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Agenda

• Graph Representation
• DFS
• BFS
• Dijkstra
• A* Search
• Bellman-Ford
• Floyd-Warshall
• Iterative? Non-iterative?
• MST
• Flow – Edmond-Karp



Graph Representation

• Adjacency Matrix
–bool way[100][100];
–cin >> i >> j;
–way[i][j] = true;



Graph Representation

• Adjacency Linked List
– vector<int> v[100];
– cin >> i >> j;
– v[i].push_back(j);



Graph Representation

• Edge List
struct Edge {
int Start_Vertex, End_Vertex;

} edge[10000];
cin >> edge[i].Start_Vertex 
  >> edge[i].End_Vertex;



Graph Representation



Graph Theory
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Graph Theory

• Mission: To go from Point A to 
  Point E

• How?



Depth First Search (DFS)

• Structure to use: Stack
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Depth First Search (DFS)
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B is visited 
already
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Depth First Search (DFS)
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We find a path from Point A 
to Point E, but …



Depth First Search (DFS)
stack<int> s;

bool Visited[MAX];

void DFS(int u) {

    s.push(u);

    if (u == GOAL) {

        for (int x = 0; x < s.size(); x++)

            printf(“%d “, s[x]);

        return ;

    }

    for (int x = 0; x < MAX; x++)

        if (!Visited[x]) {

            Visited[x] = true;

            DFS(x);

            Visited[x] = false;

        }

    s.pop();
}

int main() {
    memset(Visited, 0,             
                sizeof(Visited));
    // Input Handling (GOAL = ?)
    DFS(0);
}

Very Important
It needs to be restored 
for other points to 
traverse, or the path 
may not be found



Depth First Search (DFS)

• Usage:
–Finding a path from start to

   destination
    (NOT RECOMMENDED – TLE)
–Topological Sort (T-Sort)
–Strongly-Connected

   Components (SCC)
–Detect cycles



Depth First Search (DFS)

• Topological Sort
– Directed Acyclic Graph (DAG)
– Find the order of nodes such that for     

each node, every parent is before that   
node on the list

– Dumb method: Check for root of              
residual graph (Do it n times)

– Better Method: Reverse of finishing time
– Start from all vertices!



Depth First Search (DFS)
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T-Sort:
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Depth First Search (DFS)
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T-Sort Output: A, C, B, D, E

T-Sort:



Depth First Search (DFS)

• Strongly Connected Components
– Directed Graph
– Find groups of nodes such that in 

each group, every node has   
to every other node

a path



Depth First Search (DFS)

• Strongly Connected Components
– Method: DFS twice (Kosaraju)
– Do DFS on graph G from all vertices, 

record finishing time of node
– Reverse direction of edges
– Do DFS on Graph G from all vertices 

sorted by decreasing finishing time
– Each DFS tree is an SCC



Depth First Search (DFS)

• Strongly Connected Components
• Note: After grouping the vertices, 

the new nodes form a Directed     
Acyclic Graph



Breadth First Search (BFS)

• Structure to use: Queue
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Breadth First Search (BFS)
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Breadth First Search (BFS)
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Things in queue:
A, C, B 7
A, C, D 8
A, B, C 11
A, B, D 12

We are done !!!



Breadth First Search (BFS)

• Application:
– Finding shortest path
– Flood-Fill



Dijkstra

• Structure to use: Priority Queue
• Consider the past

– The length of path visited so far

• No negative edges allowed
• Maintain known vertices
• At each step:

–Take the unknown vertex with 
smallest overall estimate



Dijkstra
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Dijkstra
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Things in priority 
queue:
A, C, B 7
A, B 10
A, C, D 11

We find the shortest path 
already !!!

Current Route:
A, C, E



A* Search

• Structure to use: Priority Queue
• Consider the past + future
• How to consider the future?

– Admissible Heuristic 
     (Best-Case Prediction:

must never overestimate)
– How to predict?



A* Search

• Prediction 1: Displacement
– Given coordinates, calculate the

displacement of current node to
destination 

– sqrt((x2 – x1)2 + (y2 – y1)2)

• Prediction 2: Manhattan Distance
– Given grid, calculate the

horizontal and vertical movement
– (x2 – x1) + (y2 – y1)



A* Search

Dest

Start

-    Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic 

first
- If there is still a tie, consider in Up, Down, Left, Right 

order



A* Search
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A* Search
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A* Search

3 + 3 = 6 Dest
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first
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A* Search
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2 + 4 = 6

1 + 5 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6

-    Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic 

first
- If there is still a tie, consider in Up, Down, Left, Right 

order
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A* Search
4 + 4 = 8 5 + 3 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6 4 + 4 = 8

-    Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic 

first
- If there is still a tie, consider in Up, Down, Left, Right 

order



A* Search
4 + 4 = 8 5 + 3 = 8 6 + 2 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6 4 + 4 = 8

-    Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic 

first
- If there is still a tie, consider in Up, Down, Left, Right 

order



A* Search
4 + 4 = 8 5 + 3 = 8 6 + 2 = 8 7 + 1 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6 4 + 4 = 8

-    Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic 

first
- If there is still a tie, consider in Up, Down, Left, Right 

order



A* Search
4 + 4 = 8 5 + 3 = 8 6 + 2 = 8 7 + 1 = 8 8 + 2 = 10

3 + 3 = 6 4 + 2 = 6 Dest (8 + 0 = 8)

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6 4 + 4 = 8

-    Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic 

first
- If there is still a tie, consider in Up, Down, Left, Right 

order



A* Search
4 + 4 = 8 5 + 3 = 8 6 + 2 = 8 7 + 1 = 8 8 + 2 = 10

3 + 3 = 6 4 + 2 = 6 Dest (8 + 0 = 8)

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6 4 + 4 = 8

-    Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic 

first
- If there is still a tie, consider in Up, Down, Left, Right 

order



A* Search

• A* Search = Past + Future
• A* Search – Future = ?

Dijkstra

• A* Search – Past = ?
Greedy



Graph Theory

• How about graph with negative
edges?

– Bellman-Ford



Bellman-Ford Algorithm

• Consider the source as weight 0, others as
infinity

• Count = 0, Improve = true
• While (Count < n and Improve) {

– Improve = false
– Count++
– For each edge uv

• If u.weight + uv distance < v.weight {
– Improve = true
– v.weight = u.weight + uv.distance

• }

• }
• If (Count == n)

print “Negative weight cycle detected”

• Else print shortest path distance



Bellman-Ford Algorithm

• Time Compleity: O(VE)



Graph Theory

• All we have just dealt with is single 
source

• How about multiple sources
(all sources)?

– Floyd-Warshall Algorithm



Floyd-Warshall Algorithm

•• 1. Compute on subgraph {1}
• 2. Compute on subgraph {1 ,2}
• 3. Compute on subgraph {1, ..., 3}

• N. Compute on entire graph
• Done !

• 4. ...



Floyd-Warshall Algorithm

• For (int k = 0; k < MAX; k++) {
– For (int i = 0; i < MAX; i++) {

• For (int j = 0; j < MAX; j++) {
–Path[i][j] = min(Path[i][j],

Path[i][k] + Path[k][j]);
• }

– }
• }



Iterative? Non-iterative?

• What is iterative-deepening?
• Given limited time, f nd the current most

optimal solution
• Dijkstra (Shortest 1-step Solution)
• Dijkstra (Shortest 2-steps Solution)
• Dijkstra (Shortest 3-steps Solution)
• …
• Dijkstra (Shortest n-steps Solution)

• Suitable in bi-directional search (Faster than 
1-way search): only for DFS, tricky otherwise



s t



s t



Minimum Spanning Tree (MST)

• Given an undirected graph, find the 
minimum cost so that every node    
has path to other nodes

• Kruskal’s Algorithm
• Prim’s Algorithm



Kruskal’s Algorithm

• Continue Finding Shortest Edge
• If no cycle is formed

– add it into the list
– Construct a parent-child relationship

• If all nodes have the same root, we 
are done (path compression)

• General idea: union-find, may be        
useful in other situations
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm

• Path Compression can be done when we find root

int find_root(int x) {

    return (parent[x] == x)? x: 

    return (parent[x] = find_root(parent[x]));

}



Prim’s Algorithm

• While not all nodes are visited
– While the list is not empty and the           

minimum edge connects to visited node
• Pop out the edge

– If the list is empty, print Impossible and     
return

– Else 
• Consider popped edge
• Mark its endpoint as visited
• Add all its unvisited edges to the list

• Print the tree



Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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We are done



Directed Minimum Spanning Tree

• We have just dealt with undirected 
MST. 

• How about directed?
• Using Kruskal’s or Prim’s cannot      

solve directed MST problem
• How?
• Chu-Liu/Edmonds Algorithm



Chu-Liu/Edmonds Algorithm

• For each vertex, find the smallest     
incoming edge

• While there is cycle
– Find an edge entering the cycle with smallest    

increase
– Remove the edge pointing to the same node     

and replace by new edge

• Print out the tree



Chu-Liu/Edmonds Algorithm
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Chu-Liu/Edmonds Algorithm

Cycle formed (B, C, D)
A => B, C, D = 10 – 2 = 8
A => B, C, D = 3 – 2 = 1
E => B, C, D = 9 – 4 = 5

A

B

C

D

E

10

3

5 2

8

4

2
7 9



Chu-Liu/Edmonds Algorithm

No cycle formed, we terminate
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Chu-Liu/Edmonds Algorithm

• Using this algorithm may unloop a   
cycle and create another cycle…

• … But since the length of tree is       
increasing, there will have an end    
eventually

• Worst Case is doing n-1 times
• Time Complexity is O(EV)



Flow

• A graph with weight (capacity)
• Mission: Find out the maximum flow 

from source to destination
• How?



Edmond-Karp

• Do {
– Do BFS on the graph to find maximum    

flow in the graph
– Add it to the total flow
– For each edge in the maximum flow
– Deduct the flow just passed

• } While the flow is not zero;



The End


