
Graph

Charles Lin

Agenda

• Graph Representation
• DFS
• BFS
• Dijkstra
• A* Search
• Bellman-Ford
• Floyd-Warshall
• Iterative? Non-iterative?
• MST
• Flow – Edmond-Karp

Graph Representation

• Adjacency Matrix
–bool way[100][100];
–cin >> i >> j;
–way[i][j] = true;

Graph Representation

• Adjacency Linked List
– vector<int> v[100];
– cin >> i >> j;
– v[i].push_back(j);

Graph Representation

• Edge List
struct Edge {
int Start_Vertex, End_Vertex;

} edge[10000];
cin >> edge[i].Start_Vertex
 >> edge[i].End_Vertex;

Graph Representation

Graph Theory

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Graph Theory

• Mission: To go from Point A to
 Point E

• How?

Depth First Search (DFS)

• Structure to use: Stack

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

B is visited
already

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

We find a path from Point A
to Point E, but …

Depth First Search (DFS)
stack<int> s;

bool Visited[MAX];

void DFS(int u) {

 s.push(u);

 if (u == GOAL) {

 for (int x = 0; x < s.size(); x++)

 printf(“%d “, s[x]);

 return ;

 }

 for (int x = 0; x < MAX; x++)

 if (!Visited[x]) {

 Visited[x] = true;

 DFS(x);

 Visited[x] = false;

 }

 s.pop();
}

int main() {
 memset(Visited, 0,
 sizeof(Visited));
 // Input Handling (GOAL = ?)
 DFS(0);
}

Very Important
It needs to be restored
for other points to
traverse, or the path
may not be found

Depth First Search (DFS)

• Usage:
–Finding a path from start to

 destination
 (NOT RECOMMENDED – TLE)
–Topological Sort (T-Sort)
–Strongly-Connected

 Components (SCC)
–Detect cycles

Depth First Search (DFS)

• Topological Sort
– Directed Acyclic Graph (DAG)
– Find the order of nodes such that for

each node, every parent is before that
node on the list

– Dumb method: Check for root of
residual graph (Do it n times)

– Better Method: Reverse of finishing time
– Start from all vertices!

Depth First Search (DFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Cycle Exists !!!

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

OK

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack:
NONE

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack:
NONE

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack:
NONE

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack:
NONE

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack: E

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack: E,
D

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack: E,
D, B

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack: E,
D, B

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack: E,
D, B

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack: E,
D, B

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack: E,
D, B

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack: E,
D, B, C

T-Sort:

Depth First Search (DFS)

A

B

C

D

E

Things in output stack: E,
D, B, C, A

T-Sort Output: A, C, B, D, E

T-Sort:

Depth First Search (DFS)

• Strongly Connected Components
– Directed Graph
– Find groups of nodes such that in

each group, every node has
to every other node

a path

Depth First Search (DFS)

• Strongly Connected Components
– Method: DFS twice (Kosaraju)
– Do DFS on graph G from all vertices,

record finishing time of node
– Reverse direction of edges
– Do DFS on Graph G from all vertices

sorted by decreasing finishing time
– Each DFS tree is an SCC

Depth First Search (DFS)

• Strongly Connected Components
• Note: After grouping the vertices,

the new nodes form a Directed
Acyclic Graph

Breadth First Search (BFS)

• Structure to use: Queue

Breadth First Search (BFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Things in queue:
A, C 3
A, B 10

Breadth First Search (BFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Things in queue:
A, B 10
A, C, E 5
A, C, B 7
A, C, D 8

Breadth First Search (BFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Things in queue:
A, C, E 5
A, C, B 7
A, C, D 8
A, B, C 11
A, B, D 12

Breadth First Search (BFS)

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Things in queue:
A, C, B 7
A, C, D 8
A, B, C 11
A, B, D 12

We are done !!!

Breadth First Search (BFS)

• Application:
– Finding shortest path
– Flood-Fill

Dijkstra

• Structure to use: Priority Queue
• Consider the past

– The length of path visited so far

• No negative edges allowed
• Maintain known vertices
• At each step:

–Take the unknown vertex with
smallest overall estimate

Dijkstra

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Things in priority
queue:
A, C 3
A, B 10

Current Route:
A

Dijkstra

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Things in priority
queue:
A, C, E 5
A, C, B 7
A, B 10
A, C, D 11

Current Route:
A, C

Dijkstra

A

B

C

D

E

10

3

1 4

2

2

8
7 9

Things in priority
queue:
A, C, B 7
A, B 10
A, C, D 11

We find the shortest path
already !!!

Current Route:
A, C, E

A* Search

• Structure to use: Priority Queue
• Consider the past + future
• How to consider the future?

– Admissible Heuristic
 (Best-Case Prediction:

must never overestimate)
– How to predict?

A* Search

• Prediction 1: Displacement
– Given coordinates, calculate the

displacement of current node to
destination

– sqrt((x2 – x1)2 + (y2 – y1)2)

• Prediction 2: Manhattan Distance
– Given grid, calculate the

horizontal and vertical movement
– (x2 – x1) + (y2 – y1)

A* Search

Dest

Start

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search

Dest

1 + 5 = 6

Start (0 + 6 = 6) 1 + 5 = 6

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search

Dest

2 + 4 = 6

1 + 5 = 6

Start (0 + 6 = 6) 1 + 5 = 6

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search

3 + 3 = 6 Dest

2 + 4 = 6

1 + 5 = 6

Start (0 + 6 = 6) 1 + 5 = 6

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search
4 + 4 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6

Start (0 + 6 = 6) 1 + 5 = 6

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search
4 + 4 = 8 5 + 3 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6

Start (0 + 6 = 6) 1 + 5 = 6

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search
4 + 4 = 8 5 + 3 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search
4 + 4 = 8 5 + 3 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search
4 + 4 = 8 5 + 3 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search
4 + 4 = 8 5 + 3 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6 4 + 4 = 8

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search
4 + 4 = 8 5 + 3 = 8 6 + 2 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6 4 + 4 = 8

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search
4 + 4 = 8 5 + 3 = 8 6 + 2 = 8 7 + 1 = 8

3 + 3 = 6 4 + 2 = 6 Dest

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6 4 + 4 = 8

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search
4 + 4 = 8 5 + 3 = 8 6 + 2 = 8 7 + 1 = 8 8 + 2 = 10

3 + 3 = 6 4 + 2 = 6 Dest (8 + 0 = 8)

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6 4 + 4 = 8

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search
4 + 4 = 8 5 + 3 = 8 6 + 2 = 8 7 + 1 = 8 8 + 2 = 10

3 + 3 = 6 4 + 2 = 6 Dest (8 + 0 = 8)

2 + 4 = 6

1 + 5 = 6 3 + 3 = 6

Start (0 + 6 = 6) 1 + 5 = 6 2 + 4 = 6 3 + 3 = 6 4 + 4 = 8

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic

first
- If there is still a tie, consider in Up, Down, Left, Right

order

A* Search

• A* Search = Past + Future
• A* Search – Future = ?

Dijkstra

• A* Search – Past = ?
Greedy

Graph Theory

• How about graph with negative
edges?

– Bellman-Ford

Bellman-Ford Algorithm

• Consider the source as weight 0, others as
infinity

• Count = 0, Improve = true
• While (Count < n and Improve) {

– Improve = false
– Count++
– For each edge uv

• If u.weight + uv distance < v.weight {
– Improve = true
– v.weight = u.weight + uv.distance

• }

• }
• If (Count == n)

print “Negative weight cycle detected”

• Else print shortest path distance

Bellman-Ford Algorithm

• Time Compleity: O(VE)

Graph Theory

• All we have just dealt with is single
source

• How about multiple sources
(all sources)?

– Floyd-Warshall Algorithm

Floyd-Warshall Algorithm

•• 1. Compute on subgraph {1}
• 2. Compute on subgraph {1 ,2}
• 3. Compute on subgraph {1, ..., 3}

• N. Compute on entire graph
• Done !

• 4. ...

Floyd-Warshall Algorithm

• For (int k = 0; k < MAX; k++) {
– For (int i = 0; i < MAX; i++) {

• For (int j = 0; j < MAX; j++) {
–Path[i][j] = min(Path[i][j],

Path[i][k] + Path[k][j]);
• }

– }
• }

Iterative? Non-iterative?

• What is iterative-deepening?
• Given limited time, f nd the current most

optimal solution
• Dijkstra (Shortest 1-step Solution)
• Dijkstra (Shortest 2-steps Solution)
• Dijkstra (Shortest 3-steps Solution)
• …
• Dijkstra (Shortest n-steps Solution)

• Suitable in bi-directional search (Faster than
1-way search): only for DFS, tricky otherwise

s t

s t

Minimum Spanning Tree (MST)

• Given an undirected graph, find the
minimum cost so that every node
has path to other nodes

• Kruskal’s Algorithm
• Prim’s Algorithm

Kruskal’s Algorithm

• Continue Finding Shortest Edge
• If no cycle is formed

– add it into the list
– Construct a parent-child relationship

• If all nodes have the same root, we
are done (path compression)

• General idea: union-find, may be
useful in other situations

Kruskal’s Algorithm

Node A B C D E

Parent A B C D E

A

B

C

D

E

4

3

1

2

7
8

10

Kruskal’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

Edge List:
BC 1

Node A B C D E

Parent A B B D E

10

Kruskal’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

Edge List:
BC 1

Node A B C D E

Parent A B B B E

10

Kruskal’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

Edge List:
BC 1

Node A B C D E

Parent A A A A E

10

Kruskal’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

Edge List:
BC 1

Node A B C D E

Parent A A A A E

Cycle
formed

10

Kruskal’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

Edge List:
BC 1

Node A B C D E

Parent A A A A E

10

Kruskal’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

Edge List:
BC 1

Node A B C D E

Parent A A A A E

Cycle
formed

10

Kruskal’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

Edge List:
BC 1

Node A B C D E

Parent A A A A A

10

Kruskal’s Algorithm

• Path Compression can be done when we find root

int find_root(int x) {

 return (parent[x] == x)? x:

 return (parent[x] = find_root(parent[x]));

}

Prim’s Algorithm

• While not all nodes are visited
– While the list is not empty and the

minimum edge connects to visited node
• Pop out the edge

– If the list is empty, print Impossible and
return

– Else
• Consider popped edge
• Mark its endpoint as visited
• Add all its unvisited edges to the list

• Print the tree

Prim’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

10

Edge List:
AC 3
AB 4

Prim’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

10

Edge List:
CB 1
AB 4
CD 7
CE 10

Prim’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

10

Edge List:
BD 2
AB 4
CD 7
CE 10

Prim’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

10

Edge List:
AB 4
CD 7
DE 8
CE 10

Prim’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

10

Edge List:
CD 7
DE 8
CE 10

Cycle
formed

Prim’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

10

Edge List:
DE 8
CE 10

Cycle
formed

Prim’s Algorithm

A

B

C

D

E

4

3

1

2

7
8

10

Edge List:
CE 10

We are done

Directed Minimum Spanning Tree

• We have just dealt with undirected
MST.

• How about directed?
• Using Kruskal’s or Prim’s cannot

solve directed MST problem
• How?
• Chu-Liu/Edmonds Algorithm

Chu-Liu/Edmonds Algorithm

• For each vertex, find the smallest
incoming edge

• While there is cycle
– Find an edge entering the cycle with smallest

increase
– Remove the edge pointing to the same node

and replace by new edge

• Print out the tree

Chu-Liu/Edmonds Algorithm

A

B

C

D

E

10

3

5 2

8

4

2
7 9

Chu-Liu/Edmonds Algorithm

Cycle formed (B, C, D)
A => B, C, D = 10 – 2 = 8
A => B, C, D = 3 – 2 = 1
E => B, C, D = 9 – 4 = 5

A

B

C

D

E

10

3

5 2

8

4

2
7 9

Chu-Liu/Edmonds Algorithm

No cycle formed, we terminate

A

B

C

D

E

10

3

5 2

8

4

2
7 9

Chu-Liu/Edmonds Algorithm

• Using this algorithm may unloop a
cycle and create another cycle…

• … But since the length of tree is
increasing, there will have an end
eventually

• Worst Case is doing n-1 times
• Time Complexity is O(EV)

Flow

• A graph with weight (capacity)
• Mission: Find out the maximum flow

from source to destination
• How?

Edmond-Karp

• Do {
– Do BFS on the graph to find maximum

flow in the graph
– Add it to the total flow
– For each edge in the maximum flow
– Deduct the flow just passed

• } While the flow is not zero;

The End

