ(n) = (τ, j), we set λ(n′) in T ′ to be (τ, i) for some i such
that ρ(n) ∈ ι((τ, i)) (resp. ρ(n) ∈ δ(ρ(L(n)), ρ(R(n)), (τ, i))), the existence of such an i being
guaranteed by the definition of ι′ (resp. δ′).

We now observe that, by construction, ρ is a run of A on T ′, and it is still accepting, so that
T ′ is accepted by A. Hence, 〈T ′〉 |= q. But now we observe that, once again by construction,
for every node n′ of T ′ with label τ ′ and with corresponding node n in T with label τ , it holds
that τ ′ 6 τ . Hence we have T ′ 6 T , for which we can easily prove that 〈T ′〉 ⊆ 〈T 〉, and thus, by
monotonicity of q, we must have 〈T 〉 |= P . Thus, A accepts T , proving the desired result.

From our earlier explanations, this proves Theorem 5.1.
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C.1. N[X ]-provenance for UCQs

Proposition C.1. For any UCQ q, ProvN[X](q, I), is the N[X]-provenance in the sense of [GKT07]
of the associated Datalog query Pq on I.

Proof. The proof trees of each CQ within q have a fixed structure, the only unspecified part
being the assignment of variables. It is then clear that each variable assignment gives a proof
tree, and this mapping is injective because all variables in the assignment occur in the proof
tree. So for each CQ, we are summing on the same thing, and each term of the sum is the leaves
of the proof tree, which is what we imposed. Further, the set of proof trees of q is the union of
the set of proof trees of each CQ, which means we can separate the sum for each CQ.

C.2. Provenance circuits for trees

To prove Theorem 5.3, we need a generalization of N[X]-provenance of automata on trees.
Indeed, while Definition 5.3 is natural for trees, using it to define the provenance of queries on
treelike instances would lead to a subtle problem. The reason is that this provenance describes
all valuations of the tree for which the automaton accepts (up to the maximal multiplicity p),
and not the minimal ones. For UCQs, this would intuitively mean that the resulting N[X]-
provenance would reflect all subinstances satisfying the query, not the minimal ones. This
does not match Definition 5.2 and is undesirable: for instance, the specialization of such a
provenance to N would have nothing to do with the number of query matches. The reason
why this problem did not occur before is because both choices of definition collapse in the
PosBool[X] setting of the previous sections; so this problem is specific to the setting of general
semirings such as N[X], which are not necessarily absorptive [DMRT14].

However, in the case of UCQs, we can introduce a generalization of Definition 5.3, for which
we can show the analogue of Theorem 5.2, and that will give us the right provenance once lifted
to treelike instances as in Section 4. For a Γ-tree T and p, l ∈ N, we introduce for l ∈ N the set
of p-valuations that sum to l: Valpl (T ) ··= {ν ∈ Valp(T ) |

∑

n∈T ν(n) = l}. We take Valpall(T )
to be Valp(T ). We can now generalize Definition 5.3 as follows:

Definition C.5. Let l ∈ N ∪ {all}. The N[X]-l-provenance of a Γ
p
-bNTA A on a Γ-tree T is:

ProvN[X](A,T, l) ··=
⊕

ν∈Valp
l
(T )

|aruns(A, ν(T ))|
⊗

n∈T

nν(n).

Note that ProvN[X](A,T ) = ProvN[X](A,T, all), so this definition indeed generalizes Defini-
tion 5.3.

We first prove the key lemma about the propagation of provenance throughout encodings,
which will be used in the inductive step of our correctness proof of provenance circuits:

Lemma C.3. For any l, p ∈ N, l 6 p, for any non-singleton Γ-tree T = (V,L,R, λ), letting TL

and TR be its left and right subtrees and nr be its root node, for any Γ
p
-bNTA A = (Q,F, ι, δ),

writing Aq for all q ∈ Q the bNTA obtained from A by making q the only final state, we have:

ProvN[X](A,T, l) =
⊕

l1+l2+l′=l
qL,qR∈Q

q∈δ(qL,qR,(λ(nr),l′))

ProvN[X](AqL , TL, l1)⊗ ProvN[X](AqR , TR, l2)⊗ n
l′

r
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Proof. We first observe the following identity, for any ν ∈ Valpl (T ) and any q ∈ Q, by definition
of automaton runs:

|aruns(Aq, ν(T ))| =
∑

qL,qR∈Q
q∈δ(qL,qR,(λ(nr),ν(nr)))

|aruns(AqL , ν(TL))| · |aruns(AqR , ν(TR))|

We then observe that Valpl (T ) can be decomposed as

⊔

l1+l2+l′=l

Valpl1(TL)×Valpl2(TR)× {nr 7→ l′}

as a valuation of T summing to l can be chosen as a valuation of its left and right subtree and
of nr by assigning the possible weights. We also observe that the product over n ∈ T can be
split in a product on nr, on n ∈ TL and on n ∈ TR. We can thus rewrite as follows:

ProvN[X](A,T, l) =
⊕

νL∈Val
p

l1
(TL)

νR∈Valp
l2
(TR)

l1+l2+l′=l

⊕

qL,qR∈Q
q∈∆

mL ·mR





⊗

n∈TL

nνL(n)









⊗

n∈TR

nνR(n)



nl
′

r

where we abbreviatedmL
··= |aruns(AqL , ν(TL))|,mR

··= |aruns(AqR , ν(TR))|, and ∆ ··= δ(qL, qR, (λ(nr), l
′)).

Reordering sums and performing factorizations, we obtain:

ProvN[X](A,T, l) =
⊕

qL,qR∈Q
l1+l2+l′=l

q∈∆







⊕

νL∈Val
p

l1
(TL)

mL

⊗

n∈TL

nνL(n)













⊕

νR∈Valp
l2
(TR)

mR

⊗

n∈TR

nνR(n)






nl

′

r .

Plugging back the definition of provenance yields the desired claim.

We then prove the following variant of Theorem 5.2:

Theorem C.1. For any fixed p ∈ N and l ∈ N ∪ {all}, a N[X]-l-provenance circuit for a
Γ
p
-bNTA A and a Γ-tree T (i.e., a N[X]-circuit capturing ProvN[X](A,T, l)) can be constructed

in time O(|A| · |T |).

Proof. We modify the proof of Proposition A.1.
We fix l0 to be the l provided as input. We will first assume l0 ∈ N, we explain at the end of

the proof how to handle the (simpler) case l0 = all.
For every node n of the tree T , we create one input gate gin in C (identified to n), and

for j ∈ {0, . . . , p}, we create a gate gi,jn which is a ⊗-gate of j copies of the input gate gin.
(By “copies” we mean ⊗- or ⊕-gates whose sole input is gin, this being a technical necessity as
K-circuits are defined as graphs and not multigraphs.) In particular, gi,0n is always a 1-gate.

We create one gate gq,ln for n ∈ T , q ∈ Q, and 0 6 l 6 l0.
For leaf nodes n, for q ∈ Q, we set gq,ln to be gi,ln if q ∈ ι(λ(n), l) and a 0-gate otherwise.
For internal nodes n, for every pair qL, qR ∈ Q (that appears as input states of a transition

of δ) and 0 6 l1, l2 6 l0 such that l1 + l2 6 l0, we create the gate gqL,l1,qR,l2
n as an ⊗-gate of

gqL,l1
L(n) and gqR,l2

R(n) , and, for 0 6 l′ 6 l0 such that l1+ l2+ l
′ 6 l0, we create one gate gqL,l1,qR,l2,l

′

n as
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the ⊗-gate of gqL,l1,qR,l2
n and gi,l

′

. For 0 6 l 6 l0, we set gq,ln to be a ⊕-gate of all the gqL,l1,qR,l2,l
′

n

such that q ∈ δ(qL, qR, (λ(n), l
′)) and l1 + l2 + l′ = l.

We define the distinguished gate g0 as an ⊗-gate of the gq,l0nr where nr is the root of T . The
construction is again in O(|A| · |T |) for fixed l and p.

To prove correctness, we show by induction that the element captured by gq,ln is ProvN[X](Aq, Tn, l)
where Aq is A with q as the only final state, and Tn is T rooted at n.

As a general property, note that for any node n, the value captured by gi,jn for 0 6 j 6 p is
nj.

For a leaf node n, ProvN[X](Aq, Tn, l) = nl if q ∈ ι(λ(n), l) and 0 otherwise, which is the value

captured by gq,ln .
For an internal node n, the claim follows immediately by Lemma C.3, applying the induction

hypothesis to gqL,l1
L(n) and gqR,l2

R(n) .

We conclude because clearly we have ProvN[X](A,T, l0) =
⊕

q∈F ProvN[X](Aq, T, l0), so the
value captured by g0 is indeed correct.

Now, if l0 = all, we do the same construction, but we only need a single node gqn for n ∈ T
and q ∈ Q instead of l0 + 1 nodes gq,ln . For leaf nodes, gqn is the ⊕-node of the gi,ln ; for internal
nodes, gqn is simply the ⊕-gate of all gqL,qR,l

n gates with q ∈ δ(qL, qR, (λ(n), l)), each of them
being an ⊗-gate of the gqL,qRn gate and the gi,l gate. Finally, gqL,qRn is the ⊗-gate of gqL

L(n) and

gqR
R(n). Correctness is shown using a variant of Lemma C.3 on ProvN[X](A,T, all) which replaces

l1 + l2 + l′ = l in the sum subscript by 0 6 l′ 6 p.

C.3. Provenance circuit for instances

Theorem 5.3. For any fixed k ∈ N and UCQ q, for any σ-instance I such that w(I) 6 k, one
can construct a N[X]-circuit that captures ProvN[X](q, I) in time O(|I|).

We first give some preliminary definitions. We need to introduce bag-instances, to materialize
the possibility that a fact is used multiple times in a UCQ:

Definition C.6. A multiset is a function M from a finite support supp(M) to N. We define
the relation M ⊆M ′ if supp(M) ⊆ supp(M ′) and for all s ∈ supp(M) we have M(s) 6M ′(s).
We write x ∈ M to mean that M(x) > 0. Given a set S and multiset M , we write M ⊑ S to
mean that supp(M) ⊆ S, and for p ∈ N we write M ⊑p S to mean that M ⊑ S and M(a) 6 p
for all a ∈ supp(M).

A bag-instance J is a multiset of facts on dom(J). Where necessary to avoid confusion, we
call the ordinary instances set-instances. For two bag-instances J and J ′, we say that J is
a bag-subinstance of J ′ if J ⊆ J ′ holds (as multisets). We say that J is a bag-subinstance
of a set-instance I if J ⊑ I, and a p-bag-subinstance of I if J ⊑p I. In other words, set-
instances are understood as bag-instances where facts have an arbitrarily large multiplicity (and
not multiplicity equal to 1). The truncation to p of a bag-instance J is J6p(F ) ··= min(J(F ), p)
for all F ∈ supp(J).

A bag-homomorphism h from a bag-instance J to a bag-instance J ′ is a mapping from supp(J)
to supp(J ′) with the following condition: for each F ∈ supp(J ′), letting F1, . . . , Fn be the facts
of supp(J) such that h(Fi) = F for 1 6 i 6 n, we have

∑n
i=1 J(Fi) 6 J ′(F ).

We accordingly define bag-queries as queries on such bag-instances. Intuitively, bag-queries
are like regular Boolean queries on instances, except that they can “see” the multiplicity of
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facts. This is crucial to talk about the required multiplicity of facts in matches, which we need
to talk about the N[X]-provenance of UCQs.

Definition C.7. A bag-query q is a query on bag-instances. The bag-query q′ associated to
a CQ ∃x q(x) is defined as follows. A match of q in a bag-instance J is a bag-homomorphism
from q (seen as a bag-instance of facts over x) to J . We say that J |= q′ if q has a match in J .

The bag-query associated to a UCQ q =
∨n

i=1 ∃xi qi(xi) is the disjunction of the bag-queries
for each CQ in the disjunction.

Alternatively it is easily seen that J |= q′, for q′ the bag-query associated to a UCQ q, iff J
contains a bag of facts that can be used as the leaves of a derivation tree for the Datalog query
Pq associated to q.

We notice that the bag-query associated to a UCQ q is bounded, namely, the fact that it
holds or not cannot depend on the multiplicity of facts beyond a certain maximal value (the
maximal number of atoms in a disjunct of the UCQ):

Definition C.8. A bag-query q is bounded by p ∈ N if, for any bag-instance J , if J |= q, then
the truncation J6p of J is such that J6p |= q. A bag-query is bounded if it is bounded by some
p ∈ N.

We now extend our definitions of tree encodings and automaton compilation to bag-queries.
First, tree encodings simply generalize to bag-instances as tree encodings annotated with the
multiplicities of facts, that is, Γk

σ

p
-trees:

Definition C.9. Let k, p ∈ N and let J be a bag-instance such that J(F ) 6 p for all F ∈ J .
Let I ··= supp(J) be the underlying instance of J , and let TI be its tree encoding (a Γk

σ-tree).
We define the (k, p)-tree-encoding TJ of J as the tree with same skeleton as TI where any
node n encoding a fact F of I is given the label (λ(n), J(F )) and other nodes are given the

label (λ(n), 1). We accordingly define 〈·〉 on Γk
σ

p
-trees to yield bag-instances in the expected

way, again returning ⊥ whenever two nodes code the same fact (rather than summing up their
multiplicity).

We then define what it means for a Γk
σ

p
-bNTA to test a bag-query q. Note that the definition

implies that the automaton cannot “see” multiplicities beyond p, so we require that the query
be p-bounded so that the limitation does not matter.

Definition C.10. For q a bag-query and k, p ∈ N, a Γk
σ

p
-bNTA A tests q for treewidth k if q

is bounded by p and for every Γk
σ

p
-tree E, we have E |= A iff 〈E〉 |= q.

We then provide a general definition and prove a lemma about constructing the union of
bNTAs:

Definition C.11. Let Γ be a finite label set and let Ai = (Qi, Fi, ιi, δi) be a family of Γ-bNTAs.
Assume without loss of generality that the Qi have been renamed so that they are pairwise
disjoint. The union bNTA is the Γ-bNTA A⊔ = (Q⊔, F⊔, ι⊔, δ⊔) defined by Q⊔ ··=

⊔

iQi,
F⊔ ··=

⊔

i Fi, for every τ ∈ Γ ι⊔(τ) ··=
⊔

i ι⊔(τ), and δ⊔ is only defined for q1, q2 ∈ Qi for some
Qi, in which case it is defined as δ⊔(q1, q2, τ) ··= δi(q1, q2, τ).

Lemma C.4. For any family of Γ-bNTAs Ai, letting A⊔ be the union bNTA of the Ai, for any
Γ-tree T , we have T |= A⊔ iff T |= Ai for some Ai, and more precisely we have |aruns(A⊔, T )| =
∑

i |aruns(Ai, T )|.

Proof. The claim about acceptance and the number of runs is straightforward by noticing that
the runs of A⊔ on T are exactly the disjoint union of the runs of the Ai on T .
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Our last preliminary result is to show that every bag-query corresponding to a UCQ can be
encoded to an automaton that tests it.

Proposition C.2. Let q be a UCQ. There is p ∈ N such that, for any k ∈ N, we can compute
a Γk

σ

p
-bNTA A that tests q for treewidth k.

Proof. We introduce some notation. We call CQ6= the language of CQs which can feature atoms
of the form x 6= y, and UCQ 6= the language of UCQs except the disjuncts are in CQ 6=. We
write Vars(q) for the variables of a query q of CQ 6=. The bag-query associated to a query in
CQ6= or UCQ 6= is defined as for the corresponding query with no inequalities, but imposing
the inequalities on matches. Formally, a match of a CQ6= query q′ is a match h of q′ such
that h(x) 6= h(y) for any two variables x and y such that x 6= y occurs in q. (Note that the
multiplicity of inequality atoms is irrelevant.)

We first note that, writing the UCQ q as the disjunction of CQs qi, if we can show the claim
for each qi, then the result clearly follows from q by computing one bNTA Ai for each qi that
tests qi for treewidth k and uses p = maxi pi, where pi is the multiplicity for which the result
was shown for each qi (clearly if the claim holds for a value of p then it must hold for larger
values by ignoring larger multiplicities). We then construct the union bNTA A⊔ of these bNTAs
to obtain a bNTA that tests q (Lemma C.4).

We see a CQ q as an existentially quantified multiset of atoms (the same atom, i.e., the
same relation name applied to the same variables in the same order, can occur multiple times;
in other words we distinguish, e.g., ∃xR(x) and ∃xR(x)R(x)). Let Vars(q) be the set of the
variables of q (which are all existentially quantified as q is Boolean). We call Eq the set of all
equivalence classes on Vars(q) (which is of course finite), and for ∼ ∈ Eq we let q/∼ be the query
in CQ 6= obtained by choosing one representative variable in Vars(q) for each equivalence class
of ∼ and mapping every x ∈ Vars(q) to the representative variable for the class of x (dropping
in the result the useless existential quantifications on variables that do not occur anymore),
and adding disequalities x 6= y between each pair of the remaining variables.

We rewrite a CQ q to the UCQ q′ ··=
∨

∼∈Eq
q/∼. We claim that for every bag-instance I,

if I |= q then I |= q′, which justifies that for an instance I ′′, considering the subinstances of
I ′′, WK(q, I ′′) = WK(q′, I ′′). For the forward implication, assuming that I |= q, letting m be
the witnessing match, we consider the ∼m relation defined by x ∼m y iff m(x) = m(y), and it
is easily seen that I |= q/∼m. For the backward implication, if I |= q/∼ for some ∼∈ Eq, it
is immediate that I |= q with the straightforward match. Hence, using again Lemma C.4, it
suffices to show the result for queries in CQ6= which include inequality axioms between all their
variables. We call those forced queries.

We now show that the claim holds for forced queries. To see this, considering such a query
q on signature σ, letting p be the sum of the multiplicities of all atoms in q (i.e., the number
of atoms in the original CQ q), let σp be the signature obtained from σ by creating a relation
Ri for 1 6 i 6 p, with arity arity(R), for every relation R of σ, and let q′ be the rewriting of
q obtained by replacing every atom R(a) with multiplicity m by the disjunction

∨

m6j6pR
j(a)

(and keeping the inequalities), rewritten to a UCQ6=. We now see q′ as a UCQ6= in the usual
sense (without multiplicities). We now claim that for any bag-instance I on σ where facts have
multiplicity 6 p, letting I ′ be the set-instance obtained by replacing every fact F = R(a) of I
with multiplicity m = I(F ) by the fact Rm(a), I |= q iff I ′ |= q′. To see why, observe that, as
q is a forced query, if q has a match m then every atom A of q must be mapped by m to a fact
of I (written m(A)) and this mapping must be injective (because m is), so that the necessary
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and sufficient condition is that I(m(A)) > pA (where pA is the multiplicity of A in q) for every
atom A of q; and this is equivalent to I ′ |= q′.

Now, q′ is a UCQ6= so it can be tested in the sense of Definition 4.2 (as it is expressible
in GSO, so we can apply Theorem 4.1); fix k ∈ N∗ and let Aq′ = (Q,F, ι, δ) be a Γk

σp
-bNTA

that tests q′ for width k. We build a Γk
σ

p
-bNTA Aq = (Q,F, ι′, δ′) by relabeling Aq′ in the

following way. Recall the definition of Γk
σ (Definition B.2). For every ((d, f), i) ∈ Γk

σ

p
, set f ′

to be either f if f = ∅ and f ′ = Ri(a) if f = R(a), and set ι′(((d, f), i)) to be ι((d, f ′)) and
δ′(qL, qR, ((d, f), i)) to be δ(qL, qR, (d, f

′)) for every qL, qR ∈ Q.
We now claim that Aq tests q for treewidth k. To see why, it suffices to observe that for

any Γk
σ

p
-tree T , letting T ′ be the Γk

σp
-tree obtained in the straightforward manner, then Aq

accepts T iff Aq′ accepts T ′, which is immediate by construction. Now indeed, as we know
that Aq′ accepts T ′ iff 〈T ′〉 |= q′ (as Aq′ tests q′), and (as immediately 〈T ′〉 is the σp-instance
corresponding to 〈T 〉 as I ′ corresponds to I above) that 〈T ′〉 |= q′ iff 〈T 〉 |= q, we have the
desired equivalence.

The only thing left is to observe that Aq does not only correctly test q on instances where each
fact has multiplicity 6 p, but correctly tests q on all bag-instances. But this is straightforward:
as q matches at most p fact occurrences in the instance I, we have I |= q iff I6p |= q. This
concludes the proof.

We are now ready to prove Theorem 5.3:

Proof. We show the proof for CQs, and then extend to UCQs.
Let k ∈ N, q : ∃x q′(x) be the CQ. We rewrite q to q′′ : ∃x q′(x) ∧

∧

x∈x Px(x) for fresh

unary predicates Px. We apply Proposition C.2 to compile q′′ to a Γk
σ

p
-bNTA A, where p is

the number of atoms of q′′, such that A tests q′′ for treewidth k. We can clearly design a
Γk
σ

p
-bNTA A′ that checks on a Γk

σ

p
-tree whether, for all x ∈ x, the input tree contains exactly

one Px-fact: this can be done with state space 2x. We intersect A and A′ to obtain a bNTA
that recognizes all Γk

σ

p
-trees that satisfy the bag-query associated to q′′ and have exactly one

Px-fact for all x ∈ x, and determinize this bNTA to obtain an equivalent automaton A′′ which
is deterministic: if it has an accepting run then it has exactly one accepting run.

Let I be the input instance, and I ′ be the instance where we added one fact Px(a) for all
x ∈ x and a ∈ dom(I): we call those the additional facts. We can clearly compute I ′ from I in
linear time, and the treewidth is unchanged. Let TI′ be a tree encoding of I ′, that is, a Γk

σ-tree.
We claim that we can construct, from A′′, a bNTA A′′′ such that, for any valuation ν of TI′

that gives multiplicity 1 to the additional facts, the number of accepting runs of A′′′ on ν(TI′)
is the number of valuations ν ′ from the additional facts to {0, 1} such that A′′ accepts ν ′′(TI′),
where ν ′′ follows ν ′ on nodes encoding additional facts and follows ν otherwise. We proceed
as follows: first, duplicate the states of A′′ so that every state q is replicated to two states q
and q′, q and q′ being treated exactly the same way in terms of transitions in δ and in terms
of being final (this preserves determinism). Now, ensure that for any two states q1 and q2 and

labels (τ, 0) and (τ, 1) in Γk
σ

p
that encode a present or absent additional fact, δ(q1, q2, (τ, 0))

and δ(q1, q2, (τ, 1)) are disjoint (as A′′ is deterministic, those are single facts, so if they are the
same fact, replace one of them by its equivalent copy). Now, modify the transitions of the
automaton so that, for any states q1 and q2 and τ encoding an additional fact, δ(q1, q2, (τ, 1))
is δ(q1, q2, (τ, 0))∪ δ(q1, q2, (τ, 1)). It is now clear that the resulting automaton A′′′ satisfies the
desired property: for any valuation ν as above, there is a bijection between the accepting runs
of A′′′ and the valuations ν ′ as above such that ν ′′(TI′) is accepted by A′′.
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We now apply Theorem C.1 with l the number of facts in the CQ q′′ to obtain a N[X]-circuit
that captures the N[X]-l-provenance of A′′′ on TI′ ; and fix to 1 all inputs except those coding
a fact of I (i.e., nodes coding additional facts are set to 1) and rename the remaining inputs
to match the facts of I. Let l′ be the number of facts in the original CQ q. Then the circuit
captures:

⊕

J⊑I
J |=q∑

F∈supp(J) J(F )=l′

∣

∣{ f : x→ dom(I) | J |= q′(f(x)) }
∣

∣

⊗

F∈J

F J(F ).

Now, J |= q′(f(x)) just means q′(f(x)) ⊆ J (as bag-instances), and as q′(f(x)) and J have
same total multiplicity, this actually means J = q′(f(x)). Hence, the above is equal to:

⊕

f :x→dom(I)
I|=q′(f(x))

⊗

A(x)∈q′

A(f(x)).

and this is exactly ProvN[X](q, I).
For UCQs, observe that the provenance we need to compute (Definition 5.2) is simply the

sum of the provenance for each CQ. So we can just independently build a circuit for each CQ
and combine the circuits into one (merging the input gates), while choosing as distinguished
gate a ⊕-gate of each distinguished gate.

C.4. Going beyond UCQs

Note that the proof of Theorem 5.3 implicitly relies on the fact that UCQs are bounded in the
sense of Definition C.8, and we cannot hope to rewrite a query to a Γk

σ

p
-bNTA that sensibly

tests it if it is not bounded. However, we can show:

Proposition C.3. There is a guarded monadic Datalog query P whose associated bag-query
qP is not bounded.

Proof. Consider the Datalog query P consisting of the rules S(y) ← S(x), R(x, a, y), A(a),
Goal← S(x), T (x). For all n ∈ N, consider the instance In = {R(a1, a, a2), R(a2, a, a3), . . . , R(an−1, a, an),
S(a1), T (an), A(a)}. It is easily verified that the only proof tree of P on In has n − 1 leaves
with the fact A(a). Hence, assuming that the bag-query qP captured by P is bounded by p,
considering the bag-instance J formed of the leaves of the sole proof tree of P on Ip+2, it is not
the case that J6p |= qP , contradicting boundedness.

D. Proofs for Section 6 (Applications)

D.1. Preliminaries

All proofs about probability evaluation in this section will use the notion of cc-instances, which
we now introduce.

In this appendix, all Boolean circuits are non-monotone (i.e., they allow NOT-gates) and
arity-two (Definition B.5), unless stated otherwise. We will first define the formalism of cc-
instances, then state a result about the construction of circuits (the analogue of provenance cir-
cuits) for them, using Theorem 4.2, and finally explain how probability evaluation is performed
using that result using message-passing. We conclude by presenting the similar formalism of
pc-instances, and stating tractability results for them implied by the results on pcc-instances.
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cc-instances. We define the formalism of cc-instances:

Definition D.1. A cc-instance is a triple J = (I, C, ϕ) of a relational σ-instance I, a (non-
monotone arity-two) Boolean circuit C, and a mapping ϕ from the facts of I to gates of C. The
inputs Jinp of J are Cinp. For every valuation ν of Jinp, the possible world ν(J) is the subinstance
of I that contains the facts F of I such that ν(C)(ϕ(F )) = 1, and, as for c-instances, JJK is
the set of possible worlds of J .

A pcc-instance is a 4-tuple J = (I, C, ϕ, π) such that J ′ = (I, C, ϕ) is a cc-instance (and
Jinp ··= J ′

inp) and π : Jinp → [0, 1] gives a probability to each input. As for pc-instances, the prob-
ability distribution JJK has universe JJ ′K and probability measure PrJ(I

′) =
∑

ν|ν(J)=I′ PrJ(ν)
with the product distribution:

PrJ(ν) =
∏

g∈Jinp
ν(g)=1

π(g)
∏

g∈Jinp
ν(g)=0

(1− π(g)).

We define relational encodings and treewidth for cc-instances:

Definition D.2. Let σCircuit be the signature of the relational encoding of Boolean circuits
(Definition B.6). Let σ be a signature and σ+ be the signature with one relation R+ of arity
arity(R)+1 for every relation R of σ. The relational encoding IJ of a cc-instance J = (I, C, ϕ)
over signature σ, is the (σCircuit⊔σ

+)-instance containing both the σCircuit-instance IC encoding
C and one fact R+(a, ϕ(F )) for every fact F = R(a) in I.

A tree decomposition of a cc-instance J is a tree decomposition of IJ . Tree decompositions
of pcc-instances are defined as a tree decomposition of the corresponding cc-instance (the prob-
abilities are ignored).

Circuits for cc-instances. We claim the following result about cc-instances, intuitively corre-
sponding to the provenance circuits of Section 4 for them (combined with their circuit annota-
tion):

Theorem D.1. For any fixed integer k and GSO sentence q, one can compute in linear time,
from a cc-instance J with w(J) 6 k, a Boolean circuit C on Jinp such that for every valuation ν
of Jinp, ν(C) = 1 iff ν(J) |= q, with w(C) depending only on k and q.

We now prove this result, explaining later what it implies in terms of probability evaluation.
We first introduce the notion of cc-encoding. Recall the definition of tree decompositions of
circuits (Definition B.6):

Definition D.3. A cc-encoding of width k is a tuple E′ = (E,C, T, χ) of a Γk
σ-tree E of width k,

a Boolean circuit C, a tree decomposition T of C of width k with same skeleton as E, and a
mapping χ : T → C selecting a selected gate such that χ(b) ∈ dom(b) for all b ∈ T . The inputs
E′

inp of E′ are Cinp.
Given a valuation ν of Cinp, we extend it to an evaluation of C, and see it as a Boolean

valuation of E by setting ν(n) ··= ν(χ(b)) for the bag b of T corresponding to n in E, and write

ν(E′) the resulting Γk
σ-tree.

First, we explain how we can compute a cc-encoding of our cc-instance J = (I, C, ϕ) by
“splitting” its tree decomposition T in a tree decomposition of C and a Γk

σ-tree E of I with
same skeleton, with χ keeping track of the gate of C to which each node n ∈ E was mapped
by ϕ. Formally:
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Lemma D.1. Recall the definition of ǫ (Definition B.7). Given a cc-instance J = (I, C, ϕ)
and a tree decomposition T of J of width k, one can compute a cc-encoding E′ = (E,C ′, T ′, χ)
of width k, with C = C ′, such that for any valuation ν of Cinp, ǫ(ν(E

′)) is an encoding of ν(J).
The computation is in O(|T |+ |C|).

Proof. We process the tree decomposition T of J to construct E and T ′. We adapt the encoding
construction described in Lemma B.1.

Whenever we process a bag b ∈ T , the mapping precomputed with J (see Lemma B.1) is
used to obtain all facts F of I for which b is the topmost node where domain dom(F ) ⊆ dom(b)
and ϕ(F ) ∈ dom(b).

For every such fact F , we create one bag b′ in T ′ labeled with all elements of dom(b) that
are gates of G, and one node n in E which is the encoding of F (considering only the domain
dom(b) ∩ dom(I)) as for a normal relational instance. Set the selected gate χ(b′) ··= ϕ(F )
(which is in dom(b′) by the condition according to which we chose to consider fact F ).

Because T was a tree decomposition of J , it is immediate that the resulting tree T ′ is indeed
a tree decomposition of width k of C and that E is a tree encoding of width k of I. By
construction T ′ and E have same skeleton, and clearly the process is in linear time in |T |+ |J |.
We let E′ = (E,C ′, T ′, χ).

It remains to check the last condition. Consider a Boolean valuation ν of the inputs of C.
Consider the instance ν(J) and its tree decomposition derived from T . It is clear that when
one computes a tree encoding of ν(J) following T , one obtains an encoding E′′ which is exactly
E except that the facts have been removed from the nodes which used to encode in E a fact
that was removed from ν(J). Hence, E′′ is exactly ǫ(ν(E′)). This concludes the proof.

Second, we show the lemmas that will allow us to “glue together” the circuit C of the cc-
instance, which annotates the cc-encoding, with a provenance circuit for an automaton on the
tree encoding.

Definition D.4. Let C = (G,W, g0, µ) and C ′ = (G′,W ′, g′0, µ
′) be circuits such that G∩G′ =

C ′
inp (we say that C and C ′ are stitchable). The stitching of C and C ′, denoted C ◦C ′, is the

circuit (G ∪G′,W ∪W ′, g′0, µ
′′) where µ′′(g) is defined according to µ for g ∈ G and according

to µ′ otherwise. In particular, (C ◦ C ′)inp = Cinp.

In the following lemmas about stitching, for clarity, we distinguish valuations ν to the inputs
of a circuit and the evaluation on all circuit gates, which we write ν(C) where C is the circuit.

The fundamental property of stitching is:

Lemma D.2. For any stitchable circuits C and C ′, for any gate g of C ′ and valuation ν of
Cinp, letting ν ′ be the restriction of ν(C) to C ′

inp, we have: ν ′(C ′)(g) = ν(C ◦ C ′)(g).

Proof. Fix C, C ′, g, and ν. As C and C ◦C ′ share the same inputs, ν is a valuation for both of
them. Now, first note that for any gate g of C, ν(C)(g) = ν(C ◦ C ′)(g). Hence, in particular,
for any input gate g of C ′, as it is a gate of C because C and C ′ are stitchable, we have
ν(C ◦C ′)(g) = ν(C)(g) = ν ′(g). As this equality holds for any input gate g of C ′, it inductively
holds for any gate of C ′, which proves the result.

We show that a tree decomposition for C ◦C ′′ can be obtained from two tree decompositions
T and T ′′ for C and C ′′ that have same skeleton, as the sum T + T ′′ with same skeleton where
each bag b′′ of T + T ′ is the union of the corresponding bags b and b′ in T and T ′. Namely:
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Definition D.5. Given two tree decompositions T and T ′ with same skeleton, the sum of T
and T ′ (written T + T ′) is the tree decomposition T with same skeleton where every bag b′′ is
the union of the corresponding bags b and b′ in T and T ′.

The following is immediate:

Lemma D.3. Given two tree decompositions with same skeleton T and T ′ of fixed width k and
k′ for a Boolean circuit C and a Boolean circuit C ′, T + T ′ can be computed in linear time in
T and T ′ and has width 6 k + k′ + 1.

We now show:

Lemma D.4. Let C and C ′ be stitchable circuits with tree decompositions T and T ′ with same
skeleton (with witnessing bijection ψ). Assume that for any g ∈ C ′

inp and bag b of T ′ with

g ∈ dom(b), we have g ∈ dom(ψ−1(b)). Then T + T ′ is a tree decomposition of C ◦ C ′.

Proof. We consider IC◦C′ and show that T + T ′ is a tree decomposition of it:
• Let g be a gate of C ◦ C ′. If g is not a gate of C ∩ C ′, then its occurrences in T + T ′

are only its occurrences in T or in T ′, so that they form a connected subtree of T + T ′

as they did in T or T ′. If it is a gate of C ∩ C ′, then it is an input gate of C ′ because
C and C ′ are stitchable, and by the hypothesis, its occurrences in T ′ are a subset of its
occurrences in T , so its occurrences in T +T ′ are its occurrences in T , and they also form
a connected subtree.

• Let g be a tuple occurring in a fact of IC◦C′ . Clearly g occurs either in IC or in IC′ , so
that it is covered by the bag bg that covers all elements of g in T or in T ′.

Last, we conclude the proof of Theorem D.1:

Proof. Let k ∈ N, q be the GSO sentence, and let A be a Γk
σ-bNTA that tests q for treewidth k

according to Theorem 4.1, which we lift to a Γk
σ in the same way as in the proof of Theorem 4.2.

Construct in linear time in the input cc-instance J = (I, C, ϕ) a tree decomposition of J
of width 6 k, and a cc-encoding E′ = (E,C, T, χ) of width k of J , according to Lemma D.1,
satisfying the conditions of that lemma. Now, use Theorem 4.2 to compute an arity-two prove-
nance circuit C ′ of A on E and with a tree decomposition T ′ whose width is constant in I. We
further observe from the proof of the proposition that T ′ that has same skeleton as E (and T ),
and that for any node n ∈ E, the input gate for this node is in the bag corresponding to n in
T ′.

We then observe that C ′ and C are stitchable circuits, and that their tree decompositions
T ′ and T have same skeleton and satisfy the conditions of Lemma D.4. We deduce from this
lemma and Lemma D.3 that we can construct in linear time the stitching C ′′ ··= C ◦ C ′ and a
tree decomposition of it, whose width does not depend on J . We now show that C ′′ satisfies
the desired property, namely, ν(C ′′) is 1 iff ν(J) |= q. For any valuation ν of Jinp, we have
ν(C ◦ C ′) = ν ′(C ′), by Lemma D.2, where ν ′ is the valuation of C ′

inp obtained from ν(C). It is
clear by definition of ν(J) that a fact F is present in ν(J) iff ϕ(F ) is true in ν(C). We conclude
using the fact that ν ′ is a provenance circuit: ν ′(C ′) holds iff {F ∈ I | ϕ(F ) true in ν(C)} |=
q.

Probability evaluation. We now describe the consequences of Theorem D.1 in terms of prob-
ability evaluation. Here is what we want to show:
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Corollary D.1. The problem of computing the probability of a fixed GSO sentence on bounded-
treewidth pcc-instances can be solved in ra-linear time data complexity.

To prove this corollary, we need the following definition and key result:

Definition D.6. Let C = (G,W, g0, µ) be an (arity-two non-monotone) Boolean circuit and
π be a probabilistic valuation of C associating each g ∈ Cinp to a probability distribution πg
on {0, 1}, that is, one rational v0 = πg(0) and one rational v1 = πg(1) such that v0 + v1 = 1.
The probability evaluation problem for C and π is to compute the probability distribution of
g0 under the product distribution for the inputs (i.e., assuming independence), that is, Prg0
mapping v ∈ {0, 1} to

∑

ν∈Val(Cinp)
ν(g0)=v

∏

g∈Cinp
πg(ν(g))

where Val(Cinp) denotes the set of Boolean valuations of Cinp.

Theorem D.2. Given a tree decomposition T of width k of an arity-two Boolean circuit C,
and given a probabilistic valuation π of C, the probability evaluation problem for C and π can
be solved in time ra-linear in 2k |T |+ |π|+ |C|.

With the above theorem, we can prove Corollary D.1 as follows:

Proof. Let J = (I, C, ϕ, π) be a pcc-instance of treewidth k and q a query. We use Theorem D.1
to construct in linear time a Boolean circuit C ′ of treewidth k′ dependent only on k and q, with
distinguished gate g. We build from C ′ a tree decomposition of width k′ in linear time. The
probability that q is true in J is Prg(1). We conclude as Theorem D.2 states that this can be
computed in ra-linear time in |C ′|+ |π| for fixed k′.

We now prove Theorem D.2.

Proof. Fix T = (B,L,R,dom) a tree decomposition of a Boolean circuit C = (G,W, g0, µ) (so
that for any b ∈ B, dom(b) is a set of gates of G). We define E ··= L ∪R and, for g ∈ G, V (g)
the value set of g. For e = (b1, b2) ∈ E, we define dom(e) ··= dom(b1) ∩ dom(b2), the shared
elements between a bag and its parent. We assume an arbitrary order < over G and see dom(b)
as a tuple by ordering elements of dom(b) with < (this ordering taking constant time as the
size of bags is bounded by a constant). If dom(b) = (g1, . . . , gm), we note V (b) = {0, 1}m (and
similarly, for e ∈ E, V (e) is the product over dom(e)). For every g ∈ G, let β(g) ∈ B be an
arbitrary bag containing g and all gates that are inputs of g, that is, all gates g′ such that
(g′, g, i) ∈ W for some W : such a bag exists by definition of the tree decomposition of circuits
(there is a fact in IC regrouping g and the g′) and we can precompute such a function in linear
time by a traversal of T . In particular, if g is an input gate, then β(g) is an arbitrary bag
containing just g.

We associate to every bag b ∈ B (resp., every edge e ∈ E) a potential function Φb : V (b)→ Q+

(resp., Φe : V (e) → Q+), where Q+ denotes the nonnegative rational numbers, initialized to
the constant 1 function. We will store for each bag and each edge the full table of values of Φe,
i.e., at most 2k values, each of which has size bounded by |π|.

The functions πg for g ∈ Cinp are mappings from V (g) to R+. For a bag b ∈ B with
g ∈ dom(b), we define πbg as the function that maps every tuple d ∈ V (b) to πg(d

′) where d′ is
the value assigned to g in d.

For g a non-input gate, let κ(g) be the tuple formed of g and all gates with a wire to g,
ordered by <. Let f ··= µ(g) be the function of g, in {¬,∨,∧, 0, 1}. We see f as a subrelation
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Rg of V (κ(t)) (the table of values of the function, with columns reordered by applying < on
g), that is, a set of (arity(f) + 1)-tuples which represents the graph of the function.

We update the potential function by the following steps, where the product of two functions
f and f ′ which have same domain D denotes pointwise multiplication, that is, (f × f ′)(x) =
f(x)× f ′(x) for all x ∈ D:

1. For every g ∈ Cinp, we set Φβ(g) ··= Φβ(g) × π
β(g)
g .

2. For every g ∈ G\Cinp, we set Φβ(g)(d) ··= 0 if the projection of d onto κ(g) is not in Rg,
we leave Φβ(g)(t) unchanged otherwise.

Note that we have now initialized the potential functions in a way which exactly corresponds
to that of [HD96], for a straightforward interpretation of our circuit with probabilistic inputs
as a special case of a belief network where all non-root nodes are deterministic (i.e., have a
conditional distribution with values in {0, 1}).

We now apply as is the Global Propagation steps described in Section 5.3 of [HD96]: if
we choose the root of the tree decomposition as the root cluster X, this consists in propagating
potentials from the leaves of the tree decomposition up to the root, then from the root down
to the leaves of the tree. This process is linear in |T | and, at every bag of T , requires a number
of arithmetic operations linear in 2k.

As shown in [LS88,HD96], at the end of the process, the desired probability distribution Prg
for gate g can be obtained by marginalizing Φβ(g):

Prg(d
′) =

∑

d∈V (β(g))
dk=d′

Φβ(g)(d)

where k is the position of g in dom(β(g)).
The whole process is linear in |T |×2k+ |C|+ |π| under fixed-cost arithmetic; under real-cost

arithmetic, belief propagation requires multiplying and summing linearly many times O(|T |×2k)
probability values, each of size bounded by |π|, which is polynomial-time in |T |, 2k, |π|.

Consequences for pc-instances. We define existing the formalism of (p)c-instances [SORK11],
which is analogous to (p)cc-instances, but annotates facts with propositional formulae rather
than circuits:

Definition D.7 [HAKO09,GT06]. A c-instance J is a relational instance where each tuple is
labeled with a propositional formula of variables (or events) from a fixed set X. For a valuation
ν of X mapping each variable to {0, 1}, the possible world ν(J) is obtained by retaining exactly
the tuples whose annotation evaluates to 1 under ν; JJK is the set of all these possible worlds.
Observe that different valuations may yield the same possible world.

A pc-instance J = (J ′, π) is defined as a c-instance J ′ and a probabilistic valuation π :
X → [0, 1] for the variables used in J ′. Like all probabilities in this paper, the values of π
are rationals. The probability distribution JJK defined by J has universe JJ ′K and probability
measure PrJ(I) ··=

∑

ν|ν(J ′)=I PrJ(ν) with the product distribution on valuations:

PrJ(ν) ··=
∏

x∈X
ν(x)=1

π(x)
∏

x∈X
ν(x)=0

(1− π(x)).

We define a notion of treewidth for them:
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Definition D.8. Let σo = σ ∪ {Occ,Cooc}, where Occ and Cooc have arity two. From a
pc-instance J , we define the relational encoding IJ of J as the σo-instance where each event
e of J is encoded to a fresh ae ∈ dom(J), and where we add a fact Occ(a, ae) in IJ whenever
a ∈ dom(J) is used in a fact annotated by a formula involving e, and Cooc(ae, af ) whenever
events e and f co-occur in the formula of some fact.

The treewidth w(J) of a (p)c-instance J is w(IJ).

This notion of treewidth, through event (co-)occurrences, can be connected to treewidth
for (p)cc-instances, to ensure tractability of query evaluation on (p)c-instances of bounded
treewidth in that sense. A technicality is that we must first rewrite annotations of the bounded-
treewidth (p)c-instance to bound their size by a constant; but we can show:

Proposition D.1. For any fixed k, given a (p)c-instance J of width 6 k, we can compute in
linear time a (p)cc-instance J which is equivalent (has the same possible worlds with the same
probabilities) and has treewidth depending only on k.

Proof. We first justify that we can compute in linear time from J (p)c-instance J ′ with the
same events such that for any valuation ν, we have ν(J) = ν(J ′) (and PrJ(ν) = PrJ ′(ν)), and
the annotations of J ′ have size depending only on k.

Indeed, we observe that by our assumption that w(J) 6 k, for any formula F in an annotation,
the number of distinct events occurring in F is at most k. Indeed, there is a Cooc clique between
these events in IJ , so that as w(IJ) 6 k (by Lemma 1 of [Gav74]) there must be less than k of
them.

Now, we observe that any formula in J can be rewritten, in linear time in this formula for
fixed k, to an equivalent formula whose size depends only on k. Indeed, for every valuation
of the input events, which means at most 2k valuations by the above, we can evaluate the
formula in linear time; then we can rewrite the formula to the disjunction of all valuations that
satisfy it, each valuation being tested as the conjunction of the right events and negation of
events. So this overall process produces in linear time an equivalent (p)c-instance J ′ where the
annotation size depends only on k. So we can assume without loss of generality that the size
of the annotations of J is bounded by a constant.

Consider now the (p)c-instance J , its relational encoding IJ , and a tree decomposition T of
IJ . We build a tree decomposition T ′ of a relational encoding IJ of a cc-instance J ′ = (I, C, ϕ)
designed to be equivalent to J . Start by adding to C the input gates, which correspond to the
events of J .

Now, consider each fact F = R(a) of J . Let e be the set of events used in the annotation
AF of F . Note that every pair of S = a ⊔ e co-occurs in some fact of IJ : the elements of a
co-occur within F , the elements of e co-occur in a Cooc fact, and any pair of elements from a

and e co-occur in some Occ fact. Hence, by Lemma 1 of [Gav74], there is a bag bF ∈ T such
that S ⊆ dom(b).

Let CF be a circuit representation of the Boolean function AF on E, whose size depends only
on k. Add CF to C, add F to I, and set ϕ(F ) to be the distinguished node of CF . We have
thus built J ′, which by construction is equivalent to J .

We now build T ′ by making it a copy of T . Now, for each fact F , considering its bag bF ,
and b′F the corresponding bag in T ′, we add all elements of CF to b′F . This decomposition
clearly covers all facts of IJ ′ , and event occurrences form subtrees because they do in T and
the elements that we added to T ′ are always in a single bag only. Last, it is clear that the bag
size depends only on k, as the size of the CF added to the bags depends only on k, and at most
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k of them are added to each bag (because there are at most k elements per bag).
We have not talked about probabilities, but clearly if J is a pc-instance the probabilities of

the inputs of the pcc-instance J ′ should be defined analogously.

We can now combine the above with Theorem D.1, and deduce the tractability of query
evaluation on bounded-treewidth pc-instances.

Theorem D.3. For bounded-treewidth pc-instances, the probability query evaluation problem
for Boolean MSO queries can be solved in ra-linear time data complexity.

Proof. The result is an immediate consequence of Proposition D.1 and Theorem D.1 as long
as we show that, for any fixed k ∈ N∗, and for every (p)c-instance J of width 6 k, one can
compute in linear time a (p)c-instance J ′ with the same events such that for any valuation ν,
we have ν(J) = ν(J ′) (and PrJ(ν) = PrJ ′(ν)), and the annotations of J ′ have size depending
only on k.

Fix k and J . We observe that by our assumption that w(J) 6 k, for any formula Φ in an
annotation, the number pΦ of distinct events occurring in Φ is at most k. Indeed, there is a
Cooc clique between these events in IJ and each of them is connected by the Occ relation to
domain elements of the fact F annotated by Φ (there is at least one), so we have in total a
(pΦ+1)-clique. By Lemma 1 of [Gav74], any tree decomposition must have one node containing
all these pΦ + 1 elements, and therefore pΦ 6 k.

Now, we observe that any formula in J can be rewritten, in linear time in this formula for
fixed k, to an equivalent formula whose size depends only on k. Indeed, for every valuation of
the input events, which means at most 2k valuations by the above, we can evaluate the formula
in linear time; then we can rewrite the formula to the disjunction of all valuations that satisfy
it, each valuation being tested as a conjunction of at most k literals. So this overall process
produces in linear time an equivalent (p)c-instance where the annotation size depends only on
k.

D.2. Probabilistic XML

We will first prove the result on scopes (Proposition 6.1) and then prove the result on local
models (Theorem 6.1).

XML and instances. We first describe XML documents and their connections to relational
models.

Definition D.9. An XML document with label set Λ (or Λ-document) is an unranked Λ-tree.

Definition D.10. A PrXML-tree T is an unranked Λ-tree, for a fixed alphabet Λ of labels,
augmented with a set of Boolean events E where each event ex has a probability 0 6 px 6 1,
and where each edge of the tree is labeled by a propositional formula over E.

We see T as defining a probability distribution over Λ-trees in the following fashion: for every
valuation ν over E, the possible world ν(T ) is obtained by removing all edges whose annotation
evaluates to false under ν, and all their descendent nodes and edges. The probability of a Λ-tree
T ′ according to T is the sum of the probability of all valuations ν such that ν(T ) = T ′, where
the probability of a valuation is defined assuming that the events in E are drawn independently
with their indicated probability.
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Definition D.11. To perform query evaluation on a PrXML document is to determine, for a
fixed query over Λ-trees, given an input PrXML document T , what is the total probability of its
possible worlds that satisfy q; we study its data complexity, i.e., its complexity as a function
of T .

We always assume that the label set Λ is fixed (not provided as input). As XML documents
are unranked, it is often more convenient to manipulate their binary left-child-right-sibling
representation:

Definition D.12. The left-child-right-sibling (LCRS) representation of an unranked rooted
ordered Λ-tree T is the following Λ-tree T ′: a node n whose children are the ordered sequence
of siblings n1, . . . , nk is encoded as the node n with L(n) = n1, R(n1) = n2, ..., R(nk−1) = nk;
we complete by nodes labeled ⊥ /∈ Λ to make the tree full.

We now define how XML documents can be encoded to the relational setting.

Definition D.13. Given a Λ-document D, let σΛ be the relational signature with two binary
predicates FC and NS (for “first child” and “next sibling”), and unary predicates Pλ for every
λ ∈ Λ. The relational encoding ID of D is the-σΛ instance with dom(ID) = dom(D), such
that:
• for any consecutive siblings (n, n′), NS (n, n′) holds;
• for every pair (n, n′) of a node n ∈ D and its first child n′ ∈ D following sibling order,
FC (n, n′) holds;
• for every node n ∈ D, the fact Pλ(n)(n) holds.

Lemma D.5. The relational encoding ID of an XML document D has treewidth 1 and can be
computed in linear time.

Proof. Immediate: the relational encoding is clearly computable in linear time and there is
a width-1 tree decomposition of the relational encoding that has same skeleton as the LCRS
representation of the XML document.

Importantly, the language of MSO queries on XML documents [NS02], which we now define
formally, can be easily translated to queries on the relational encoding:

Definition D.14. An MSO query on XML documents is a MSO formula where first-order
variables refer to nodes and where atoms are λ(x) (x has label λ), x→ y (x is the parent of y),
and x < y (x and y are siblings and x comes before y).

Lemma D.6. For any MSO query q on Λ-documents, one can compute in linear time an MSO
query q′ on σΛ such that for any Λ-document D, D |= q iff ID |= q′.

Proof. We add a constant overhead to q by defining the predicates λ(x) for λ ∈ Λ as Pλ(x),
the predicate x < y to be the transitive closure of NS (¬(x = y) ∧ ∀S(x ∈ S ∧ (∀zz′(z ∈
S∧NS (z, z′))⇒ z′ ∈ S)⇒ y ∈ S)), and the predicate x→ y to be ∃z,FC (x, z)∧(z = y∨z < y).
It is clear that the semantics of those atoms on ID match that of the corresponding atoms on
D, so that a straightforward structural induction on the formula shows that q′ satisfies the
desired properties.

Definition D.15. Given label set Λ, we say that an XML document D on Λ ⊔ {⊥,det} is a
sparse representation of an XML document D′ on Λ if the root is labeled with an element of Λ,
and the XML document obtained from D by removing every ⊥ node and their descendants, and
replacing every det node by the collection of its children, in order, is exactly D′.
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We say that a σΛ⊔{det} instance I is a weak relational encoding of an XML document D with
label set Λ if there exists a sparse representation D′ of D such that I is the relational encoding
of D′ except that P⊥ facts are not written.

Proposition D.2. For any MSO query q on XML documents with (fixed) label set Λ, one can
compute in linear time an MSO query q′ on σΛ such that for any XML document D on label
set Λ, if D |= q then I |= q′ for any weak relational encoding I of D; and conversely if D 6|= q
then I 6|= q′ for any weak relational encoding I of D.

Proof. We show that, for any MSO query q on XML documents with (fixed) label set Λ, one
can compute in linear time an MSO query q′ on documents with label in Λ⊔{⊥,det} such that
for any XML document D on label set Λ, if D |= q then D′ |= q′ for any sparse representation
D′ of D; and conversely if D 6|= q then D′ 6|= q′ for any sparse representation D′ of D. The
result then follows by Lemma D.6.

We call regular the nodes with label in Λ. Consider a document D and sparse representation
D′ of D with a mapping f from D to D′ witnessing that D′ is a sparse representation of D.
Let us consider a node n ∈ D with children n1, . . . , nk in order, and determine what is the
relationship between f(n) and the f(ni) in D′.

It is straightforward to observe that f(n) is regular and the f(ni) are topmost regular descen-
dants of f(n) in D′; and for i < j, there is some node n′ in D′ (intuitively, their lowest common
ancestor, which is a descendant of f(n), possibly f(n) itself) such that n′ is both an ancestor of
f(ni) and f(nj), n

′ is a descendant of f(n), and n′ has two children n′1 and n′2 such that f(ni)
is a descendant of n′1 (maybe they are equal), f(nj) is a descendant of n′2 (maybe they are
equal), and n′1 < n′2 in D′. Note that n′, n′1 and n′2 are not necessarily regular nodes of D but
can be det nodes. In addition, no ⊥ node can be traversed in any of the ancestor–descendant
chains discussed in this paragraph.

It is now clear that we can have MSO predicates →′ and <′ in D′ following these informal
definitions (and not depending on D or D′), defined from predicates →, < and λ(·) on D′, such
that for every D and sparse encoding D′ of D, for every nodes n, n′ ∈ D, we have n→ n′ in D
iff f(n) → f(n′) in D′ (which should only hold between regular nodes, so nodes in the image
of f), and likewise for <. Last, it is clear that the predicates λ(·) of D can be encoded directly
to the same predicates in D′.

Probabilistic XML. We formally introduce probabilistic XML. We start by PrXMLfie, i.e.,
PrXML with events.

Definition D.16. A PrXMLfie probabilistic XML document D = (D′, π) is a (Λ ⊔ {fie})-
document D′ where edges from fie nodes to their children are labeled with a propositional formula
over some set of Boolean events X, and a probabilistic valuation π mapping each e ∈ X used
in D to an independent probability π(e) ∈ [0, 1] of being true.

The semantics JDK of D is obtained by extending π to a probability distribution on valuations
ν of X as usual, and defining ν(D) for ν to be D′ where all fie nodes are replaced by the
collection of their children with edge annotation Φ such that ν(Φ) = 1 (the others, and their
descendants, are discarded). We require the root to have label in Λ.

We will prove Proposition 6.1 via an encoding of PrXMLfie to pc-instances:

Definition D.17. The pc-encoding of a PrXMLfie document D = (D′, π) in Λ⊔{fie} is the pc-
instance JD = (J ′

D, π
′) with same events, π′ = π, and where the c-instance J ′

D is the relational
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encoding of D′ with the following annotations. NS - and FC -facts are annotated with 1. Pλ(n)-
facts are annotated with the annotation Φ of the edge from the parent of n to n, if Φ exists,
with 1 otherwise.

Proposition D.3. For any MSO query q on Λ-documents, one can compute in linear time an
MSO query q′ on σΛ such that for any PrXMLfie XML document D, for any valuation ν of D,
letting ν ′ be the corresponding valuation of JD, we have that ν(D) |= q iff ν ′(JD) |= q′.

Proof. We prove that for any valuation ν of D, letting ν ′ be the corresponding valuation of JD,
we have that ν ′(JD) is a weak encoding of ν(D) (we see Pfie facts in ν ′(JD) as if they were Pdet

facts). The result then follows by Proposition D.2.
We first show that for any valuation ν of D and corresponding valuation ν ′ of JD, for

every λ ∈ Λ, n is a node of ν ′(JD) that is retained in the XML document ν ′(JD) is a sparse
representation of iff n is a node which is retained in ν(D), with same labels. Indeed, for the
forward implication, observe that any fact Pλ(n) is created for node n with label λ in n, and it
is retained if and only if all its regular ancestors are retained and the annotation of its parent
edge in ν(D) evaluates to 1; conversely, if n has label λ in D then a fact Pλ(n) was created in
I and if n is retained in ν(D) then all the conditions on edges in the chain from n to the root
evaluate to 1 so Pλ(n) does hold and n is retained in ν ′(JD).

We further know that by construction relations FC and NS correspond to the first-child and
next-sibling relations in D no matter the valuation.

So we deduce that JD is the relational encoding of the XML document obtained from D by
replacing all nodes not kept in ν(D) by ⊥ nodes, and removing all edge annotations.

Observe that in this definition of pc-encoding, it is not the case that the possible worlds of
JD are the relational encodings of the possible worlds of D. For instance, the fie nodes are
retained as is, and FC - and NS -facts are always retained even if the corresponding nodes are
dropped. The following example shows that it would not be reasonable to ensure such a strong
property:

Example D.1. Consider an fie node with k children n1, . . . , nk, all annotated with independent
events with probability 1/2. In a straightforward attempt to encode this node and its descendants
to a pc-instance J (or even to a pcc-instance J), we would create one domain element ei for
each of the ni. But then we would need to account for the fact that, as any pair ni, nj may be
retained individually, the fact NS(ei, ej) would need to occur in a possible world of J , and thus
would also occur in J . So this naïve attempt to ensure that the possible worlds of J are exactly
the relational encodings of the possible worlds of D leads to a pcc-instance of quadratic size and
linear treewidth.

Tractability for PrXMLfie. Of course we cannot hope that the pc-encoding of a PrXMLfie

document always has constant treewidth for it is known that for PrXMLfie, evaluating MSO
queries is almost always #P -hard ([KKS08], Theorem 5.2). A first notion of tractability for
a PrXMLfie document D is the treewidth (following Definition D.8) of the pc-encoding of D.
Indeed, Proposition D.3 and Theorem D.3 imply the following:

Corollary D.2. For PrXMLfie documents with bounded-treewidth pc-encoding, the MSO prob-
abilistic query evaluation problem can be solved in ra-linear time data complexity.

The condition on event scopes is a simpler sufficient condition for tractability. We give its
formal definition:
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Definition D.18. Consider a PrXMLfie document D with event set X and its LCRS represen-
tation D′. We say that an event e ∈ X occurs in a node n of D′ if e occurs in the annotation
of the edge from the parent of n to n. For every e ∈ X, let D′

e be the smallest connected
subtree of D′ that covers all nodes where e occurs. The event scope S(n) of a node n ∈ D′ is
{e ∈ X | n ∈ D′

e}. The event scope width of D is ws(D) ··= maxn∈D |S(n)|.

We are now ready to prove the result on XML element scopes:

Proposition D.4. For any PrXMLfie document D, we have w(JD) 6 ws(D) + 1.

Proof. We show how to build a tree decomposition of the relational encoding of JD from the
event scopes. Consider the tree decomposition T of ID that is isomorphic to a LCRS encoding
D′ of D: the root node of D′ is coded to an empty bag, and each node n of the LCRS encoding
with parent n′ is coded to {n′, n}.

We now add to T , for each bag b corresponding to a node n, the events of S(n). It is clear
that T is of the prescribed width and that the occurrences of all nodes and events are connected
subtrees.

We now argue that it is a tree decomposition of the relational encoding of JD, but this is
easily seen: it covers all NS - and FC - facts represented in JD, and covers all occurrences and
co-occurrences by construction of the scopes.

This implies Proposition 6.1 because of Corollary D.2.

Tractability of PrXMLmux,ind. We now introduce the definitions and proofs for the local model,
PrXMLmux,ind.

Definition D.19. A PrXMLmux,ind probabilistic document is an XML document D over Λ ⊔
{ind,mux}, where edges from ind and mux nodes to their children are labeled with a probability
in [0, 1], the annotations of outgoing edges of every mux node summing to 6 1.

The semantics JDK of D is obtained as follows: for every ind node, decide to keep or discard
each child according to the indicated probability, and replace the node by the (possibly empty)
collection of its kept children; for every mux node, choose one child node to keep according to
the indicated probabilities (possibly keep no node if they sum to < 1), and replace the mux node
by the chosen child (or remove it if no child was chosen). All probabilistic choices are performed
independently. When a node is not kept, its descendants are also discarded. We require the root
to have label in Λ.

Observe that in PrXMLmux,ind all probabilistic choices are “local”, in a similar fashion to the
tuple-independent (TID) and BID probabilistic relational formalisms. As we show later, this
helps ensure the tractability of query evaluation.

We use Corollary D.2 to show the tractability of query evaluation on the PrXMLmux,ind local
model, which was already proven in [CKS09]. We first rewrite input documents to a simpler
form:

Definition D.20. Two PrXMLmux,ind documents D1 and D2 are equivalent if for every XML
document D, PrD1(D) = PrD2(D).

Definition D.21. We say that a PrXMLmux,ind is in binary form if it is a full binary tree, and
the sum of the outgoing probabilities of every mux node is equal to 1.

The following definition is needed to ensure linear time execution for technical reasons:
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Definition D.22. A PrXMLmux,ind document is normalized if for every mux nodes, the rational
probabilities that annotate its child nodes all share the same denominator.

Lemma D.7. From any normalized PrXMLmux,ind document D, we can compute in linear time
in D an equivalent PrXMLmux,ind document D′ which is in binary form.

Proof. In this proof, for brevity, we use det nodes to refer to ind nodes whose child edges are
all annotated with probability 1.

First, rewrite mux nodes whose outgoing probabilities sum up to < 1 by adding a det child
for them with the remaining probability. This operation is in linear time because the corre-
sponding number has same denominator as other children of the mux node (as the document
is normalized), and the numerator is smaller than the denominator.

Next, use det nodes to rewrite the children of regular and ind nodes to a chain so that all
regular and ind nodes have at most 2 children. This only causes a constant-factor blowup of
the document.

Next, rewrite mux nodes with more than two children to a hierarchy of mux nodes in the
obvious way: considering a mux node n with k children n1, . . . , nk and probabilities p1, . . . , pk
summing to 1, we replace n by a hierarchy n′1, . . . , n

′
k−1 of mux nodes: the children of each

n′i is ni with probability pi∑
j<i pj

and n′i+1 with probability 1 − pi∑
j<i pj

; except for n′k−1 whose

children are nk−1 and nk (with the same probabilities). This operation can be performed in
linear time as the denominators of the fractions simplify (by the assumption that the document
is normalized), and the sum operations work on operands and results which are smaller than
the numerator.

Now, replace mux nodes with < 2 children by ind nodes (the probabilities are unchanged).
Last, add det children to nodes so that the degree of every node is either 2 or 0.
This process can be performed in linear time and that the resulting document is in binary

form; equivalence has been maintained through all steps.

Now, we can show:

Proposition D.5. For any PrXMLmux,ind document D in binary form, one can compute in
linear time an equivalent PrXMLfie document whose scopes have size 6 1.

Proof. For every ind node n with two children n1 and n2 with probabilities p1 and p2, introduce
two fresh events eind,1n and eind,2n with probabilities p1 and p2, and replace n by a fie node so
that its first and second outgoing edges are annotated with eind,1n and eind,2n .

Likewise, for every mux node n with two children n1 and n2 with probabilities p and 1 − p,
introduce a fresh event emux

n with probability p and replace n by a fie node so that its first and
second outgoing edges are annotated with emux

n and ¬emux
n .

It is immediate that the resulting document D′ is equivalent to D. Now, consider the scope
of any node of this document. Only one event occurs in this node, and the only events that
occur more than one time in the document occur exactly twice, on the edges of two direct
sibling nodes, so they never occur in the scope of any other node. Hence all scopes in D have
size 6 1.

From this, given that PrXMLmux,ind document can be normalized in ra-linear time, we deduce
the tractability of MSO query evaluation on PrXMLmux,ind, as claimed in the main text:

Theorem 6.1 [CKS09]. MSO query evaluation on PrXMLmux,ind has ra-linear data complexity.
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D.3. BID instances

Following [BGMP92,RS07], we define:

Definition D.23. A BID instance I is a relational instance with each relation partitioned into
key and value positions. For each valuation of the key positions, all matching facts (that form
a block) are mutually exclusive, each has a probability > 0 and the probabilities of the block
sum to 6 1. The semantics is to keep, independently between blocks, one fact at random in each
block, according to the indicated probabilities (or possibly no fact if probabilities sum to < 1).

To ensure ra-linear time complexity, we assume that BID instances are given with facts
regrouped per blocks; otherwise our bounds are PTIME as we first need to sort the facts.

Definition D.24. We define the treewidth w(I) of a BID instance I as that of the underlying
relational instance, forgetting about the probabilities.

We show the tractability of MSO query evaluation on BID through Theorem D.1 and Corol-
lary D.1, using the following result:

Lemma D.8. For any fixed k ∈ N∗, given a BID instance J with w(J) 6 k, we can compute
in ra-linear time an equivalent pcc-instance J ′ where w(J ′) depends only on k.

However, the proof of this result is non-trivial. By an encoding to pc-instances, it is straight-
forward to show the result if we assume that the size of each block is bounded by a constant.
But otherwise, we need to build a decision circuit for which value to pick for each key; we do
so in a tree-like fashion following a decomposition of the BID instance.

Proof. Fix k and J . First, compute in linear time a tree decomposition T of J of width
w(J) 6 k.

Without loss of generality, we can assume that probabilities within each block of J are
rationals with the same denominator (if this is not the case, we normalize these probabilities
in ra-linear time).

As in the proof of Lemma B.1, we can assume that every fact of J has been assigned to a
bag of T where it is covered (i.e., F = R(a) with a ⊆ dom(b) for b the covering bag). Actually,
still in the spirit of the proof of Lemma B.1, we can modify the decomposition T by copying
nodes to create chains, so that we can assume that at most one fact is assigned to each bag.
This preprocessing can be performed in linear time. For every fact F of J we let β(F ) be the
bag of T to which fact F was assigned.

We compute the pcc-instance J ′ = (J,C, ϕ) by building C and ϕ and a tree decomposition
T ′ for J ′ with same skeleton as T , which is initialized as a copy of T . We add the gates of C
to T ′ to turn it into a tree decomposition of J ′.

Let B be the set of blocks: a key a ∈ B is a pair of a relation symbol and a tuple that is a
key in J for that relation. We write Ja to refer to J restricted to the facts of block a; and |Ia|
is the size (not the number of facts!) of this part of the instance (the size of both the facts
and the associated probabilities). It is then clear that

∑

a∈B |Ia| = |J |, the size of the original
instance.

Now, for every a ∈ B, consider the subset of bags Ta of T that cover a; it is a connected
subtree, as it is the intersection for every element a ∈ a of the occurrence subtree Tk of this
element, which are connected subtrees, and it is not empty because the elements of a must
occur together in some fact of J so they also do in some bag of T . What is more, we can
precompute in linear time the roots of all the Ta (by the same precomputation as in the proof
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of Lemma B.1). It is also clear that
∑

a∈B |Ta| is of size linear in |J |, as, for fixed σ and k, each
bag of T can only occur in a constant number of Ta.

So we prove the result in the following way: for each a ∈ B, we compute in time O(|Ia|+ |Ta|)
a circuit Ca to annotate the facts of Ia in J ′, and we add the gates of Ca to T ′ to obtain a tree
decomposition of J ′ so far, making sure that we add only a constant number of gates to each
bag, and only to bags that are in Ta. If we can manage this for every a ∈ B, then the result
follows, as we can process the blocks in J in order (as they are provided); our final pcc-instance
has width that is still constant (for each bag of T can only occur in a constant number of Ta);
and by the arguments about the sizes of the sums, the overall running time of the algorithm is
linear in J .

So in what follows we fix a ∈ B and describe the construction of Ca and the associated
decomposition.

Using our preprocessed table to find the root of Ta, we can label its nodes by going over it
top-down, in time linear in Ta. We now notice that for every fact F = R(a,v) of Ia, the bag
β(F ) covers F so it must be in Ta. We write βa for the restriction of the function β to the facts
of Ia.

We now say that a bag b ∈ Ta is an interesting bag either if it is in the image of fa or if it is
a lowest common ancestor of some subset of bags that are in the image of fa. We now observe
that the number of interesting bags of Ta is linear in the number of facts of Ia; indeed, the
interesting bags form the internal nodes and leaves of a binary tree whose leaves must all be
in the image of βa, so the number of leaves is at most the number of facts of Ia, so the total
number of nodes in the tree is linear in the number of leaves.

We now define a weight function w on Ta by w(b) = π(F ) (the probability of F ) for F ∈ Ia
and βa(F ) = b, if any such F exists; w(b) = 0 otherwise. We define bottom-up a cumulative
weight function w′ on Ta as w(b), plus w′(L(b)) if L(b) ∈ Ta, plus w′(R(b)) if R(b) ∈ Ta. For
notational convenience we also extend w′ to anything by saying that w′(b) = 0 if b /∈ Ta or b
does not exist.

Observe now that for a non-interesting bag b, w(b) and w′(b) can be represented either as 0
or as a pointer to some w(b′) or w′(b′) for an interesting bag b′. Indeed, if b is non-interesting
then we must have w(b) = 0. Now we show that if b has a topmost interesting descendant b′

then it is unique: indeed, the lowest common ancestor of two interesting descendants of b is a
descendant of b and it is also interesting, so there is a unique topmost one. Now this means
that either b′ does not exist and w′(b) = 0, or it does exist and all descendants of b that are
in the image of βa are descendants of b′, so that w′(b) = w′(b′) and we can just make w′(b) a
pointer to w′(b′).

Now this justifies that we can compute w and w′ bottom-up in linear time in |Ta| + |Ia|:
observe that we are working on rationals with the same denominator, so the sums that we
perform are sums of integers, whose size always remains less than the common denominator; as
there is a number of interesting bags which is linear in the number of facts of Ia, and those are
the only nodes for which a value (whose size is that of the probabilities in Ia) actually needs
to be computed and written, the computation is performed in time O(|Ta|+ |Ia|) overall.

We now justify that we can encode Ta to a circuit with the correct probabilities. For each
bag b ∈ Ta, we create a gate gib; for the root bag b it is an input gate with probability w′(b);
for other bags it is a gate whose value is defined by the parent bag. Intuitively, gib describes
whether to choose a fact from Fa within the subtree rooted at b.

For every interesting bag b, writing w′(b) = k′/d and w(b) = k/d with d the common
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denominator, create one input gate ghb with probability 1
w′(b)w(b) = k/k′, and one gate gh∧b

which is the AND of ghb and gib. Intuitively, this gate describes whether to generate the fact
assigned at this node, if any. If there is such a fact, set its image by ϕ to be gh∧b . Now if
w′(b) > w(b) (intuitively: there is still the possibility to generate fact at child nodes), we
create one input gate g↔b which has probability 1

w′(b)−w(b)w
′(L(b)). Once again, this probability

simplifies to a rational whose numerator and denominator are < d. We create a gate gL

b to be
gib ∧ ¬g

h
b ∧ g

↔
b (creating a constant number of intermediate gates as necessary), and gR

b to be
gib ∧¬g

h
b ∧¬g

↔
b , setting them to be gi

L(b) and gi
R(b) where applicable (i.e., if L(b) and R(b) exist

and are in Ta).
By contrast, non-interesting bags b just set gi

L(b) and gi
R(b) (where applicable) to be gib, with

no input gates.
We now observe that by construction the resulting circuit has a tree decomposition that is

compatible with T , so that we can add its events to T ′ and only add constant width to the
nodes of Ta as required. It is also easy to see that the circuit gives the correct distribution
on the facts of Fa, with the following invariant: for any bag b ∈ Ta, the probability that gib is
1 is w′(b), and gh∧b , gL

b and gR

b are either all 0 if gib is 0 or, if gib is 1, exactly one is true and
they respectively have marginal probabilities w(b), w′(L(b)), and w′(R(b)). Now the circuit
construction is once again in time O(|Ia| + |Ta|), noting that interesting nodes are the only
nodes where numbers need to be computed and written; and we have performed the entire
computation in time O(|Ia|+ |Ta|), so the overall result is proven.

Combining Lemma D.8 and Theorem D.1, we can conclude:

Theorem 6.2. For any fixed k ∈ N, MSO query evaluation on an input BID instance of
treewidth 6 k has ra-linear data complexity.

D.4. Counting

Theorem 6.3 [ALS91]. For any fixed MSO query q(x) with free first-order variables and
k ∈ N, the number of matching assignments to x on an input instance I of width 6 k can be
computed in ra-linear data complexity.

Proof. Let k ∈ N. Let q(x) be the MSO query. We rewrite it to the following query: q′ :
∃x

∧

x∈x Px(x) ∧ q(x), where the Px are fresh unary predicates. Consider an input instance I
of width 6 k, and expand it to a BID instance I ′ by setting existing relations to be trivial BID
tables (i.e., all attributes of the relation are keys, and all facts have probability 1) and adding
tables Px for every x ∈ x with one attribute, with the empty set as key, and with facts Px(a)
for all a ∈ dom(I), with probability 1/ |dom(I)|. This rewriting can clearly be performed in
ra-linear time, and if I has treewidth 6 k then so does I ′. Intuitively, the possible worlds of I ′

are all the possible ways of extending I with facts Px(a) for x ∈ x and a ∈ dom(I), with only

one fact Px(a) for every x ∈ x, and each possible world has probability 1/ |dom(I)||x|.
We now make the immediate observation that for every such possible world I ′a of I ′ indexed

by the ax ∈ dom(I) for x ∈ x, where we add the facts Px(ax) for x ∈ x, we have I ′a |= q′ iff
I |= q(a). Hence, the number of matches of q in I is the number of possible worlds of I ′ where

q′ holds, that is, the probability of q′ on I ′ multiplied by M ··= |dom(I)||x|.
We conclude by Theorem 6.2 that we can compute this probability in ra-linear time in I ′,

that is, in I, and we compute the count from the probability by multiplying by M in ra-linear
time, proving the result.
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