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What is Computational Geometry? 

• Deals with geometrical structures 

▫ Points, lines, line segments, vectors, planes, etc. 

• A relatively boring class of problems in ICPC 

▫ CoGeom problems are usually straightforward 

▫ Implementation is tedious and error-prone 

• In this training session we only talk about 2-
dimensional geometry 

▫ 1-D is usually uninteresting 

▫ 3-D is usually too hard 
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Basic definitions 

• Point 

▫ Specified by two coordinates (x, y) 

• Line 

▫ Extends to infinity in both directions 

• Line segment 

▫ Specified by two endpoints 

• Ray 

▫ Extends to infinity in one direction 
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Basic definitions 

• Polygon 

▫ We assume edges do not cross 

• Convex polygon 

▫ Every interior angle is at most 180 degrees 

▫ Precise definition of convex: For any two points 
inside the polygon, the line segment joining them 
lies entirely inside the polygon 
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What makes CoGeom problems so 

annoying? 
• Precision error 

▫ Avoid floating-point computations whenever 
possible (see later slides) 

• Degeneracy 

▫ Boundary cases 

▫ For example, imagine how two line segments can 
intersect 
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I’m bored… 

• Do I really need to learn these?? 
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ACM World Finals 2005 

• A: Eyeball Benders 
• B: Simplified GSM Network 
• C: The Traveling Judges Problem 
• D: cNteSahruPfefrlefe 
• E: Lots of Sunlight 
• F: Crossing Streets 
• G: Tiling the Plane 
• H: The Great Wall Game 
• I: Workshops 
• J: Zones 
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I’m bored… 

• Do I really need to learn these?? 

▫ It seems that the answer is ‘YES’ 
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Outline 

• Basic operations 
▫ Distance, angle, etc. 
▫ Cross product 
▫ Intersection 

• Polygons 
▫ Area 
▫ Containment 

• Convex hull 
▫ Gift wrapping algorithm 
▫ Graham scan 
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Distance between two points 

• Two points with coordinates (x1, y1) and (x2, y2) 
respectively 

• Distance = sqrt( (x1-x2)2 + (y1-y2)2 ) 

• Square root is kind of slow and imprecise 

• If we only need to check whether the distance is 
less than some certain length, say R 

• if ( (x1-x2)2 + (y1-y2)2 ) < R2 … 
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Angle 

• Given a point (x, y), find its angle about the 
origin (conventionally counterclockwise) 

▫ Answer should be in the range (-π, π] 
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Sorry I’m not an artist 



Angle 

• Solution: Inverse trigonometric function 
• We use arctan (i.e. tan-1) 
• atan(z) in C++ 

▫ need to #include <cmath> 

• atan(z) returns a value θ for which tan θ = z 
▫ Note: all C++ math functions represent angles in 

radians (instead of degrees) 
 radian = degree * π / 180 
 π = acos(-1) 

• Solution(?): θ = atan(y/x) 
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Angle 

• Solution(?): θ = atan(y/x) 

• Bug #1: Division by zero 

▫ When θ is π/2 or –π/2 

• Bug #2: y/x doesn’t give a 1-to-1 mapping 

▫ x=1, y=1, y/x=1, θ=π/4 

▫ x=-1, y=-1, y/x=1, θ=-3π/4 

• Fix: check sign of x 

▫ Too much trouble… any better solution? 
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Angle 

• Solution: θ = atan2(y, x) 

▫ #include <cmath> 

• That’s it 

• Returns answer in the range [-π, π] 

▫ Look at your C++ manual for technical details 

• Note: The arguments are (y, x), not (x, y)!!! 
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Angle between two vectors 

• Find the minor angle (i.e. <= π) between two 
vectors a(x1, y1) and b(x2, y2) 

• Solution #1: use atan2 for each vector, then 
subtract 
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Angle between two vectors 

• Solution #2: Dot product 
• Recall: a•b = |a||b| cos θ 
• Therefore: θ = acos(a•b / (|a||b|) ) 

▫ Where: a•b = x1*x2+y1*y2 
▫ And: |a| = sqrt( x1*x1+y1*y1) (similar for |b|) 

• Note: acos returns results in the range [0, π] 
 

• Note: When either vector is zero the angle 
between them is not well-defined, and the above 
formula leads to division by zero 
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Left turn or right turn? 

• Are we making a left turn or right turn here? 

▫ Of course easy for us to tell by inspection 

▫ How about (121, 21) → (201, 74) → (290, 123) ? 
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Left turn or right turn? 

• Solution #1: Using angles 

• Compute θ2–θ1 

• “Normalize” the result into the range (-π, π] 

▫ By adding/subtracting 2π repeatedly 

• Positive: left turn 

• Negative: right turn 

• 0 or π: up to you 
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Cross product 

• Solution #2 makes use of cross products (of 
vectors), so let’s review 

• The cross product of two vectors a(xa, ya) and 
b(xb,yb) is ab = (xa*yb-xb*ya)k 

▫ k is the unit vector in the positive z-direction 

▫ a and b are viewed as 3-D vectors with having zero 
z-coordinate 

▫ Note: ab  ba in general 

• Fact: if (xa*yb-xb*ya) > 0, then b is to the left of a 
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Left turn of right turn? 

• Observation: “b is to the left of a” is the same as 
“a→b constitutes a left turn” 
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Left turn or right turn? 

• Solution 2: A simple cross product 

• Take a = (x2-x1, y2-y1) 

• Take b = (x3-x2, y3-y2) 

• Substitute into our previous formula… 

• P = (x2-x1)*(y3-y2)-(x3-x2)*(y2-y1) 

• P > 0: left turn 

• P < 0: right turn 

• P = 0: straight ahead or U-turn 
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crossProd(p1, p2, p3) 

• We need this function later 

• function crossProd(p1, p2, p3: Point) 

 { 

  return (p2.x-p1.x)*(p3.y-p2.y) – 

   (p3.x-p2.x)*(p2.y-p1.y); 

 } 

• Note: Point is not a predefined data type – you 
may define it 
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Intersection of two lines 

• A straight line can be represented as a linear 
equation in standard form Ax+By=C 

▫ e.g. 3x+4y-7 = 0 

▫ We assume you know how to obtain this equation 
through other forms such as 

 slope-intercept form 

 point-slope form 

 intercept form 

 two-point form (most common) 
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Intersection of two lines 

• Given L1: Ax+By=C and L2: Dx+Ey=F 

• To find their intersection, simply solve the 
system of linear equations 

▫ Using whatever method, e.g. elimination 

• Using elimination we get 

▫ x = (C*E-B*F) / (A*E-B*D) 

▫ y = (A*F-C*D) / (A*E-B*D) 

▫ If A*E-B*D=0, the two lines are parallel 

 there can be zero or infinitely many intersections 
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Intersection of two line segments 

• Method 1: 

▫ Assume the segments are lines (i.e. no endpoints) 

▫ Find the intersection of the two lines 

▫ Check whether the intersection point lies between 
all the endpoints 

• Method 2: 

▫ Check whether the two segments intersect 

 A lot easier than step 3 in method 1. See next slide 

▫ If so, find the intersection as in method 1 
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Do they intersect? 

• Observation: If the two segments intersect, the 
two red points must lie on different sides of the 
black line (or lie exactly on it) 

• The same holds with black/red switched 
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Do they intersect? 

• What does “different sides” mean? 

▫ one of them makes a left turn (or straight/U-turn) 

▫ the other makes a right turn (or straight/U-turn) 

• Time to use our crossProd function 
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Do they intersect? 

• turn_p3 = crossProd(p1, p2, p3) 

• turn_p4 = crossProd(p1, p2, p4) 

• The red points lie on different sides of the  black 
line if (turn_p3 * turn_p4) <= 0 

• Do the same for black points and red line 
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Outline 

• Basic operations 
▫ Distance, angle, etc. 
▫ Cross product 
▫ Intersection 

• Polygons 
▫ Area 
▫ Containment 

• Convex hull 
▫ Gift wrapping algorithm 
▫ Graham scan 
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Area of triangle 

• Area = Base * Height / 2 

• Area = a * b * sin(C) / 2 

• Heron’s formula: 

▫ Area = sqrt( s(s-a)(s-b)(s-c) ) 

▫ where s = (a+b+c)/2 is the semiperimeter 
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Area of triangle 

• What if only the vertices of the triangle are given? 

• Given 3 vertices (x1, y1), (x2, y2), (x3, y3) 

• Area = abs( x1*y2 + x2*y3 + x3*y1 - x2*y1 - 
x3*y2 - x1*y3 ) / 2 

• Note: abs can be omitted if the vertices are in 
counterclockwise order. If the vertices are in 
clockwise order, the difference evaluates to a 
negative quantity 
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Area of triangle 

• That hard-to-memorize expression can be 
written this way: 

 

 

• Area = ½ *  
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Area of convex polygon 

• It turns out the previous formula still works! 

 

 

 

• Area = ½ *  
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Area of (non-convex) polygon 

• Miraculously, the same formula still holds for 
non-convex polygons! 

 

• Area = ½ * … 

 

• I don’t want to draw anymore 
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Point inside convex polygon? 

• Given a convex polygon and a point, is the point 
contained inside the polygon? 

▫ Assume the vertices are given in 
counterclockwise order for convenience 

34 

inside 

outside 

inside (definition may change) 



Detour – Is polygon convex? 

• A quick question – how to tell if a polygon is 
convex? 

• Answer: It is convex if and only if every turn (at 
every vertex) is a left turn 

▫ Whether a “straight” turn is allowed depends on 
the problem definition 

• Our crossProd function is so useful 
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Point inside convex polygon? 

• Consider the turn p → p1 → p2 

• If p does lie inside the polygon, the turn must 
not be a right turn 

• Also holds for other edges (mind the directions) 
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Point inside convex polygon? 

• Conversely, if p was outside the polygon, there 
would be a right turn for some edge 
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Point inside convex polygon 

• Conclusion: p is inside the polygon if and only if 
it makes a non-left turn for every edge (in the 
counterclockwise direction) 
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Point inside (non-convex) polygon 

• Such a pain 

39 



Point inside polygon 

• Ray casting algorithm 

▫ Cast a ray from the point along some direction 

▫ Count the number of times it non-degenerately 
intersects the polygon boundary 

▫ Odd: inside; even: outside 
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Point inside polygon 

• Problematic cases: Degenerate intersections 
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Point inside polygon 

• Solution: Pick a random direction (i.e. random 
slope). If the ray hits a vertex of the polygon, 
pick a new direction. Repeat. 
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Outline 

• Basic operations 
▫ Distance, angle, etc. 
▫ Cross product 
▫ Intersection 

• Polygons 
▫ Area 
▫ Containment 

• Convex hull 
▫ Gift wrapping algorithm 
▫ Graham scan 
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Convex hulls 

• Given N distinct points on the plane, the 
convex hull of these points is the smallest 
convex polygon enclosing all of them 
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Application(s) of convex hulls 

• To order the vertices of a convex polygon in 
(counter)clockwise order 

• You probably are not quite interested in real-
world applications 
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Gift wrapping algorithm 

• Very intuitive 

• Also known as Jarvis March 

• Requires crossProd to compare angles 

• For details, check out Google.com 

• Time complexity: O(NH) 

▫ Where H is the number of points on the hull 

▫ Worst case: O(N2) 
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Graham scan 

• Quite easy to implement 

• Requires a stack 

• Requires crossProd to determine turning 
directions 

• For details, check out Google.com 

• Time complexity: O(N logN) 

▫ This is optimal! Can you prove this? 
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Circles and curves?? 

• Circles 

▫ Tangent points, circle-line intersections, circle-
circle intersections, etc. 

▫ Usually involves equation solving 

• Curves 

▫ Bless you 
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Things you may need to know… 

• Distance from point to line (segment) 
• Great-circle distance 

▫ Latitudes, longitudes, stuff like that 

• Visibility region / visibility polygon 
• Sweep line algorithm 
• Closest pair of points 

▫ Given N points, which two of these are closest to 
each other? A simple-minded brute force 
algorithm runs in O(N2). There exists a clever yet 
simple O(N logN) divide-and-conquer algorithm 
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Practice problems 
• Beginner 

▫ 10242 Fourth Point!!! 

• Basic 
▫ 634 Polygon – point inside (non-convex) polygon 
▫ 681 Convex Hull Finding – for testing your convex hull code 

• Difficult 
▫ 137 Polygons 
▫ 11338 Minefield 
▫ 10078 The Art Gallery 
▫ 10301 Rings and Glue – circles 
▫ 10902 Pick-up Sticks 

• Expert (Regional Contest level) 
▫ 361 Cops and Robbers 
▫ 10256 The Great Divide – coding is easy though 
▫ 10012 How Big Is It – circles 

• Challenge (World Finals level) 
▫ 10084 Hotter Colder 
▫ 10117 Nice Milk 
▫ 10245 The Closest Pair Problem – just for your interest 
▫ 11562 Hard Evidence – really hard 
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• Wikipedia. http://www.wikipedia.org/ 

• Joseph O’Rourke, Computational Geometry in C, 
2nd edition, Cambridge University Press 

▫ This book has most of the geometric algorithms 
you need for ICPC written in C code, and many 
topics beyond our scope as well, e.g. 3D convex 
hulls (which is 10 times harder than 2D hulls), 
triangulations, Voronoi diagrams, etc. 
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