Computational Geometry

HKU ACM ICPC Training 2010

What is Computational Geometry?

- Deals with geometrical structures
- Points, lines, line segments, vectors, planes, etc.
- A relatively boring class of problems in ICPC
- CoGeom problems are usually straightforward
- Implementation is tedious and error-prone
- In this training session we only talk about 2dimensional geometry
- 1-D is usually uninteresting
- 3-D is usually too hard

Basic definitions

- Point
- Specified by two coordinates (x, y)
- Line
- Extends to infinity in both directions
- Line segment
- Specified by two endpoints
- Ray
- Extends to infinity in one direction

Basic definitions

- Polygon
- We assume edges do not cross
- Convex polygon
- Every interior angle is at most 180 degrees
- Precise definition of convex: For any two points inside the polygon, the line segment joining them lies entirely inside the polygon

What makes CoGeom problems so annoying?

- Precision error
- Avoid floating-point computations whenever possible (see later slides)
- Degeneracy
- Boundary cases
- For example, imagine how two line segments can intersect

I'm bored...

- Do I really need to learn these?

ACM World Finals 2005

- A: Eyeball Benders
- B: Simplified GSM Network
- C: The Traveling Judges Problem
- D: cNteSahruPfefrlefe
- E: Lots of Sunlight
- F: Crossing Streets

- G: Tiling the Plane
- H: The Great Wall Game
- I: Workshops
- J: Zones

I'm bored...

- Do I really need to learn these?
- It seems that the answer is 'YES'

Outline

- Basic operations
- Distance, angle, etc.
- Cross product
- Intersection
- Polygons
- Area
- Containment
- Convex hull
- Gift wrapping algorithm
- Graham scan

Distance between two points

- Two points with coordinates (x1, y1) and (x2, y2) respectively
- Distance $=\operatorname{sqrt}\left((x 1-x 2)^{2}+(y 1-y 2)^{2}\right)$
- Square root is kind of slow and imprecise
- If we only need to check whether the distance is less than some certain length, say R
- if $\left((\mathrm{x} 1-\mathrm{x} 2)^{2}+(\mathrm{y} 1-\mathrm{y} 2)^{2}\right)<\mathrm{R}^{2} . .$.

Angle

- Given a point (x, y), find its angle about the origin (conventionally counterclockwise)
- Answer should be in the range $(-\pi, \pi]$

Sorry I'm not an artist

Angle

- Solution: Inverse trigonometric function
- We use arctan (i.e. $\tan ^{-1}$)
- $\operatorname{atan}(\mathrm{z})$ in C++
- need to \#include <cmath>
- $\operatorname{atan}(\mathrm{z})$ returns a value θ for which $\tan \theta=\mathrm{z}$
- Note: all C++ math functions represent angles in radians (instead of degrees)
- radian $=$ degree $* \pi / 180$
- $\pi=\operatorname{acos}(-1)$
- Solution(?): $\theta=\operatorname{atan}(y / x)$

Angle

- Solution(?): $\theta=\operatorname{atan}(\mathrm{y} / \mathrm{x})$
- Bug \#1: Division by zero
- When θ is $\pi / 2$ or $-\pi / 2$
- Bug \#2: y / x doesn't give a 1-to-1 mapping

ㅁ $\mathrm{x}=1, \mathrm{y}=1, \mathrm{y} / \mathrm{x}=\mathbf{1}, \boldsymbol{\theta}=\boldsymbol{\pi} / \mathbf{4}$

- $x=-1, y=-1, y / x=1, \theta=-3 \pi / 4$
- Fix: check sign of x
- Too much trouble... any better solution?

Angle

- Solution: $\theta=\operatorname{atan} 2(y, x)$
- \#include <cmath>
- That's it
- Returns answer in the range $[-\pi, \pi]$
- Look at your C++ manual for technical details
- Note: The arguments are (\mathbf{y}, \mathbf{x}), not (x, y)!!!

Angle between two vectors

- Find the minor angle (i.e. $<=\pi$) between two vectors $\mathbf{a}(\mathrm{x} 1, \mathrm{y} 1)$ and $\mathbf{b}(\mathrm{x} 2, \mathrm{y} 2)$
- Solution \#1: use atan2 for each vector, then subtract

Angle between two vectors

- Solution \#2: Dot product
- Recall: $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$
- Therefore: $\theta=\operatorname{acos}(\mathbf{a} \cdot \mathbf{b} /(|\mathbf{a}||\mathbf{b}|))$
- Where: $\mathbf{a} \cdot \mathbf{b}=\mathrm{x} 1^{*} \mathrm{x} 2+\mathrm{y} 1^{*} \mathrm{y} 2$
- And: $|\mathbf{a}|=\operatorname{sqrt}\left(\mathrm{x} 1^{*} \mathrm{x} 1+\mathrm{y} 1^{*} \mathrm{y} 1\right.$) (similar for $|\mathbf{b}|$)
- Note: acos returns results in the range $[0, \pi]$
- Note: When either vector is zero the angle between them is not well-defined, and the above formula leads to division by zero

Left turn or right turn?

- Are we making a left turn or right turn here?
- Of course easy for us to tell by inspection
- How about $(121,21) \rightarrow(201,74) \rightarrow(290,123)$?

Left turn or right turn?

- Solution \#1: Using angles
- Compute $\theta_{2}-\theta_{1}$
- "Normalize" the result into the range $(-\pi, \pi]$
- By adding/subtracting 2π repeatedly
- Positive: left turn
- Negative: right turn
- o or π : up to you

Cross product

- Solution \#2 makes use of cross products (of vectors), so let's review
- The cross product of two vectors $\mathbf{a}\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right)$ and $\mathbf{b}\left(\mathrm{x}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}}\right)$ is $\mathbf{a} \times \mathbf{b}=\left(\mathrm{x}_{\mathrm{a}}{ }^{*} \mathrm{y}_{\mathrm{b}}-\mathrm{x}_{\mathrm{b}}{ }^{*} \mathrm{y}_{\mathrm{a}}\right) \mathbf{k}$
$\square \mathbf{k}$ is the unit vector in the positive z -direction
${ }^{-} \mathbf{a}$ and \mathbf{b} are viewed as 3-D vectors with having zero z-coordinate
- Note: $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$ in general
- Fact: if $\left(\mathrm{x}_{\mathrm{a}}{ }^{*} \mathrm{y}_{\mathrm{b}}-\mathrm{x}_{\mathrm{b}}{ }^{*} \mathrm{y}_{\mathrm{a}}\right)>0$, then \mathbf{b} is to the left of \mathbf{a}

Left turn of right turn?

- Observation: "b is to the left of \mathbf{a} " is the same as " $\mathbf{a} \rightarrow \mathbf{b}$ constitutes a left turn"

Left turn or right turn?

- Solution 2: A simple cross product
- Take $\mathbf{a}=(\mathrm{x} 2-\mathrm{x} 1, \mathrm{y} 2-\mathrm{y} 1)$
- Take b = (x3-x2, y3-y2)
- Substitute into our previous formula...
- $\mathrm{P}=(\mathrm{x} 2-\mathrm{x} 1)^{*}(\mathrm{y} 3-\mathrm{y} 2)-(\mathrm{x} 3-\mathrm{x} 2)^{*}(\mathrm{y} 2-\mathrm{y} 1)$
- $\mathrm{P}>\mathrm{o}$: left turn
- P < 0 : right turn
- $\mathrm{P}=0$: straight ahead or U-turn

crossProd(p1, p2, p3)

- We need this function later
- function crossProd(p1, p2, p3: Point) \{
return (p2.x-p1.x)*(p3.y-p2.y) -

$$
(\mathrm{p} 3 \cdot \mathrm{x}-\mathrm{p} 2 \cdot \mathrm{x}) \star(\mathrm{p} 2 \cdot \mathrm{y}-\mathrm{p} 1 \cdot \mathrm{y}) ;
$$

\}

- Note: Point is not a predefined data type - you may define it

Intersection of two lines

- A straight line can be represented as a linear equation in standard form $A x+B y=C$
- e.g. $3 \mathrm{x}+4 \mathrm{y}-7=0$
- We assume you know how to obtain this equation through other forms such as
- slope-intercept form
- point-slope form
- intercept form
- two-point form (most common)

Intersection of two lines

- Given L1: $\mathrm{Ax}+\mathrm{By}=\mathrm{C}$ and L2: $\mathrm{Dx}+\mathrm{Ey}=\mathrm{F}$
- To find their intersection, simply solve the system of linear equations
- Using whatever method, e.g. elimination
- Using elimination we get - $x=\left(C^{*} E-B^{*} F\right) /\left(A^{*} E-B^{*} D\right)$
- $y=\left(A^{*} F-C^{*} D\right) /\left(A^{*} E-B^{*} D\right)$
- If $A^{*} E-B^{*} D=0$, the two lines are parallel
- there can be zero or infinitely many intersections

Intersection of two line segments

- Method 1:
- Assume the segments are lines (i.e. no endpoints)
- Find the intersection of the two lines
- Check whether the intersection point lies between all the endpoints
- Method 2:
- Check whether the two segments intersect
- A lot easier than step 3 in method 1 . See next slide
- If so, find the intersection as in method 1

Do they intersect?

- Observation: If the two segments intersect, the two red points must lie on different sides of the black line (or lie exactly on it)
- The same holds with black/red switched

Do they intersect?

- What does "different sides" mean?
- one of them makes a left turn (or straight/U-turn)
- the other makes a right turn (or straight/U-turn)
- Time to use our crossProd function

Do they intersect?

- turn_p3 $=\operatorname{crossProd}(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3)$
- turn_p4 = crossProd(p1, p2, p4)
- The red points lie on different sides of the black line if (turn_p3 * turn_p4) <= 0
- Do the same for black points and red line

Outline

- Basic operations
- Distance, angle, etc.
- Cross product
- Intersection
- Polygons
- Area
- Containment
- Convex hull
- Gift wrapping algorithm
- Graham scan

Area of triangle

- Area $=$ Base * Height $/ 2$
- Area $=a^{*} b * \sin (C) / 2$
- Heron's formula:
- Area $=\operatorname{sqrt}(\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})$)
- where $s=(a+b+c) / 2$ is the semiperimeter

Area of triangle

-What if only the vertices of the triangle are given?

- Given 3 vertices (x1, y1), (x2, y2), (x3, y3)
- Area $=\operatorname{abs}\left(\mathrm{x} 1^{*} \mathrm{y} 2+\mathrm{x} 2^{*} \mathrm{y} 3+\mathrm{x} 3^{*} \mathrm{y} 1-\mathrm{x} 2^{*} \mathrm{y} 1-\right.$ x3*y2-x1*y3) / 2
- Note: abs can be omitted if the vertices are in counterclockwise order. If the vertices are in clockwise order, the difference evaluates to a negative quantity

Area of triangle

- That hard-to-memorize expression can be written this way:

Area of convex polygon

- It turns out the previous formula still works!

Area of (non-convex) polygon

- Miraculously, the same formula still holds for non-convex polygons!
- Area $=1 / 2$ * \ldots
- I don't want to draw anymore

Point inside convex polygon?

- Given a convex polygon and a point, is the point contained inside the polygon?
- Assume the vertices are given in
counterclockwise order for convenience

Detour - Is polygon convex?

- A quick question - how to tell if a polygon is convex?
- Answer: It is convex if and only if every turn (at every vertex) is a left turn
- Whether a "straight" turn is allowed depends on the problem definition
- Our crossProd function is so useful

Point inside convex polygon?

- Consider the turn p \rightarrow p1 \rightarrow p2
- If p does lie inside the polygon, the turn must not be a right turn
- Also holds for other edges (mind the directions)

Point inside convex polygon?

- Conversely, if p was outside the polygon, there would be a right turn for some edge

Point inside convex polygon

- Conclusion: p is inside the polygon if and only if it makes a non-left turn for every edge (in the counterclockwise direction)

Point inside (non-convex) polygon

- Such a pain

Point inside polygon

- Ray casting algorithm
- Cast a ray from the point along some direction
- Count the number of times it non-degenerately intersects the polygon boundary
- Odd: inside; even: outside

Point inside polygon

- Problematic cases: Degenerate intersections

Point inside polygon

- Solution: Pick a random direction (i.e. random slope). If the ray hits a vertex of the polygon, pick a new direction. Repeat.

Outline

- Basic operations
- Distance, angle, etc.
- Cross product
- Intersection
- Polygons
- Area
- Containment
- Convex hull
- Gift wrapping algorithm
- Graham scan

Convex hulls

- Given N distinct points on the plane, the convex hull of these points is the smallest convex polygon enclosing all of them

Application(s) of convex hulls

- To order the vertices of a convex polygon in (counter)clockwise order
- You probably are not quite interested in realworld applications

Gift wrapping algorithm

- Very intuitive
- Also known as Jarvis March
- Requires crossProd to compare angles
- For details, check out Google.com
- Time complexity: O(NH)
- Where H is the number of points on the hull
- Worst case: O(N²)

Graham scan

- Quite easy to implement
- Requires a stack
- Requires crossProd to determine turning directions
- For details, check out Google.com
- Time complexity: O(N logN)
- This is optimal! Can you prove this?

Circles and curves??

- Circles
- Tangent points, circle-line intersections, circlecircle intersections, etc.
- Usually involves equation solving
- Curves
- Bless you

Things you may need to know...

- Distance from point to line (segment)
- Great-circle distance
- Latitudes, longitudes, stuff like that
- Visibility region / visibility polygon
- Sweep line algorithm
- Closest pair of points
- Given N points, which two of these are closest to each other? A simple-minded brute force algorithm runs in $\mathrm{O}\left(\mathrm{N}^{2}\right)$. There exists a clever yet simple $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ divide-and-conquer algorithm

Practice problems

- Beginner
- 10242 Fourth Point!!!
- Basic
- 634 Polygon - point inside (non-convex) polygon
- 681 Convex Hull Finding - for testing your convex hull code
- Difficult
- 137 Polygons
- 11338 Minefield
- 10078 The Art Gallery
- 10301 Rings and Glue - circles
- 10902 Pick-up Sticks
- Expert (Regional Contest level)
- 361 Cops and Robbers
- 10256 The Great Divide - coding is easy though
- 10012 How Big Is It - circles
- Challenge (World Finals level)
- 10084 Hotter Colder
- 10117 Nice Milk
- 10245 The Closest Pair Problem - just for your interest
- 11562 Hard Evidence - really hard

References

- Wikipedia. http://www.wikipedia.org/
- Joseph O’Rourke, Computational Geometry in C, $2^{\text {nd }}$ edition, Cambridge University Press
- This book has most of the geometric algorithms you need for ICPC written in C code, and many topics beyond our scope as well, e.g. 3D convex hulls (which is 10 times harder than 2D hulls), triangulations, Voronoi diagrams, etc.

