Graph

Charles Lin

Agenda

- Graph Representation
- DFS
- BFS
- Dijkstra
- A* Search
- Bellman-Ford
- Floyd-Warshall
- Iterative? Non-iterative?
- MST
- Flow - Edmond-Karp

Graph Representation

- Adjacency Matrix
-bool way[100][100];
-cin >> i >> j;
-way[i][j] = true;

Graph Representation

- Adjacency Linked List
- vector<int> v[100];
-cin >> i >> j;
-v[i].push_back(j);

Graph Representation

- Edge List struct Edge \{
int Start_Vertex, End_Vertex;
\} edge[10000];
cin >> edge[i].Start_Vertex
>> edge[i].End_Vertex;

Graph Representation

	Adjacency Matrix	Adjacency Linked List	Edge List
Memory Storage	$\mathbf{O (V} \mathbf{}$)	$\mathbf{O (V + E)}$	$\mathbf{O (V + E)}$
Check whether (u, v) is an edge	$\mathbf{O (1)}$	$\mathbf{O}(\mathbf{d e g}(\mathbf{u}))$ O(log deg(u)) if sorted	$\mathbf{O (E)}$ O(log E log deg(u)) if sorted
Find all adjacent vertices of a vertex u	$\mathbf{O (V)}$	O(deg(u))	$\mathbf{O (E)}$ O(log E deg(u)) if sorted
deg(u): the number of edges connecting vertex \mathbf{u}			

Graph Theory

Graph Theory

- Mission: To go from Point A to Point E
- How?

Depth First Search (DFS)

- Structure to use: Stack

Depth First Search (DFS)

We find a path from Point A to Point E, but ...

Depth First Search (DFS)

```
stack<int> s;
bool Visited[MAX];
void DFS(int u) {
    s.push(u);
    if (u == GOAL) {
        for (int x = 0; x < s.size(); x++)
            printf("%d ", s[x]);
        return ;
    }
    for (int x = 0; x < MAX; x++)
        if (!Visited[x]) {
            Visited[x] = true;
            DFS(x);
            Visited[x] = false;
        }
    s.pop();
}
```


Depth First Search (DFS)

- Usage:
-Finding a path from start to destination
(NOT RECOMMENDED - TLE)
-Topological Sort (T-Sort)
-Strongly-Connected
Components (SCC)
- Detect cycles

Depth First Search (DFS)

- Topological Sort
- Directed Acyclic Graph (DAG)
- Find the order of nodes such that for each node, every parent is before that node on the list
- Dumb method: Check for root of residual graph (Do it n times)
- Better Method: Reverse of finishing time
- Start from all vertices!

Depth First Search (DFS)

Cycle Exists !!!

Depth First Search (DFS)

T-Sort:

OK

Depth First Search (DFS)

T-Sort:

Things in output stack: NONE

Depth First Search (DFS)

T-Sort:

Things in output stack: NONE

Depth First Search (DFS)

T-Sort:

Things in output stack: NONE

Depth First Search (DFS)

T-Sort:

Things in output stack: NONE

Depth First Search (DFS)

T-Sort:

Things in output stack: E

Depth First Search (DFS)

T-Sort:

Things in output stack: E, D

Depth First Search (DFS)

T-Sort:

Things in output stack: E , D, B

Depth First Search (DFS)

T-Sort:

Things in output stack: E , D, B

Depth First Search (DFS)

T-Sort:

Things in output stack: E, D, B

Depth First Search (DFS)

T-Sort:

Things in output stack: E, D, B

Depth First Search (DFS)

T-Sort:

Things in output stack: E, D, B

Depth First Search (DFS)

T-Sort:

Things in output stack: E , D, B, C

Depth First Search (DFS)

T-Sort:

Things in output stack: E ,
D, B, C, A
T-Sort Output: A, C, B, D, E

Depth First Search (DFS)

- Strongly Connected Components
- Directed Graph
- Find groups of nodes such that in each group, every node has a path to every other node

Depth First Search (DFS)

- Strongly Connected Components
- Method: DFS twice (Kosaraju)
- Do DFS on graph G from all vertices, record finishing time of node
- Reverse direction of edges
- Do DFS on Graph G from all vertices sorted by decreasing finishing time
- Each DFS tree is an SCC

Depth First Search (DFS)

- Strongly Connected Components
- Note: After grouping the vertices, the new nodes form a Directed Acyclic Graph

Breadth First Search (BFS)

- Structure to use: Queue

Breadth First Search (BFS)

Things in queue:
A, C 3
A, B $\quad 10$

Breadth First Search (BFS)

Things in queue:
A, B 10
A, C, E 5
A, C, B 7
A, C, D 8

Breadth First Search (BFS)

Things in queue:
A, C, E 5
A, C, B 7
A, C, D 8
A, B, C 11
A, B, D 12

Breadth First Search (BFS)

Things in queue:
A, C, B 7
A, C, D 8

We are done !!!

Breadth First Search (BFS)

- Application:
- Finding shortest path
- Flood-Fill

Dijkstra

- Structure to use: Priority Queue
- Consider the past
- The length of path visited so far
- No negative edges allowed
- Maintain known vertices
- At each step:
-Take the unknown vertex with smallest overall estimate

Dijkstra

Things in priority queue:
A, C 3
A, B 10

Current Route:
9 A

Dijkstra

Things in priority queue:
A, C, E 5
A, C, B 7
A, B 10
A, C, D 11
Current Route:
9 A, C

Dijkstra

Things in priority queue:

We find the shortest path already !!!

A* Search

- Structure to use: Priority Queue
- Consider the past + future
- How to consider the future?
- Admissible Heuristic
(Best-Case Prediction: must never overestimate)
- How to predict?

A* Search

- Prediction 1: Displacement - Given coordinates, calculate the displacement of current node to destination
- sqrt((x2-x1)2 $\left.+(y 2-y 1)^{2}\right)$
- Prediction 2: Manhattan Distance
- Given grid, calculate the horizontal and vertical movement
$-(x 2-x 1)+(y 2-y 1)$

A* Search

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

$4+4=8$			
$3+3=6$	$4+2=6$		Dest
$2+4=6$			
$1+5=6$			
Start $(0+6=6)$	$1+5=6$		

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

$4+4=8$	$5+3=8$		
$3+3=6$	$4+2=6$		Dest
$2+4=6$			
$1+5=6$			
Start $(0+6=6)$	$1+5=6$		

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

$4+4=8$	$5+3=8$		
$3+3=6$	$4+2=6$		Dest
$2+4=6$			
$1+5=6$			
Start $(0+6=6)$	$1+5=6$	$2+4=6$	

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

$4+4=8$	$5+3=8$		Dest
$3+3=6$	$4+2=6$		
$2+4=6$			
$1+5=6$		$3+3=6$	
Start $(0+6=6)$	$1+5=6$	$2+4=6$	$3+3=6$

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

$4+4=8$	$5+3=8$		Dest
$3+3=6$	$4+2=6$		
$2+4=6$			
$1+5=6$		$3+3=6$	
Start $(0+6=6)$	$1+5=6$	$2+4=6$	$3+3=6$

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

$4+4=8$	$5+3=8$			
$3+3=6$	$4+2=6$			
$2+4=6$				
$1+5=6$		$3+3=6$		
Start $(0+6=6)$	$1+5=6$	$2+4=6$	$3+3=6$	$4+4=8$

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

$4+4=8$	$5+3=8$	$6+2=8$		
$3+3=6$	$4+2=6$		Dest	
$2+4=6$				
$1+5=6$		$3+3=6$		
Start $(0+6=6)$	$1+5=6$	$2+4=6$	$3+3=6$	$4+4=8$

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

$4+4=8$	$5+3=8$	$6+2=8$	$7+1=8$	
$3+3=6$	$4+2=6$		Dest	
$2+4=6$				
$1+5=6$		$3+3=6$		
Start $(0+6=6)$	$1+5=6$	$2+4=6$	$3+3=6$	$4+4=8$

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

$4+4=8$	$5+3=8$	$6+2=8$	$7+1=8$	$8+2=10$
$3+3=6$	$4+2=6$		Dest $(8+0=8)$	
$2+4=6$				
$1+5=6$		$3+3=6$		
Start $(0+6=6)$	$1+5=6$	$2+4=6$	$3+3=6$	$4+4=8$

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

- Manhattan Distance is used
- If there is a tie, consider the one with lowest heuristic first
- If there is still a tie, consider in Up, Down, Left, Right order

A* Search

- A* Search = Past + Future
- \mathbf{A}^{*} Search - Future = ?

Dijkstra

- A* Search - Past = ?

Greedy

Graph Theory

- How about graph with negative edges?
- Bellman-Ford

Bellman-Ford Algorithm

- Consider the source as weight 0 , others as infinity
- Count = 0, Improve = true
- While (Count < n and Improve) \{
- Improve = false
- Count++
- For each edge uv
- If u.weight + uv distance < v.weight \{
- Improve = true
- v.weight = u.weight + uv.distance
- \}
- \}
- If (Count == n) print "Negative weight cycle detected"
- Else print shortest path distance

Bellman-Ford Algorithm

- Time Compleity: O(VE)

Graph Theory

- All we have just dealt with is single source
- How about multiple sources (all sources)?
- Floyd-Warshall Algorithm

Floyd-Warshall Algorithm

- 1. Compute on subgraph \{1\}
- 2. Compute on subgraph \{1,2\}
- 3. Compute on subgraph $\{1, \ldots, 3\}$
- 4. ...
- N. Compute on entire graph
- Done!

Floyd-Warshall Algorithm

- For (int k = 0; k < MAX; k++) \{
-For (int i = 0; i < MAX; i++) \{ - For (int $\mathbf{j}=0 ; \mathbf{j}<\mathrm{MAX} ; \mathrm{j}++$) $\{$ -Path[i][j] = min(Path[i][j], Path[i][k] + Path[k][j]);

$$
{ }_{-\}}^{\cdot\}}
$$

- \}

Iterative? Non-iterative?

- What is iterative-deepening?
- Given limited time, f nd the current most optimal solution
- Dijkstra (Shortest 1-step Solution)
- Dijkstra (Shortest 2-steps Solution)
- Dijkstra (Shortest 3-steps Solution)
- Dijkstra (Shortest n-steps Solution)
- Suitable in bi-directional search (Faster than 1-way search): only for DFS, tricky otherwise

Minimum Spanning Tree (MST)

- Given an undirected graph, find the minimum cost so that every node has path to other nodes
- Kruskal's Algorithm
- Prim's Algorithm

Kruskal's Algorithm

- Continue Finding Shortest Edge
- If no cycle is formed
- add it into the list
- Construct a parent-child relationship
- If all nodes have the same root, we are done (path compression)
- General idea: union-find, may be useful in other situations

Kruskal's Algorithm

Node	A	B	C	D	E
Parent	A	B	C	D	E

Kruskal's Algorithm

Edge List:
BC 1

Node	A	B	C	D	E
Parent	A	B	B	D	E

Kruskal's Algorithm

Edge List:
BC 1

Node	A	B	C	D	E
Parent	A	B	B	B	E

Kruskal's Algorithm

Edge List:
BC 1

Node	A	B	C	D	E
Parent	A	A	A	A	E

Kruskal's Algorithm

Edge List:
Cycle BC 1 formed

Node	A	B	C	D	E
Parent	A	A	A	A	E

Kruskal's Algorithm

Edge List:
BC 1

Node	A	B	C	D	E
Parent	A	A	A	A	E

Kruskal's Algorithm

Edge List:

Kruskal's Algorithm

Edge List:
BC 1

Node	A	B	C	D	E
Parent	A	A	A	A	A

Kruskal's Algorithm

- Path Compression can be done when we find root

```
int find_root(int x) {
    return (parent[x] == x)? x:
    return (parent[x] = find_root(parent[x]));
```

\}

Prim's Algorithm

- While not all nodes are visited
- While the list is not empty and the minimum edge connects to visited node
- Pop out the edge
- If the list is empty, print Impossible and return
- Else
- Consider popped edge
- Mark its endpoint as visited
- Add all its unvisited edges to the list
- Print the tree

Prim's Algorithm

Edge List:
AC 3
AB 4

Prim's Algorithm

Edge List:
CB 1
AB 4
CD 7
CE 10

Prim's Algorithm

Edge List:
BD 2

AB 4
CD 7
CE 10

Prim's Algorithm

Edge List:
AB 4
CD 7
DE 8
CE 10

Prim's Algorithm

Cycle

 formed

Edge List:
CD 7
DE 8
CE 10

Prim's Algorithm

Cycle formed

Edge List:
DE 8
CE 10

Prim's Algorithm

Edge List:
CE 10

We are done

Directed Minimum Spanning Tree

- We have just dealt with undirected MST.
- How about directed?
- Using Kruskal's or Prim's cannot solve directed MST problem
- How?
- Chu-Liu/Edmonds Algorithm

Chu-Liu/Edmonds Algorithm

- For each vertex, find the smallest incoming edge
- While there is cycle
- Find an edge entering the cycle with smallest increase
- Remove the edge pointing to the same node and replace by new edge
- Print out the tree

Chu-Liu/Edmonds Algorithm

Chu-Liu/Edmonds Algorithm

$$
\begin{gathered}
\text { Cycle formed (B, C, D) } \\
A=>B, C, D=10-2=8 \\
A=>B, C, D=3-2=1 \\
E=>B, C, D=9-4=5
\end{gathered}
$$

Chu-Liu/Edmonds Algorithm

No cycle formed, we terminate

Chu-Liu/Edmonds Algorithm

- Using this algorithm may unloop a cycle and create another cycle...
- ... But since the length of tree is increasing, there will have an end eventually
- Worst Case is doing n-1 times
- Time Complexity is O(EV)

Flow

- A graph with weight (capacity)
- Mission: Find out the maximum flow from source to destination
- How?

Edmond-Karp

- Do \{
- Do BFS on the graph to find maximum flow in the graph
- Add it to the total flow
- For each edge in the maximum flow
- Deduct the flow just passed
- \} While the flow is not zero;

The End

