
Computational Geometry
HKU ACM ICPC Training 2010

What is Computational Geometry?

• Deals with geometrical structures

▫ Points, lines, line segments, vectors, planes, etc.

• A relatively boring class of problems in ICPC

▫ CoGeom problems are usually straightforward

▫ Implementation is tedious and error-prone

• In this training session we only talk about 2-
dimensional geometry

▫ 1-D is usually uninteresting

▫ 3-D is usually too hard

1

Basic definitions

• Point

▫ Specified by two coordinates (x, y)

• Line

▫ Extends to infinity in both directions

• Line segment

▫ Specified by two endpoints

• Ray

▫ Extends to infinity in one direction

2

Basic definitions

• Polygon

▫ We assume edges do not cross

• Convex polygon

▫ Every interior angle is at most 180 degrees

▫ Precise definition of convex: For any two points
inside the polygon, the line segment joining them
lies entirely inside the polygon

3

vertex

edge

What makes CoGeom problems so

annoying?
• Precision error

▫ Avoid floating-point computations whenever
possible (see later slides)

• Degeneracy

▫ Boundary cases

▫ For example, imagine how two line segments can
intersect

4

I’m bored…

• Do I really need to learn these??

5

ACM World Finals 2005

• A: Eyeball Benders
• B: Simplified GSM Network
• C: The Traveling Judges Problem
• D: cNteSahruPfefrlefe
• E: Lots of Sunlight
• F: Crossing Streets
• G: Tiling the Plane
• H: The Great Wall Game
• I: Workshops
• J: Zones

6

Matching

Shortest Path

Geometry

I’m bored…

• Do I really need to learn these??

▫ It seems that the answer is ‘YES’

7

Outline

• Basic operations
▫ Distance, angle, etc.
▫ Cross product
▫ Intersection

• Polygons
▫ Area
▫ Containment

• Convex hull
▫ Gift wrapping algorithm
▫ Graham scan

8

Distance between two points

• Two points with coordinates (x1, y1) and (x2, y2)
respectively

• Distance = sqrt((x1-x2)2 + (y1-y2)2)

• Square root is kind of slow and imprecise

• If we only need to check whether the distance is
less than some certain length, say R

• if ((x1-x2)2 + (y1-y2)2) < R2 …

9

Angle

• Given a point (x, y), find its angle about the
origin (conventionally counterclockwise)

▫ Answer should be in the range (-π, π]

10

Sorry I’m not an artist

Angle

• Solution: Inverse trigonometric function
• We use arctan (i.e. tan-1)
• atan(z) in C++

▫ need to #include <cmath>

• atan(z) returns a value θ for which tan θ = z
▫ Note: all C++ math functions represent angles in

radians (instead of degrees)
 radian = degree * π / 180
 π = acos(-1)

• Solution(?): θ = atan(y/x)

11

Angle

• Solution(?): θ = atan(y/x)

• Bug #1: Division by zero

▫ When θ is π/2 or –π/2

• Bug #2: y/x doesn’t give a 1-to-1 mapping

▫ x=1, y=1, y/x=1, θ=π/4

▫ x=-1, y=-1, y/x=1, θ=-3π/4

• Fix: check sign of x

▫ Too much trouble… any better solution?

12

Angle

• Solution: θ = atan2(y, x)

▫ #include <cmath>

• That’s it

• Returns answer in the range [-π, π]

▫ Look at your C++ manual for technical details

• Note: The arguments are (y, x), not (x, y)!!!

13

Angle between two vectors

• Find the minor angle (i.e. <= π) between two
vectors a(x1, y1) and b(x2, y2)

• Solution #1: use atan2 for each vector, then
subtract

14

Angle between two vectors

• Solution #2: Dot product
• Recall: a•b = |a||b| cos θ
• Therefore: θ = acos(a•b / (|a||b|))

▫ Where: a•b = x1*x2+y1*y2
▫ And: |a| = sqrt(x1*x1+y1*y1) (similar for |b|)

• Note: acos returns results in the range [0, π]

• Note: When either vector is zero the angle
between them is not well-defined, and the above
formula leads to division by zero

15

Left turn or right turn?

• Are we making a left turn or right turn here?

▫ Of course easy for us to tell by inspection

▫ How about (121, 21) → (201, 74) → (290, 123) ?

16

Left turn or right turn?

• Solution #1: Using angles

• Compute θ2–θ1

• “Normalize” the result into the range (-π, π]

▫ By adding/subtracting 2π repeatedly

• Positive: left turn

• Negative: right turn

• 0 or π: up to you

17

θ2

θ1

Cross product

• Solution #2 makes use of cross products (of
vectors), so let’s review

• The cross product of two vectors a(xa, ya) and
b(xb,yb) is ab = (xa*yb-xb*ya)k

▫ k is the unit vector in the positive z-direction

▫ a and b are viewed as 3-D vectors with having zero
z-coordinate

▫ Note: ab  ba in general

• Fact: if (xa*yb-xb*ya) > 0, then b is to the left of a

18

a

b

Left turn of right turn?

• Observation: “b is to the left of a” is the same as
“a→b constitutes a left turn”

19

a

b
a

b

Left turn or right turn?

• Solution 2: A simple cross product

• Take a = (x2-x1, y2-y1)

• Take b = (x3-x2, y3-y2)

• Substitute into our previous formula…

• P = (x2-x1)*(y3-y2)-(x3-x2)*(y2-y1)

• P > 0: left turn

• P < 0: right turn

• P = 0: straight ahead or U-turn

20

(x1, y1)

(x2, y2)

(x3, y3)

crossProd(p1, p2, p3)

• We need this function later

• function crossProd(p1, p2, p3: Point)

 {

 return (p2.x-p1.x)*(p3.y-p2.y) –

 (p3.x-p2.x)*(p2.y-p1.y);

 }

• Note: Point is not a predefined data type – you
may define it

21

Intersection of two lines

• A straight line can be represented as a linear
equation in standard form Ax+By=C

▫ e.g. 3x+4y-7 = 0

▫ We assume you know how to obtain this equation
through other forms such as

 slope-intercept form

 point-slope form

 intercept form

 two-point form (most common)

22

Intersection of two lines

• Given L1: Ax+By=C and L2: Dx+Ey=F

• To find their intersection, simply solve the
system of linear equations

▫ Using whatever method, e.g. elimination

• Using elimination we get

▫ x = (C*E-B*F) / (A*E-B*D)

▫ y = (A*F-C*D) / (A*E-B*D)

▫ If A*E-B*D=0, the two lines are parallel

 there can be zero or infinitely many intersections

23

Intersection of two line segments

• Method 1:

▫ Assume the segments are lines (i.e. no endpoints)

▫ Find the intersection of the two lines

▫ Check whether the intersection point lies between
all the endpoints

• Method 2:

▫ Check whether the two segments intersect

 A lot easier than step 3 in method 1. See next slide

▫ If so, find the intersection as in method 1

24

Do they intersect?

• Observation: If the two segments intersect, the
two red points must lie on different sides of the
black line (or lie exactly on it)

• The same holds with black/red switched

25

Do they intersect?

• What does “different sides” mean?

▫ one of them makes a left turn (or straight/U-turn)

▫ the other makes a right turn (or straight/U-turn)

• Time to use our crossProd function

26

p1

p2

p3

p4

Do they intersect?

• turn_p3 = crossProd(p1, p2, p3)

• turn_p4 = crossProd(p1, p2, p4)

• The red points lie on different sides of the black
line if (turn_p3 * turn_p4) <= 0

• Do the same for black points and red line

27

p1

p2

p3

p4

Outline

• Basic operations
▫ Distance, angle, etc.
▫ Cross product
▫ Intersection

• Polygons
▫ Area
▫ Containment

• Convex hull
▫ Gift wrapping algorithm
▫ Graham scan

28

Area of triangle

• Area = Base * Height / 2

• Area = a * b * sin(C) / 2

• Heron’s formula:

▫ Area = sqrt(s(s-a)(s-b)(s-c))

▫ where s = (a+b+c)/2 is the semiperimeter

29

A

B

C
a

b
c

Area of triangle

• What if only the vertices of the triangle are given?

• Given 3 vertices (x1, y1), (x2, y2), (x3, y3)

• Area = abs(x1*y2 + x2*y3 + x3*y1 - x2*y1 -
x3*y2 - x1*y3) / 2

• Note: abs can be omitted if the vertices are in
counterclockwise order. If the vertices are in
clockwise order, the difference evaluates to a
negative quantity

30

Area of triangle

• That hard-to-memorize expression can be
written this way:

• Area = ½ *

31

x1 y1

x2 y2

x3 y3

x1 y1

-

+

Area of convex polygon

• It turns out the previous formula still works!

• Area = ½ *

32

(x1, y1)

(x2, y2)

(x3, y3)
(x4, y4)

(x5, y5)

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x1 y1
+

-

Area of (non-convex) polygon

• Miraculously, the same formula still holds for
non-convex polygons!

• Area = ½ * …

• I don’t want to draw anymore

33

Point inside convex polygon?

• Given a convex polygon and a point, is the point
contained inside the polygon?

▫ Assume the vertices are given in
counterclockwise order for convenience

34

inside

outside

inside (definition may change)

Detour – Is polygon convex?

• A quick question – how to tell if a polygon is
convex?

• Answer: It is convex if and only if every turn (at
every vertex) is a left turn

▫ Whether a “straight” turn is allowed depends on
the problem definition

• Our crossProd function is so useful

35

Point inside convex polygon?

• Consider the turn p → p1 → p2

• If p does lie inside the polygon, the turn must
not be a right turn

• Also holds for other edges (mind the directions)

36

p

p1

p2

Point inside convex polygon?

• Conversely, if p was outside the polygon, there
would be a right turn for some edge

37

p

Point inside convex polygon

• Conclusion: p is inside the polygon if and only if
it makes a non-left turn for every edge (in the
counterclockwise direction)

38

Point inside (non-convex) polygon

• Such a pain

39

Point inside polygon

• Ray casting algorithm

▫ Cast a ray from the point along some direction

▫ Count the number of times it non-degenerately
intersects the polygon boundary

▫ Odd: inside; even: outside

40

Point inside polygon

• Problematic cases: Degenerate intersections

41

Point inside polygon

• Solution: Pick a random direction (i.e. random
slope). If the ray hits a vertex of the polygon,
pick a new direction. Repeat.

42

Outline

• Basic operations
▫ Distance, angle, etc.
▫ Cross product
▫ Intersection

• Polygons
▫ Area
▫ Containment

• Convex hull
▫ Gift wrapping algorithm
▫ Graham scan

43

Convex hulls

• Given N distinct points on the plane, the
convex hull of these points is the smallest
convex polygon enclosing all of them

44

Application(s) of convex hulls

• To order the vertices of a convex polygon in
(counter)clockwise order

• You probably are not quite interested in real-
world applications

45

Gift wrapping algorithm

• Very intuitive

• Also known as Jarvis March

• Requires crossProd to compare angles

• For details, check out Google.com

• Time complexity: O(NH)

▫ Where H is the number of points on the hull

▫ Worst case: O(N2)

46

http://www.google.com/

Graham scan

• Quite easy to implement

• Requires a stack

• Requires crossProd to determine turning
directions

• For details, check out Google.com

• Time complexity: O(N logN)

▫ This is optimal! Can you prove this?

47

http://www.google.com/

Circles and curves??

• Circles

▫ Tangent points, circle-line intersections, circle-
circle intersections, etc.

▫ Usually involves equation solving

• Curves

▫ Bless you

48

Things you may need to know…

• Distance from point to line (segment)
• Great-circle distance

▫ Latitudes, longitudes, stuff like that

• Visibility region / visibility polygon
• Sweep line algorithm
• Closest pair of points

▫ Given N points, which two of these are closest to
each other? A simple-minded brute force
algorithm runs in O(N2). There exists a clever yet
simple O(N logN) divide-and-conquer algorithm

49

Practice problems
• Beginner

▫ 10242 Fourth Point!!!

• Basic
▫ 634 Polygon – point inside (non-convex) polygon
▫ 681 Convex Hull Finding – for testing your convex hull code

• Difficult
▫ 137 Polygons
▫ 11338 Minefield
▫ 10078 The Art Gallery
▫ 10301 Rings and Glue – circles
▫ 10902 Pick-up Sticks

• Expert (Regional Contest level)
▫ 361 Cops and Robbers
▫ 10256 The Great Divide – coding is easy though
▫ 10012 How Big Is It – circles

• Challenge (World Finals level)
▫ 10084 Hotter Colder
▫ 10117 Nice Milk
▫ 10245 The Closest Pair Problem – just for your interest
▫ 11562 Hard Evidence – really hard

50

References

• Wikipedia. http://www.wikipedia.org/

• Joseph O’Rourke, Computational Geometry in C,
2nd edition, Cambridge University Press

▫ This book has most of the geometric algorithms
you need for ICPC written in C code, and many
topics beyond our scope as well, e.g. 3D convex
hulls (which is 10 times harder than 2D hulls),
triangulations, Voronoi diagrams, etc.

51

http://www.wikipedia.org/

