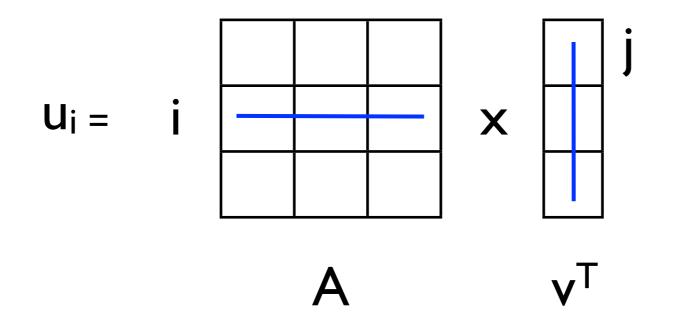
Parallelizing Algorithms in MapReduce

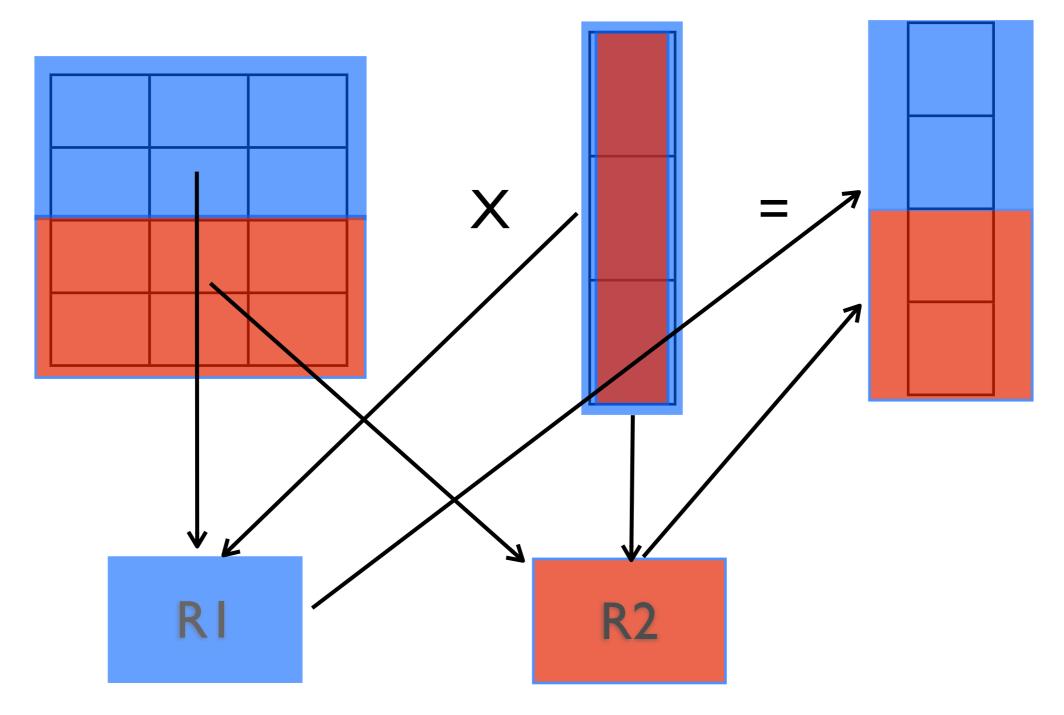
Mauro Sozio Institut Mines-Telecom <u>sozio@telecom-paristech.fr</u>

Matrix-Vector Multiplication in MR

- Input: A,v with n x K and K elem. resp.
- Output: vector $u = Av^T$ i.e. $u_i = \sum_{j=1}^n A_{ij}v_j$.



Matrix-Vector Multiplication



MapReduce jobs

Input:

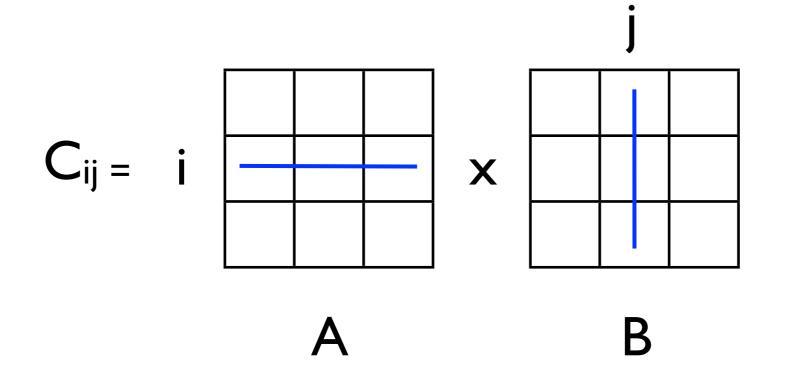
- Sparse matrix (list of <i,j,A_{ij}>, where A_{ij}!=0), a vector v

One MapReduce job:

- -- Map. Partition A and make copies of v.
- -- Reduce. Compute $A_i \times v$ and output the results.

Matrix-Matrix Multiplication in MR

- Input: A,B with n x K and K x m elem. resp.
- Output: C = A x B, where $C_{ij} = \sum_{k=1}^{n} A_{ik} * B_{k_j}$.



Matrix-Matrix Multiplication in

- Main problem: A and/or B might not fit into one single machine's main memory.
- Solution: split A and B into small blocks, so to compute products between small blocks in main memory.

Matrix Partitioning

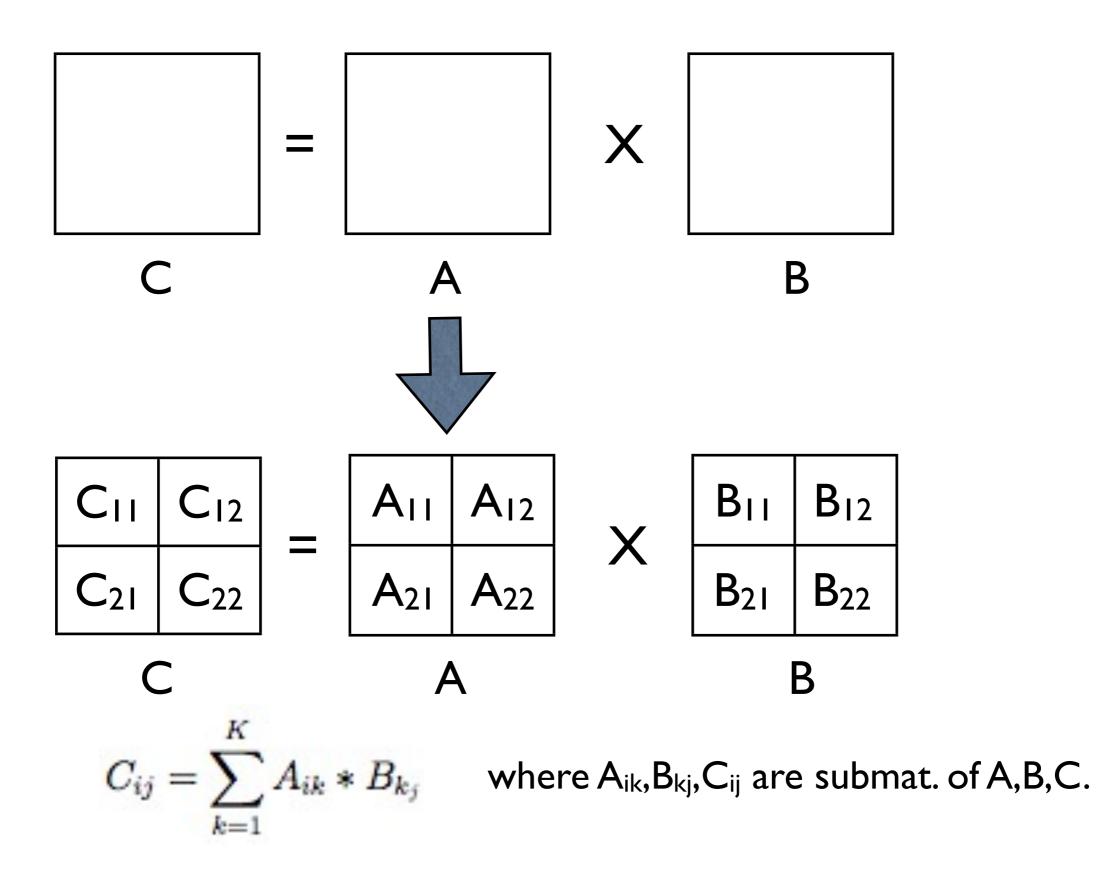
Partition rows and columns of M (n x K) into k "contiguous" blocks each, so that all k x k submatrices have a same size and each fits into main memory.

Ex. Partition A into 4 submatrices with a same size (K=2).

Formally, A_{ij} contains all elements with:

- rows in [(i-1)n/k+1,i×n/k], i in [1,...,k],
- cols in [(j-1)K/k +1 ,j_xK/k], j in [1,...,k].

Matrix Multiplication



Matrix Multiplication

$$A = \begin{bmatrix} A_{11} + A_{12} + A_{13} \\ A_{21} + A_{22} + A_{23} \end{bmatrix}, \qquad B = \begin{bmatrix} B_{11} + B_{12} \\ B_{21} + B_{22} \\ B_{31} + B_{32} \end{bmatrix}$$

Then the product is given by

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31} & A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32} \\ A_{21}B_{11} + A_{22}B_{21} + A_{23}B_{31} & A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = C$$

MapReduce Jobs

Two MapReduce jobs:

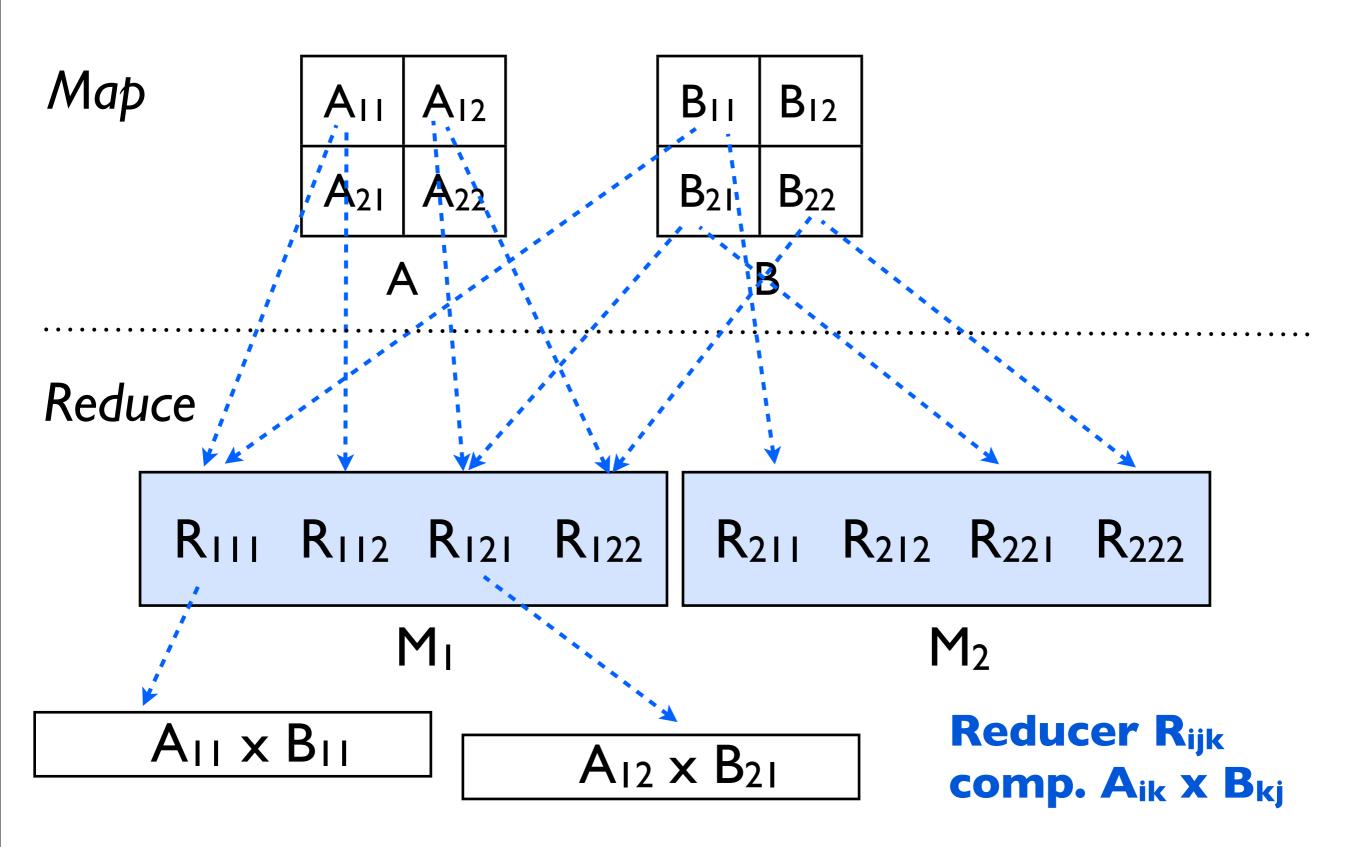
-- *first job*. One reducer R_{ijk} for each i,j,k computing $A_{ik \times} B_{kj}$. Mappers must route a copy of each A_{ik} and a copy of each B_{kj} to all reducers R_{ijk} ;

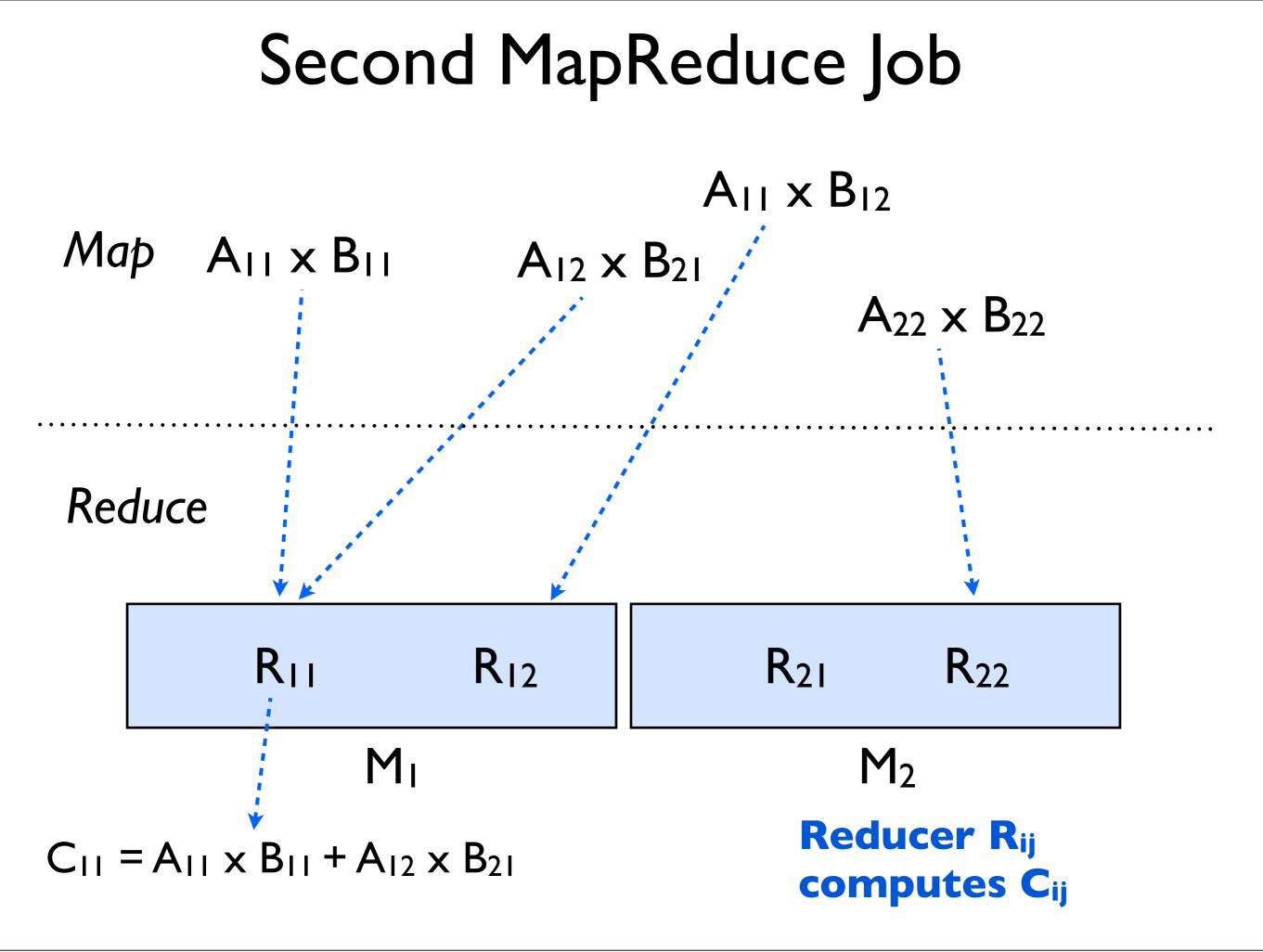
-- second job. One reducer R_{ij} for each i,j computing the sum

$$C_{ij} = \sum_{k=1}^{K} A_{ik} * B_{k_j}$$

where $A_{ik} \times B_{kj}$ has been computed by R_{ijk} .

First MapReduce Job



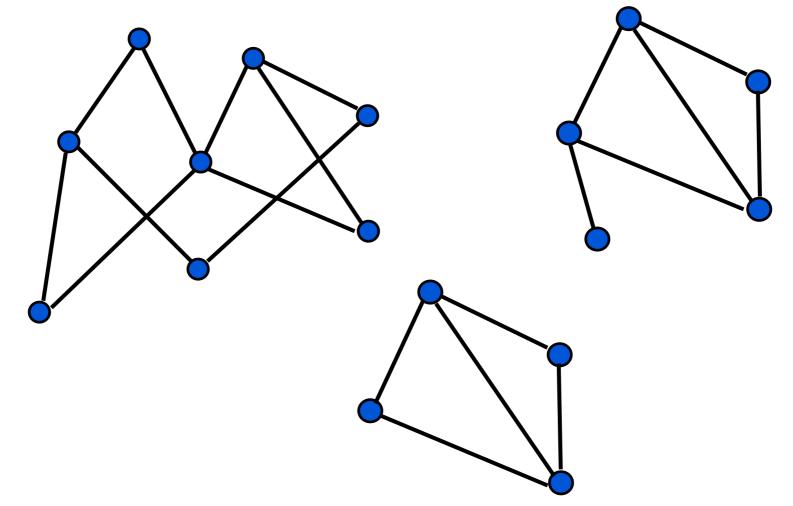


Connected Components

Definition: Given a graph G=(V,E), we say that two nodes u and v are in a same connected component if u and v are connected in G.

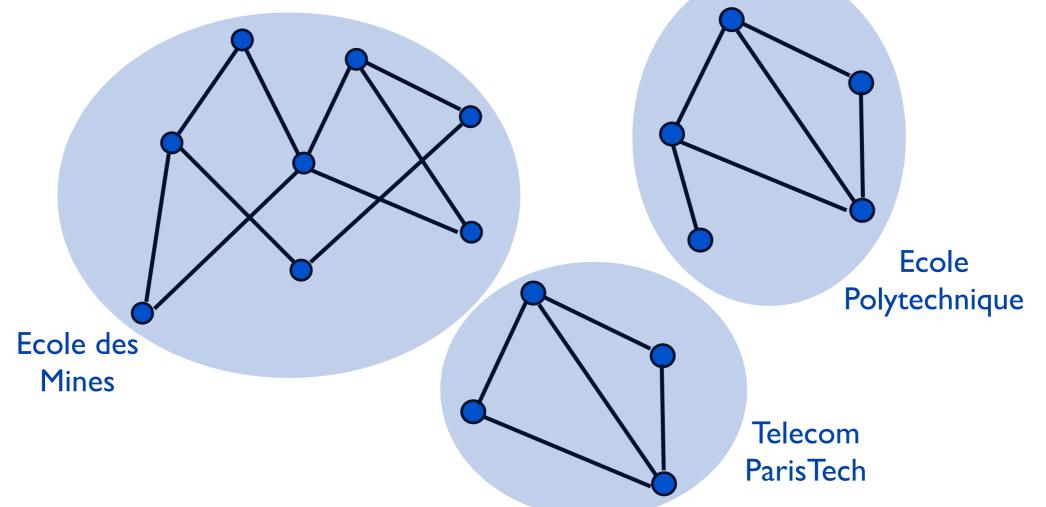
Connected Components

Definition: Given a graph G=(V,E), we say that two nodes u and v are in a same connected component if u and v are connected in G.



Connected Components

Definition: Given a graph G=(V,E), we say that two nodes u and v are in a same connected component if u and v are connected in G.



Finding Connected Components in Large Graphs

Two main issues:

graph might not fit into main memory;
graphs like Facebook contain > 3x10¹¹ friendship links... computation is expensive!

Algorithm in MapReduce?

Finding Connected Components in MapReduce

Assumption: up to 4 times the number of users (4Gb) can be stored into main memory. The set of links is too large! (several terabytes).

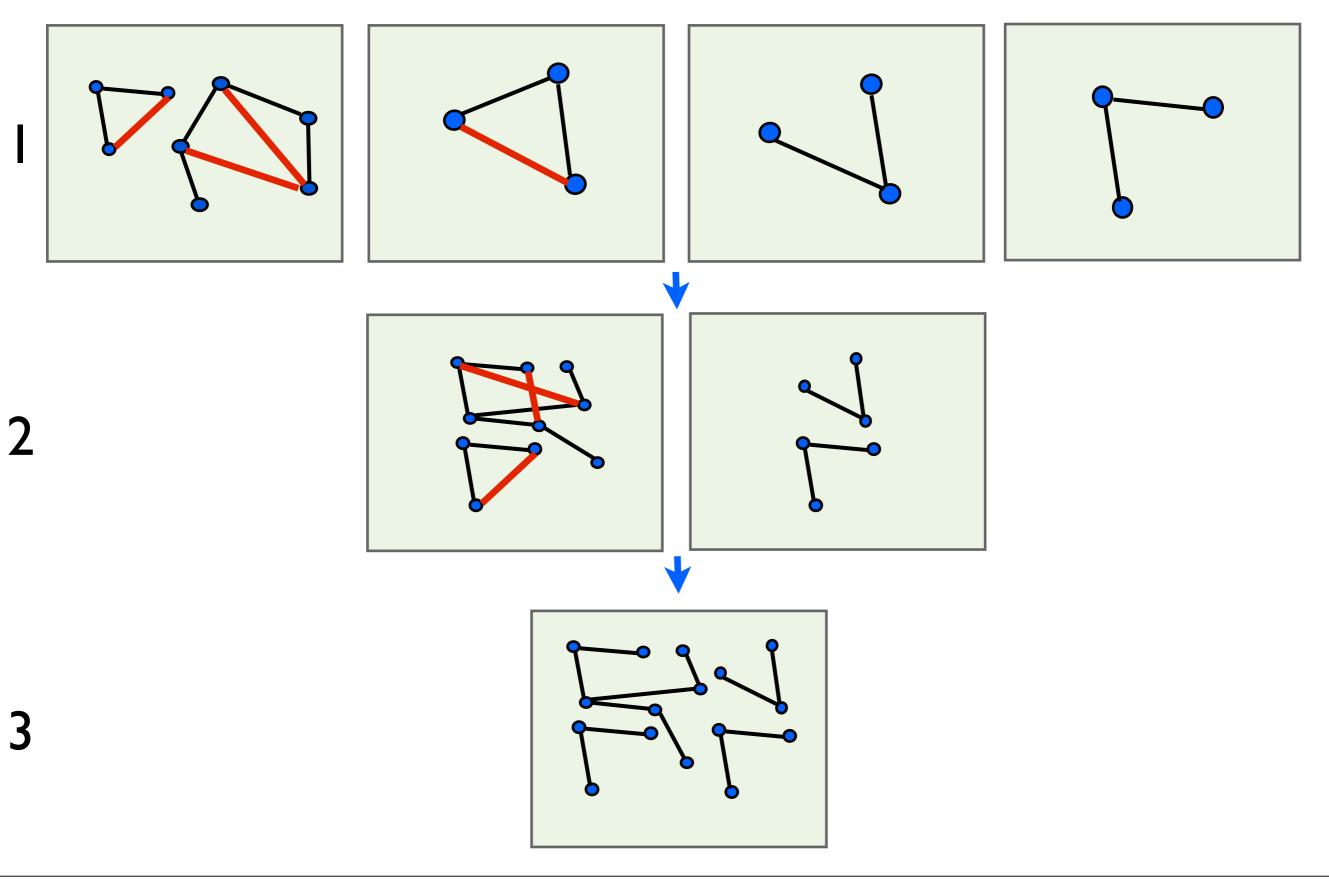
Algorithm in MapReduce?

MapReduce Algorithm

At each iteration:

- Partition the links of the input graph into several "chunks", randomly, so that each chunk fits into machine main memory.
- Each machine in parallel
 - computes the set of connected components (in its chunk);
 - removes edges that do not contribute to connectivity.
- "Turn off" half of the available machines.

Connected Components in MapReduce



MR Algorithm correct?

Questions:

- Correct?
- Graphs always fit into main memory?
- With m machines, how many iterations?

MR Algorithm correct?

Questions:

- Correct? (yes we remove only "superfluous" edges)
- Graphs always fit into main memory? (at step k after removing "superfluous" edges the number of links is at most m_k *n where m_k is the current number of machines and n is the number of nodes. At step k+1 each of the m_k /2 machines gets at most 2*n edges.)
- With m machines, how many iterations?(at most log₂ m)

Exercise: compute min. spanning tree in MapReduce.