
Auto-Completion Learning for XML

Serge Abiteboul
Collège de France

INRIA Saclay & ENS Cachan
serge.abiteboul@inria.fr

Yael Amsterdamer
INRIA Saclay

Tel Aviv University
yaelamst@post.tau.ac.il

Tova Milo
Tel Aviv University

milo@cs.tau.ac.il

Pierre Senellart
Institut Télécom; Télécom ParisTech

CNRS LTCI
pierre.senellart@telecom-

paristech.fr

ABSTRACT
Editing an XML document manually is a complicated task.
While many XML editors exist in the market, we argue that
some important functionalities are missing in all of them.
Our goal is to makes the editing task simpler and faster. We
present ALEX (Auto-completion Learning Editor for XML),
an editor that assists the users by providing intelligent auto-
completion suggestions. These suggestions are adapted to the
user needs, simply by feeding ALEX with a set of example XML
documents to learn from. The suggestions are also guaranteed
to be compliant with a given XML schema, possibly including
integrity constraints. To fulfill this challenging goal, we rely
on novel, theoretical foundations by us and others, which are
combined here in a system for the first time.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Prepa-
ration—XML; H.5.2 [Information Interfaces and Pre-
sentation]: User Interfaces

General Terms
Algorithms, Design

Keywords
XML, editor, auto-completion, learning, schema

1. INTRODUCTION
XML is an extremely common and useful format for rep-

resenting semistructured data. While XML is sometimes
automatically generated, e.g., in Web publishing, it is of-
ten the case that XML documents must be manually edited.
Popular examples include technical documentation in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

DocBook format, XHTML, and even XML Schema docu-
ments. Editing an XML document manually is a complicated
task, and an XML editor may provide functionalities that
simplify the lives of the users. We argue that while exist-
ing XML editors provide many such functionalities, some
important ones are missing. (We will describe them further.)

We present ALEX (Auto-completion Learning Editor for
XML). The uniqueness of ALEX lies in its ability to use exam-
ple documents to give the user intelligent auto-completion
suggestions. For that, we use a novel model [1] that captures,
in a compact manner, the structural distribution of the ex-
amples. This model is unique since it also allows expressing
intricate dependencies that arise from the schema structure
and from integrity constraints. Using this model, we are able
to generate document parts that are compatible with the
schema and resemble the examples. These parts are then
suggested to the user as auto-completions, which makes the
editing process significantly simpler and quicker.

To illustrate the needs for editing XML documents as well
as the solution, consider a situation that every researcher reg-
ularly faces: updating the personal data on their homepage.
Our example researcher is a very well-organized one, and
keeps her data in an XML document conforming to a stan-
dard schema for personal information. This schema allows
entering information about activities, positions, projects, in-
terests, various publication types, contact details, and more,
in a structured manner. Later on, this information can be
automatically rendered and displayed on the researcher Web
site. She would like to edit this document (e.g., add new
activities), as quickly as possible and without much hassle.

First, the researcher does not know the schema by heart.
Typically, such a schema is very rich and complex, and
contains parts that are more relevant to her, as well as
totally irrelevant ones. For instance, a full-time researcher
may not be concerned with parts of the schema related to
teaching. Thus, the researcher would like to get suggestions
on what to write, that are both compliant with the schema
and adapted to her current preferences (she may change these
later, e.g., when changing positions). Many XML editors,
such as Rinzo [9], suggest all possible next nodes (elements
or attributes) according to the schema, but are not adaptive.

Second, instead of getting auto-completion suggestions for
one node at a time, our researcher would like to be presented
with suggestions containing large bulks of the desired XML
structure. For instance, if she wants to add a publication

in conference proceedings, she would like a suggestion for
the entire structure of such publication, with the most useful
fields (such as title, authors, etc.). Here, user preferences
play an even more significant role: as the auto-completion
suggestions get larger, the number of possible completions
may sharply increase. Thus, we should not show all possible
suggestions, but rather only the most relevant ones.

Last, the schema our researcher uses may contain integrity
constraints, e.g.: all publication titles must be distinct. This
greatly complicates matters, since many documents that ad-
here to the schema structure may not be valid w.r.t. the
constraints. In this case, the editor must only suggest com-
pletions to valid documents. It must also alert on constraint
violations, in case the user manually types in data.
ALEX has been designed to fulfill all the aforementioned user

needs. Suppose our user has a set of examples for relevant
documents. This set may include homepages of colleagues
from her field, the previous version of her homepage, etc.
ALEX can use this set to learn a probabilistic distribution over
the different schema parts, based on their frequencies in the
examples. Then, this distribution can be used to randomly
generate and rank the possible completions that are valid
w.r.t. the schema, also supporting integrity constraints. The
solution we provide is generic, and works for any schema
structure, as well as important types of integrity constraints
encountered in practice. It is also highly adaptive, since the
user can change the editor behavior simply by adding or
removing document examples. There are several technical
challenges in designing and implementing such a solution.
In particular, those challenges include: (i) learning a model
that is compact, and describes the structural distribution in
the examples (this is different from a standard data mining
task, because of the need to support the intricate schema
structure and integrity constraints); and (ii) using the model
that has been learned to generate auto-completions relevant
to the particular user needs. For that, we rely on solid
theoretical foundations, developed by us and others [1, 2, 6].
The algorithms we use from these works are computationally
non-trivial, and in particular the algorithm of [6] solves
an NP-hard problem. We show that, in practice, using
optimizations makes these algorithms feasible. In addition,
the combined use of these algorithms, which we do for the
first time, requires additional non-trivial adaptations.

We used the homepage example to explain the require-
ments from an XML editor and mention challenges. Auto-
completion is more generally useful in a number of editing
tasks. It is often the case, e.g., for DocBook, that the schema
includes a large number of options, and that only a fragment
of them are used in a given document. Also, schema lan-
guages such as XML Schema (hereafter referred to as XSD)
support the use of integrity constraints, and thus a generic
editor needs to take them into account as ALEX does.

Demonstration Scenario. Our demonstration will show
the usefulness of ALEX for the task of creating a personal
homepage. At the end of the demonstration, the participants
will be able to “take home” a personalized homepage they
created, in both XML and HTML formats. We use a general
schema for the data, inspired by the FOAF format for per-
sonal details [4]. We collected from the Web several sets of
example documents complying with this schema, containing
real data about computer scientists.

We will demonstrate the use of ALEX for users with different

profiles, choosing different sets of examples to feed into the
system. To demonstrate the adaptivity of ALEX, we will play
the roles of these users first, and then invite participants
to experiment with the system. They will be able to freely
choose examples for homepages. Then, they will provide
those examples as input for ALEX, and use it to create XML
documents with the data for their homepage. We will see
what suggestions ALEX makes for each choice of examples,
and demonstrate its effectiveness.

2. TECHNICAL BACKGROUND
In this section, we overview the theoretical model we use

as a basis for the auto-completion. Given a set of example
documents, we can learn a model that expresses the structural
distribution in these examples, i.e., how frequently different
schema parts are used. The model can then be used to
generate random XML documents, according to the learned
distribution, that are expected to resemble the examples.
We adapt it to generate XML parts that can be plugged at
a certain point of a given document – i.e., auto-completion
suggestions. Finally, instead of generating randomly, we can
deterministically generate the most likely completions, using
a top-k algorithm. For further details, see [1, 2, 6].

The model. Let us start with briefly explaining the model
for XML schemas (without constraints), which forms the
basis for our model. In XSD, the possibilities for the children
of a node are defined by a regular expression. For instance,
we can state that for each a-labeled node, the sequence of
labels of its children (from left to right) is in the regular lan-
guage a∗bc∗. Instead of a regular expression, in our model
we associate each node label with a deterministic finite au-
tomaton (DFA). An XML document is then modeled as a
finite, labeled and ordered tree. We say that a document
adheres to the schema if for every node, the sequence of its
children’s labels is accepted by the relevant DFA.

This schema model suggests an intuitive (nondeterministic)
XML generator: start with a single node bearing the root
label. Then choose an accepting run of its DFA. According to
the word accepted by this run, a1 . . . an, generate n children
for the node, bearing the labels a1 . . . an, and so on. To
turn this into a probabilistic generator, we assign to each
transition a probability, t-prob. These are the probabilities
of the transitions to be selected in the course of generation.
The choice of t-probs is important, since we want the model
to reflect the distribution of the examples. We use the
algorithm of [1] for learning probabilities that maximize the
likelihood of generating the example set. In a nutshell, this
algorithm uses the schema to verify the example documents,
and counts how many times each automaton transition was
chosen. Then, the t-prob of each transition is the likelihood
of choosing it according to the examples.

The generator defined here only generates the node struc-
ture but not data values. We use a method inspired by [1]
for data value generation.

Auto-completion under integrity constraints. Real appli-
cations often involve some semantic constraints. We want to
generate only auto-completions that lead to documents that
are valid with respect to these constraints. Let a and b be
some leaf labels. We consider here three kinds of global con-
straints on data values, which are also expressible in schema

languages, e.g., DTD or XSD: key constraints, imposing that
all the values of a-labeled leafs are unique; inclusion con-
straints, imposing that for every value of a a-labeled leaf,
some b-labeled leaf has the same value; and domain con-
straints, imposing that the values of a-labeled leaves are from
some domain dom(a).

Allowing the use of such constraints increases the expres-
siveness of the schema, but poses a new difficulty: some
document skeletons that adhere to the schema, may have no
assignment of values that is valid w.r.t. the constraints. To
avoid generating such invalid skeletons, we show in [1], based
on the results of [6], that a binary continuation-test can be
used on each transition chosen during the generation process.
The continuation-test returns true iff a transition does not
lead to a “dead end”. This continuation-test is proved to be
NP-complete, but when the schema is small relatively to the
documents, the test is still feasible.

An adaptation is also required for the tuning of t-probs in
the presence of constraints, as explained in [1].

Finding completions in a specific point of the docu-
ment. The model previously described can be used to gen-
erate an initial structure, when the user creates a new XML
document. However, to allow full editing capabilities, we
want to support generating document parts that can be
plugged in a specific point of the document, according to
user requests. Given as input the document, and a specific
point in it, we first need to perform a reachability test, to see
if there exists a non-empty sub-tree that can fit at this point.
Then we start generating a sub-tree from the given point,
but alter the continuation-test to make sure that the suffix of
the original tree is eventually generated. This alteration is a
novel adaptation of the original algorithm, which we created
especially for the task of XML editing.

Finding the best completions. There may be unboundedly
many completions for a certain document at a certain point.
We can generate random completions, but we may also be
interested in finding the most likely completions. For that,
we use the top-k search algorithm from [2] that is based on
the A∗ search algorithm.

Related work. As mentioned above, we use results from
three papers [1, 2, 6], that provide the main theoretical back-
ground for the present demonstration. XML generation,
which we implement here, was studied in different contexts
(see, e.g., [3, 5]). We found our model from [1] convenient
in the context of an XML editor, since it is automatically
adapted to a set of examples. Among the various models that
have been proposed for probabilistic XML and schemas, we
believe our model is best suited for the task at hand because
it allows generating all documents satisfying a given schema,
and it supports the most standard integrity constraints.

As mentioned in the intro, ALEX provides unique features
that, to the best of our knowledge, cannot be found in other
editors. In contrast, other editors may provide different
features: graphical representation of XML documents, de-
bugging for certain types of XML languages, etc. Introducing
such features in ALEX suggest interesting research directions.

Finally, auto-completion is widely used in different con-
texts, e.g., prediction of natural-language user input [8], and
query auto-completion [7]. However, auto-completion in our
context of XML editing faces new challenges, from learn-

Load schema

Corpus Loader

Continuation-
Test

File system

Example
 documents

New document

Get suggestion

Auto-completion
suggestion

hasCont?(prefix, suffix,
choice)

hasCont?(prefix, suffix,
choice)

Load example
corpus

Probabilistic
Generator

schema UI

Completion
Finder

The Web

The user

Figure 1: System Diagram

ing from the complex structure of example documents, to
resolving violations in the case of integrity constraints.

3. SYSTEM OVERVIEW
ALEX is written in Java, and is based on Rinzo [9], an

open-source XML editor plugin for the Eclipse IDE. We next
provide an overview of the main system components. These
components are also shown in Figure 1.

Corpus Loader. This component gets as input an XSD
file and a set of example XML files satisfying the schema. It
then uses an algorithm based on [1,6] to learn a probabilistic
generator that maximizes the likelihood of the examples.

Continuation-Test. This component is essentially the
implementation of the continuation-test of [1], described
in the previous section. It gets as input the schema tree
automaton and constraints, a prefix and possibly a suffix of
an XML document, and the choice of next transition. The
result is Boolean; it is yes if there is a continuation for this
particular next transition. The algorithm has been adapted
to provide results as fast as possible for our demo scenario.

Completion Finder. This component gets requests for
auto-completion in the form of XML document prefix and
suffix. It has two modes, according to whether the prefix
and suffix are empty (new documents) or not. In the first
mode, k random document skeletons are generated, and
the user may choose from them. In its second mode, the
completion finder seeks the top-k sub-trees to plug-in between
the prefix and suffix. In both modes the calls are made to
the continuation-test component, to avoid reaching a dead
end.

Editor User Interface. The UI of ALEX is based on an
existing XML editor (the Rinzo Eclipse plugin) and thus is
very intuitive and user-friendly. Via this interface the user
may choose inputs to the corpus loader, to customize the
auto-completion suggestions. He may then create a new XML
file or choose to edit an existing one. During the editing
process the user can ask for auto-completion suggestions
from the completion finder in certain points of the document
(according to the cursor location). A warning is displayed
whenever the document violates the schema.

4. DEMONSTRATION
For the demonstration, we chose the editing task of the

introduction example: updating a researcher’s homepage.
We will show the usefulness of ALEX for editing an XML
document containing such data and, as already mentioned,
at the end of the demonstration participants will be invited to
create personalized homepages. Figure 2 shows a screenshot

Figure 2: A screenshot of ALEX

of ALEX, with a list of auto-completion suggestions for the
current cursor position. The panel on the right displays the
content of the currently selected suggestion. Note that there
are only place holders for data values (depicted as rectangles);
the user can get suggestions for data values separately.

Settings. To represent personal data to display in a home-
page, we use a general schema inspired by the FOAF format
for personal details [4]. We have generated a corpus of exam-
ple documents adhering to this schema, based on real data
about computer scientists. This data was collected from the
scientists information in ArnetMiner Web site [10] and from
DBLP. To this data, we also add the XML documents created
by the participants in the course of the demonstration. The
documents include contact details, general information such
as affiliation and area of expertise, publications, co-authors,
etc. In addition, the documents express certain choices of
style. For example, the presence of an image, or the order
in which the data is displayed in the homepage. We used
synthetic data for these choices, inspired by real homepages.

Let us now overview the course of demonstration.

Introducing ALEX. The goal of the first stage of the demon-
stration is to get the audience familiar with the schema, and
to demonstrate the use of ALEX. We will start by playing the
role of two researchers who want to create their homepages.
To illustrate the adaptivity of ALEX, we will assume that
those researchers come from different backgrounds, and have
different tastes in style. Each of the researchers will accord-
ingly choose some homepages they like, from the examples
from the internet and those created by previous participants.
For instance, one simulated researcher may belong to the
SIGMOD community, and the other to PODS; and thus we
will choose for each of them homepages of colleagues from
their community. Two instances of ALEX running on two lap-
tops in parallel will each load the examples chosen by one of
the researchers. Then, we will create a new XML document
using ALEX on each of the computers. We will show how,
according to the difference in the chosen examples, ALEX may
provide different auto-completion suggestions. For instance,
an entry for a SIGMOD publication will probably be ranked
lower among the suggestions for theoretical researchers; and
the choice of style may affect, e.g., the presence of a pic-
ture. We will also see how ALEX prevents the violation of the
schema structure or of the constraints.

Interactive participation. Now that the spectators are a
bit familiar with ALEX, they can use the system. Volunteers
will be invited to create homepages for themselves, each on a
different laptop. Similarly to what we did in the first stage,
they will choose examples for homepages, this time accord-
ing to their personal preferences. They will provide those
examples as input for ALEX, and use it to create the XML
documents with their personal data. They will be able to
evaluate the convenience and usefulness of ALEX. At the end,
the created XML documents will be transformed into HTML
documents, and displayed as actual Web-pages, that the
participants will be able to take home. We will also offer the
volunteers to perform the same editing task without ALEX’s
intelligent auto-completion support. We will compare the
different experiences, validating that ALEX indeed simplifies
greatly the editing task and allows completing it much faster.

Under the hood. Until this point, the spectators are only
exposed to ALEX from the user side. Now, we will invite
them to take a peek under the hood into our probabilistic
schema model. We will inspect the tree automaton used
as a model for the schema, and see the differences in the
learned probabilities for each of the chosen example sets.
This will allow the users to understand better the different
auto-completion suggestions each of the users got. It will also
provide them with a better understanding of the technical
background used in this work.

5. ACKNOWLEDGMENTS
This work has been partially funded by the European Re-

search Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013) / ERC grants Web-
dam, agreement 226513, and MoDaS, agreement 291071, and
by the Israel Ministry of Science.

6. REFERENCES
[1] S. Abiteboul, Y. Amsterdamer, D. Deutch, T. Milo,

and P. Senellart. Finding optimal probabilistic
generators for XML collections. In ICDT, 2012.

[2] Y. Amsterdamer, D. Deutch, and T. Milo. On the
optimality of top-k algorithms for interactive Web
applications. In WebDB, 2011.

[3] T. Antonopoulos, F. Geerts, W. Martens, and
F. Neven. Generating, sampling and counting
subclasses of regular tree languages. In ICDT, 2011.

[4] D. Brickley and L. Miller. FOAF vocabulary
specification. http://xmlns.com/foaf/spec/, 2010.

[5] S. Cohen. Generating XML structure using examples
and constraints. PVLDB, 1(1), 2008.

[6] C. David, L. Libkin, and T. Tan. Efficient reasoning
about data trees via integer linear programming. In
ICDT, 2011.

[7] N. Khoussainova, Y. Kwon, M. Balazinska, and
D. Suciu. SnipSuggest: Context-aware autocompletion
for SQL. PVLDB, 4(1), 2010.

[8] A. Nandi and H. V. Jagadish. Effective phrase
prediction. In VLDB, 2007.

[9] Rinzo XML editor.
http://editorxml.sourceforge.net/.

[10] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
ArnetMiner: extraction and mining of academic social
networks. In KDD, 2008.

http://xmlns.com/foaf/spec/
http://editorxml.sourceforge.net/

	Introduction
	Technical Background
	System Overview
	Demonstration
	Acknowledgments
	References

